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Prostate cancer is a clinically and biologically heterogeneous disease. Deregulation of splice variants has been shown to contribute
significantly to this complexity. High-throughput technologies such as oligonucleotide microarrays allow for the detection of
transcripts that play a role in disease progression in a transcriptome-wide level. In this study, we use a publicly available dataset of
normal adjacent, primary tumor, and metastatic prostate cancer samples (GSE21034) to detect differentially expressed coding and
non-coding transcripts between these disease states. To achieve this, we focus on transcript-specific probe selection regions, that
is, those probe sets that correspond unambiguously to a single transcript. Based on this, we are able to pinpoint at the transcript-
specific level transcripts that are differentially expressed throughout prostate cancer progression. We confirm previously reported
cases and find novel transcripts for which no prior implication in prostate cancer progression has been made. Furthermore, we
show that transcript-specific differential expression has unique prognostic potential and provides a clinically significant source
of biomarker signatures for prostate cancer risk stratification. The results presented here serve as a catalog of differentially
expressed transcript-specific markers throughout prostate cancer progression that can be used as basis for further development
and translation into the clinic.

1. Introduction

Alternative splicing is a fundamental cellular process by
which a multiexon gene generates different transcripts from
the same primary sequence, thereby increasing functional
diversity of the expressed genome. The central dogma of
“one gene, one mRNA, and one protein” is outmoded as
our understanding of the ubiquitous nature of gene splice
variation; its complexity throughout normal development,
cell differentiation, and in disease is better understood [1, 2].

The biological and clinical significance of differential
expression of isoform variants is illustrated, for example,
by the bcl-2 apoptotic gene family member bcl-x [3], for
which the short (xS) and long (xL) variants are pro- and
antiapoptotic, respectively. In prostate cancer, one of the
most clinically relevant examples of differential expression
of isoform variants has only recently been characterized
for the androgen receptor (AR) [4–6]. While expression

of the main isoform variant of AR is tightly coupled to
sensitivity to antiandrogen therapy (AAT), the truncated
v567 variant functions as a constitutively active, ligand-
independent transcription factor that can support androgen-
independent growth and progression of castrate-resistant
metastatic prostate cancer. In general, due to the involvement
of cancer-specific splice variants in very distinct molecular
processes and their association with clinical outcome, they
could be considered ideal candidates as diagnostic, prognos-
tic, or predictive biomarkers [2]. Furthermore, the inclusion
of splice variants might increase the specificity of previously
identified “genes” as biomarkers and biomarker signatures.

Recent advances in genome annotation and high-
throughput technologies have led to the design of splicing-
specific microarrays (e.g., exon, exon-junction, and tiling
arrays) and RNA-sequencing (RNA-Seq), which allow
transcriptome-wide expression profiling of coding and Non-
coding transcripts. While RNA-Seq is the technology of
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highest (i.e., single basepair) resolution and is especially
powerful for the discovery of specific splice variants and
novel transcripts, its utility in routine clinical testing remains
to be proven. High-density microarrays, on the other hand,
are already established tools in routine clinical testing (e.g.,
use of paraffin-embedded solid tumor specimens) [7, 8] and
if analyzed correctly can provide a clear depiction of the
transcriptome at exon-level resolution in both coding and
non-coding genomic regions. In this study, we use Human
Exon arrays to identify differentially expressed coding and
non-coding transcripts involved in the progression con-
tinuum of prostate cancer by comparing normal prostate
through metastatic disease tissue using transcript-specific
probe selection regions (TS-PSR). Furthermore, we address
the potential clinical significance of alternative splicing using
TS-PSR biomarker signatures in comparison to established
prognostic clinical variables and genes in prostate cancer.

2. Materials and Methods

2.1. Microarray and Clinical Data. The publically available
genomic and clinical data was generated as part of the
Memorial Sloan-Kettering Cancer Center (MSKCC) Prostate
Oncogenome Project, previously reported by Taylor and
colleagues [9]. The human exon array files for 131 pri-
mary prostate cancer tumors, 29 normal adjacent and 19
metastatic tissue specimens were downloaded from GEO
at http://www.ncbi.nlm.nih.gov/geo/series GSE21034. The
patient and specimen details for the primary and metastases
tissues used in this study were reported elsewhere [9, 10].

2.2. Microarray Normalization and Summarization. The nor-
malization and summarization of the 179 microarrays were
done with the frozen Robust Multiarray Average (fRMA)
algorithm using custom frozen vectors [11]. These custom
vectors were created using the vector creation methods
described in [12] including all MSKCC samples. Normaliza-
tion was done by the quantile normalization method and
summarization by the robust weighted average method, as
implemented in fRMA. Gene-level expression values were
obtained by summarizing the probe selection regions (or
PSRs) using fRMA and the corresponding Affymetrix cluster
annotation (http://www.affymetrix.com/).

2.3. Sample Subsets. The normalized and summarized data
was partitioned into three groups. The first group contains
the samples from primary localized prostate cancer tumor
and normal adjacent samples (used for the normal versus
primary comparison). The second group contains all the
samples from metastatic tumors and all the localized prostate
cancer specimens (used for the primary versus metastasis
comparison). The third group corresponds to all samples
from metastatic tumors and all the normal adjacent samples
(used for the normal adjacent versus metastasis comparison).

2.4. Detection of Transcript-Specific PSRs in Human Exon
Microarray Probe-Sets. Using the xmapcore R package [13],
all PSRs overlapping with the exon of only one transcript

were retrieved. This set of PSRs (hereafter called transcript-
specific PSRs, or TS-PSRs) was further filtered in order to
remove all those that correspond to a gene but such that (i)
the gene has only one transcript or (ii) the gene has multiple
transcripts, but only one can be tested in a transcript-
specific manner (see Figure S1 in supplementary Material
available online at doi:10.1155/2012/541353). In order to
avoid complex regions, TS-PSRs overlapping with more than
one gene (e.g., within the intron of another gene) on the
same strand were filtered out from the analysis.

2.5. Feature Selection. PSRs annotated as “unreliable” by
the xmapcore package [13] (one or more probes do not
align uniquely to the genome) as well as those not defined
as class 1 cross-hybridizing by Affymetrix were excluded
from further analysis. Additionally, those PSRs that present
median expression values below background level for all of
the three tissue types (normal adjacent, primary tumor, and
metastasis) were excluded from the analysis. The remaining
TS-PSRs were subject to univariate analysis to discover
those differentially expressed between the labeled groups
(primary versus metastatic, normal adjacent versus primary,
and normal adjacent versus metastatic). For this analysis, TS-
PSRs were selected as differentially expressed if their adjusted
false discovery rate (FDR) t-test P value is significant (<0.05)
and the median fold difference (MFD) is greater than or
equal to 1.2. The t-test was applied as implemented in
the rowttests function of the genefilter package, http://www
.bioconductor.org/packages/2.3/bioc/html/genefilter.html.

The multiple testing correction was applied using the
p.adjust function of the stats package in R.

For any given transcript with two or more transcript-
specific PSRs significantly differentially expressed the one
with lowest P-value was chosen as representative of the
differential expression of the transcript.

2.6. Feature Evaluation and Model Building. A k-nearest-
neighbor (KNN) model (k = 1, Euclidean distance) was
trained on the normal adjacent and metastatic samples (n =
48) using only the top 100 t-test ranked features found to be
differentially expressed between these two groups.

2.7. Statistical Analysis. Biochemical recurrence endpoint
is used as defined by the “BCR Event” column of the
supplementary material provided by Taylor and colleagues
[9]. Survival analysis for BCR was performed using the
survfit function of the survival package in R.

2.8. Annotation of Genes Known in Prostate Cancer. The list
of differentially expressed genes was queried for previously
reported association with prostate cancer by two means: (i)
using E-utils PubMed Search; a gene is found associated with
prostate cancer if it presents one or more hits in PubMed
using the official gene symbol or any of the aliases in addition
to the phrase “prostate cancer” found within the title or
abstract and (ii) using a previously reported set of genes
known to be differentially expressed in prostate cancer [14].
The list can be found in Supplementary Table 1.

http://www.ncbi.nlm.nih.gov/geo/series GSE21034
http://www.affymetrix.com/
http://www.bioconductor.org/packages/2.3/bioc/html/genefilter.html
http://www.bioconductor.org/packages/2.3/bioc/html/genefilter.html
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Additionally, evidence for androgen regulation was
pursued using the Androgen Responsive Gene Database,
ARGDB [15]. The list of genes falling under this category can
be found in Supplementary Table 2.

3. Results and Discussion

3.1. Detection of Transcript-Specific PSRs Using High-
Density Microarrays. High-density Affymetrix human exon
(“HuEx”) microarrays provide a unique platform to test the
differential expression of the vast majority of exonic regions
in the genome. Based on Ensembl v62 and xmapcore [13],
there are 411,681 PSRs that fall within exons of protein-
coding and non-coding (ncRNA) transcripts. Within this
set, 123,521 PSRs (∼10% of the total number of PSRs on
the array) can be used for unequivocal testing of differential
expression of alternatively spliced transcripts, as they overlap
uniquely with the exon of only one splice variant. These
PSRs, which we call transcript-specific PSRs (TS-PSRs),
cover 49,302 transcripts corresponding to 34,599 genes.

In this study, we use the publicly available HuEx data
set generated as part of the MSKCC Prostate Oncogenome
Project [9] to explore transcript-specific differential expres-
sion through progression of prostate cancer from normal
adjacent, primary tumor and metastatic tissues. In particular,
we focus our analysis on the assessment of two or more
distinct transcripts within a single gene or ncRNA to identify
variants that may represent clinically and biologically rel-
evant transcript-specific differential expression. This group
of transcripts is the focus of the study since the TS-PSRs
associated to them represent the most interesting cases in this
technique and may lead to the discovery of novel diagnostic
biomarkers and metastasis-specific druggable targets, such as
those discovered for the AR isoform variants. The expression
of TS-PSRs from genes for which only one transcript can
be tested will either simply reflect the expression of that
gene or will shed no light on the role of different transcripts
within the same gene. Instead, genes with multiple TS-PSRs
allow the detection of dominate variants and possibly a
shift from one transcript variant to the other as the cancer
progresses. Hence, the set of 123,521 TS-PSRs was further
filtered in order to remove all those that correspond to a gene
but such that (i) the gene has only one transcript (69,591
TS-PSRs; Supplementary Figure 1(a)), or (ii) the gene has
multiple transcripts, but only one of these can be tested in a
transcript-specific manner (14,927 TS-PSRs; Supplementary
Figure 1(b)). This generates a final set of 39,003 TS-PSRs
from 22,517 transcripts and 7,867 protein-coding and Non-
coding genes that are used as the basis of this analysis
(Supplementary Figure 1(c)).

3.2. Differential Expression of Coding and Non-Coding Tran-
scripts through Prostate Cancer Progression. Assessment of
the defined set of TS-PSRs yielded 881 transcripts dif-
ferentially expressed between any pairwise comparison of
normal adjacent, primary tumor, and metastatic samples
(see Section 2; Figure 1, Supplementary Table 2). These
881 transcripts correspond to 680 genes or ncRNAs with
two or more transcripts differentially expressed at the same
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Figure 1: Venn diagram distribution of differentially expressed
transcripts across pairwise comparison. N versus P: normal adjacent
versus primary tumor comparison. P versus M: primary tumor
versus metastatic sample comparison. N versus M: normal adjacent
versus metastatic sample comparison.

or different stages of cancer progression. Some of these
are known prostate-associated protein-coding genes such as
ACPP, TGM4, and STEAP2. While there are previous reports
of transcript-specific differential expression for ACPP (a.k.a.
PAP) and TGM4 [16, 17], to our knowledge this is the first
report describing transcript-specific differential expression
for STEAP2 (a.k.a. STAMP1), which is known to be differ-
entially expressed in prostate cancer [18, 19].

Interestingly, 371 (42%) of the differentially expressed
transcripts are non-coding. Inspection of their annotation
reveals that they fall into several non-coding categories,
the most frequent being “retained intron” (n = 151) and
“processed transcript” (n = 186) (Supplementary Table 2).
Additionally, most of the genes associated with these Non-
coding transcripts are coding, that is, the gene encodes at
least one functional protein (although the specific isoform
variant for that gene detected in this study does not).
Examples of non-coding genes with differentially expressed
transcripts found in this dataset include the lincRNAs PART1
(prostate androgen-regulated transcript 1) [20], MEG3 [21],
the PVT1 oncogene, located in the 8q24 susceptibility region
[22], and the testis-specific lincRNA TTTY10, which has
been previously shown to be expressed in prostate [23].
Other ncRNAs include the small nucleolar RNA host gene
1 (SNHG1) which has been suggested as a useful biomarker
for prostate cancer progression [24], as well as GAS5, located
in the 1q25 risk loci [25]. Furthermore, three pseudogenes
are found differentially expressed in this dataset including
EEF1DP3, located in a region previously found to be a
focal deletion in metastatic tumors [26] and the Y-linked
pseudogene PRKY, which has been found expressed in
prostate cancer cell lines [27].

In addition to the ncRNA genes, various coding genes
present one or more non-coding transcripts differentially
expressed. Many of these genes have been shown to be
involved in prostate cancer and present evidence of androgen
regulation (Table 1, Supplementary Table 2, see Section 2).
These genes contain one or more non-coding transcripts
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differentially expressed in our analysis, including androgen
receptor AR [4–6] and the fibroblast growth factor receptors
FGFR1 and FGFR2 [28].

The set of non-coding transcripts in both coding and
non-coding genes reported here add to the current stream of
evidence showing that non-coding RNA molecules may play
a significant role in cancer progression [10, 29].

Overall, of the 680 genes with one or more transcripts
found differentially expressed, 281 have a previously reported
association to prostate cancer (see Section 2). Still, the
remaining 399 genes consist of 274 coding (31.1%) and
215 (24.4%) Non-coding transcripts that are differentially
expressed and originate from a gene with no previously
described association with prostate cancer in the literature.
These findings suggest that there remains much more to be
discovered in prostate cancer and that the results presented
here may represent important insights into biology with
potential for clinical significance.

3.3. Genes with Multiple Transcripts Differentially Expressed
through Prostate Cancer Progression. The majority of the 881
differentially expressed transcripts originate from the com-
parison between normal adjacent and metastatic samples, in
agreement with previous analyses of differential expression
in the MSKCC dataset [10]. As shown in Figure 1, 28 of
the transcripts differentially expressed are found to represent
a continuum of disease progression from normal adjacent
through primary tumor and metastatic disease, with 22 of
them across all three pairwise comparisons (Table 2, top).
These 22 transcripts reflect instances of significant increase
or decrease of expression through all stages in the same
direction (i.e., always upregulated or downregulated). The
remaining 6 transcripts are found differentially expressed
in the normal adjacent versus primary tumor as well as
in the primary tumor versus metastatic sample comparison
(but not in the normal adjacent versus metastatic samples
comparison). These are a reflection of transcripts that play a
role during the primary tumor stage of the disease (Table 2,
bottom) In particular, within this set of 28 transcripts
there are two AR-responsive genes, FGFR2 and NAMPT
with two distinct transcripts each that are differentially
expressed throughout the progression continuum. In the case
of the FGFR2 gene, our observation of significant decrease
in expression from normal adjacent to metastasis is in
agreement with a previous study that shows downregulation
of isoforms “b” and “c” associated with development of
malignant prostate cancer [28]. In the case of NAMPT
(a nicotinamide phosphoribosyltransferase), the two tran-
scripts show highest expression in the primary tumor tissues
compared to normal adjacent and metastasis; the rise in
primary tumors compared to normal is in full agreement
with previously reported elevation of expression during early
prostate neoplasia for this gene [30].

For FGFR2 and NAMPT, the transcripts happen to be
differentially expressed in the same direction as the tumor
progresses, suggesting that both transcripts are functioning
in a cooperative manner. In order to determine if this is
a general pattern of the transcripts analyzed here, all the
genes for which at least two transcripts presented differential

Table 1: Androgen-regulated genes known to play a role in prostate
cancer with non-coding transcripts differentially expressed. All
these genes present evidence of being androgen sensitive, based on
ARGDB.

Gene Transcript Comparison

ABCC4
ABCC4-002 NvsP

ABCC4-004 NvsP PvsM

ACADL
ACADL-001∗ PvsM NvsM

ACADL-004 PvsM

ACPP
ACPP-001∗ PvsM

ACPP-005 PvsM NvsM

ADAMTS1
ADAMTS1-001∗ NvsM

ADAMTS1-002 NvsM

ADAMTS1-003∗ NvsM

ANO7
ANO7-006 PvsM NvsM

ANO7-007 PvsM NvsM

ANXA1
ANXA1-001 PvsM NvsM

ANXA1-005 PvsM NvsM

AR
AR-001∗ NvsM

AR-005 PvsM NvsM

AR-203∗ NvsM

BNC2 BNC2-001 NvsM

BTG3
BTG3-005 PvsM NvsM

BTG3-006 NvsM

CACNA1C
CACNA1C-016 NvsM

CACNA1C-018∗ NvsM

CACNA1C-201∗ NvsM

CACNA1D

CACNA1D-004∗ NvsM

CACNA1D-006 PvsM NvsM

CACNA1D-007∗ PvsM NvsM

CACNA1D-201∗ PvsM NvsM

CALD1
CALD1-005∗ PvsM NvsM

CALD1-008 PvsM NvsM

CALD1-012∗ PvsM

CD40
CD40-005 NvsP NvsM

CD40-201∗ NvsM

CD44 CD44-014 NvsM

CEACAM1
CEACAM1-004∗ PvsM NvsM

CEACAM1-010 PvsM NvsM

COL1A2

COL1A2-002 NvsM

COL1A2-005 NvsM

COL1A2-006 NvsM

COL1A2-012 NvsM

DPP4
DPP4-001∗ PvsM NvsM

DPP4-006 PvsM NvsM

DST

DST-006 NvsM

DST-010∗ PvsM NvsM

DST-015∗ PvsM NvsM

DST-032 NvsM

FBLN1
FBLN1-001∗ PvsM NvsM

FBLN1-016 NvsM

FGFR1 FGFR1-005 NvsM



Journal of Oncology 5

Table 1: Continued.

Gene Transcript Comparison

FGFR2
FGFR2-008 NvsP PvsM NvsM

FGFR2-016∗ NvsP PvsM NvsM

FGFR2-201∗ PvsM NvsM

GOLM1 GOLM1-008 NvsP

GSN GSN-011 PvsM NvsM

HSPA8
HSPA8-008 PvsM

HSPA8-013 PvsM NvsM

HSPA8-025 PvsM

IFI16
IFI16-003∗ PvsM NvsM

IFI16-008 PvsM NvsM

INSIG1 INSIG1-004 NvsM

IRS1
IRS1-001∗ PvsM NvsM

IRS1-002 NvsM

KHDRBS3 KHDRBS3-003 PvsM

MAT2A MAT2A-012 NvsP

MME

MME-001∗ PvsM NvsM

MME-003∗ NvsM

MME-010∗ NvsM

MME-011∗ NvsM

MME-013 NvsM

NAMPT

NAMPT-006 NvsP PvsM

NAMPT-007 NvsP PvsM

NAMPT-008 PvsM

NAMPT-009 PvsM

NCAPD3

NCAPD3-004 PvsM

NCAPD3-006∗ PvsM NvsM

NCAPD3-011 PvsM

NCAPD3-015 PvsM NvsM

NCAPD3-016 PvsM

PALLD PALLD-015 PvsM NvsM

PART1 PART1-001 PvsM

PBX1 PBX1-003 NvsM

PDE4B
PDE4B-008∗ PvsM

PDE4B-016 PvsM

PDE4D

PDE4D-005 PvsM

PDE4D-013 PvsM NvsM

PDE4D-016∗ PvsM NvsM

PDE4D-020∗ PvsM NvsM

PDE4D-021∗ PvsM

PDE4D-022 NvsM

PDE4D-026 NvsM

PDLIM5
PDLIM5-010∗ PvsM

PDLIM5-017 PvsM NvsM

PIK3R1 PIK3R1-008 NvsM

PPP2CB PPP2CB-003 NvsM

RAN RAN-006 PvsM NvsM

SEMA3C
SEMA3C-001∗ PvsM NvsM

SEMA3C-008 PvsM NvsM

SVIL SVIL-004 PvsM NvsM

Table 1: Continued.

Gene Transcript Comparison

TBC1D1
TBC1D1-005 NvsM

TBC1D1-010 NvsM

TBC1D1-013 NvsM

TGM4
TGM4-001∗ NvsP PvsM NvsM

TGM4-008 NvsP NvsM

THBS1
THBS1-001∗ PvsM

THBS1-004 PvsM

THBS1-008 PvsM

TNC
TNC-002 PvsM NvsM

TNC-010∗ PvsM NvsM

TPM2
TPM2-002∗ PvsM NvsM

TPM2-003 PvsM NvsM

TPM2-005∗ PvsM NvsM

TSC22D1 TSC22D1-004 PvsM

VCL VCL-005 PvsM NvsM

VEGFA
VEGFA-005 NvsM

VEGFA-007 NvsM

WSB1 WSB1-003 PvsM

XBP1 XBP1-005 PvsM NvsM

XRCC2 XRCC2-002 PvsM NvsM
∗indicates a protein-coding transcript. NvsP: normal adjacent versus
primary tumor comparison. PvsM: primary tumor versus metastatic sample
comparison. NvsM: normal adjacent versus metastatic sample comparison.

expression were inspected (Figure 2). Among the 140 genes
for which such cases were found, there is a clear trend for
groups of transcripts of the same gene to be expressed in the
same “direction” of the tumor progression continuum. Two
exceptions we found are genes CALD1 and AGR2. For both
of these, differential expression of one of their transcripts
in the progression from primary tumor to metastasis occurs
in the opposite direction compared to the other transcripts.
In the case of AGR2, transcript AGR2-001 is downregulated
in metastasis compared to primary tumor, whereas AGR2-
007 is upregulated. This observation is in agreement with
previous reports for the pattern of expression for a short
and long isoform of the same gene [31]. Even though the
correspondence of the short and long isoforms to those
annotated in Ensembl is not straightforward, alignment of
the primers used by Bu and colleagues [31] shows overlap-
ping of the short isoform with AGR2-001 and of the long
isoform with AGR2-007, which agrees with the divergent
expression patterns reported here (data not shown). In the
case of CALD1, while transcript CALD1-012 is upregulated,
CALD1-005 and CALD1-008 are downregulated in the
progression from primary tumor to metastasis. A previous
study on 15 prostate cancer samples shows that CALD1-005
is downregulated in metastatic samples compared to primary
tumor, in agreement with our results [32].

3.4. Transcripts Level Resolution of Differential Expression
on Fully Tested Genes. A particularly interesting group of
genes for detection of differential expression is the one
for which all annotated transcripts for a given gene can
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Table 2: Transcripts found differentially expressed across all
pairwise comparisons (top) and across normal versus primary
tumor and primary tumor versus metastatic samples comparisons
(bottom).

Transcript
Mean fold difference

P versus N M versus P M versus N

ACOT11-001 0.79 0.77 0.61

AOX1-001 0.79 0.56 0.44

C19orf46-002 1.24 1.23 1.53

C8orf84-001 0.76 0.75 0.57

COCH-202 0.76 0.83 0.63

CTA-55I10.1-001 0.83 0.68 0.56

DMD-024 0.74 0.82 0.60

FGF10-002 0.83 0.64 0.53

FGFR2-008 0.76 0.79 0.60

FGFR2-016 0.74 0.67 0.49

GABRE-006 0.79 0.83 0.66

GNAL-001 0.82 0.69 0.57

GNAO1-002 0.78 0.75 0.58

HEATR8-006 0.80 0.80 0.64

ISL1-002 0.80 0.81 0.65

NR2F2-202 0.82 0.82 0.68

PCP4-004 0.81 0.72 0.58

PDE5A-005 0.74 0.79 0.59

PDZRN4-202 0.80 0.71 0.57

RSRC2-017 1.27 1.28 1.63

TGM4-001 0.68 0.62 0.42

TSPAN2-001 0.80 0.77 0.61

ABCC4-004 1.35 0.81 N.A.

ALK-001 1.24 0.83 N.A.

ATP1A1-002 1.23 0.71 N.A.

NAMPT-006 1.34 0.73 N.A.

NAMPT-007 1.75 0.57 N.A.

RP11-627G23.1-004 1.38 0.78 N.A.

N: Normal, P: Primary and M: Metastatic samples. N.A.: not applicable.

be tested individually (Supplementary Figure 2). Of the
7,867 genes for which one or more transcripts were assessed
in this analysis, 1,041 genes are such that all of their
transcripts have at least one TS-PSR (Supplementary Table
2). Of these, 92 genes have at least one of their transcripts
differentially expressed in any pairwise comparison between
normal adjacent, primary tumor, and metastatic samples. As
depicted in Figure 3, the majority of the genes in this analysis
have only one differentially expressed transcript. Examples
of these are KCNMB1 and ASB2, two genes that have been
previously reported to be differentially expressed in prostate
cancer, but for which no observation at the transcript level
has been made [33, 34]. In the case of KCNMB1, only
transcript KCNMB1-001 of the two transcripts is found
differentially expressed, whereas, for ASB2, only transcript
ASB2-202 is found differentially expressed of the three
transcripts annotated for this gene. Also, other protein-
coding genes present differential expression of their Non-
coding transcripts only. One example of this is PCP4 (also

known as PEP-19), a gene known to be expressed in prostate
tissue [35]. Additionally, 15 of the 92 genes are non-coding.
These genes include the testis specific lincRNA TTTY10 [23],
the EEF1DP3 pseudogene in addition to others that have no
previously reported association with prostate cancer, such as
many of those derived from regions of the genome associated
to RP11 and RP5 BAC clones.

In addition to the expression profile of each transcript
for these 92 genes, Figure 3 shows the corresponding
summarized gene-level expression profile for each gene.
Of these, only 18 genes present differential expression
that can be resolved at the gene level, clearly illustrating
that summarization of expression to a “consensus gene”
using these microarrays can result in a significant loss of
information.

3.5. TS-PSRs Provide Clinically Significant Biomarker Signa-
tures for Prostate Cancer Risk Stratification. In order to assess
the prognostic significance of the differentially expressed
transcripts, the corresponding TS-PSRs were used to train a
K-nearest neighbor (KNN) classifier on normal adjacent and
metastatic samples. This KNN classifier was subsequently
validated on the primary tumor subset, such that each
primary tumor sample was classified as “normal-like” or
“metastatic-like” based on its distance to the normal and
metastatic groups. As shown in Figure 4, even though
only a small fraction of the primary tumor patients were
classified as “metastasis-like” due to the low risk nature
of the cohort, the difference in the Kaplan-Meier (KM)
curves for the two groups is statistically significant for the
biochemical recurrence (BCR) endpoint and its performance
is comparable to that of the Kattan nomogram for patient
risk stratification [36]. Further assessment of coding and
non-coding differentially expressed transcripts showed both
sets to yield statistically significant differences in their KM
curves (data not shown). The corresponding set of genes
(i.e., nonisoform specific) also shows a statistically significant
difference between the two risk groups in the KM curves
albeit at a lower significance level, suggesting a loss of
prognostic information when the data is summarized on
the gene level. This is more apparent in a multivariable
logistic regression analysis of the groups of transcripts
and genes differentially expressed with adjustment for the
Kattan nomogram (Table 3). While the isoform-specific
transcripts dominate the multivariable model and remain
highly significant (P < 0.005), the summarized genes do
not dominate clinicopathological variables and as a result
have a borderline significance for predicting BCR (P =
0.05). These results suggest that biomarker signatures based
on specific transcript isoforms may offer unique prognostic
information not captured by either summarized genes or
clinicopathological variables and nomograms.

4. Conclusions

Transcriptome-wide detection of molecular markers for the
development of better diagnostics and personalized medicine
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Figure 2: Heat map of genes with two or more transcripts differentially expressed across any pairwise comparison. Transcript names are
provided as annotated in Ensembl. Heat map is colored according to median expression values for normal, primary and metastatic samples.
“∗” indicates that the transcript is protein-coding. Background indicates the expression value considered as background level based on
control probe sets on the HuEx array.

Table 3: Multivariable logistic regression analysis of transcripts and genes for prediction of BCR progression adjusted for Kattan nomogram.

Classifier
Transcripts Genes

OR OR CI (95%) P value OR OR CI (95%) P value

KNN positive∗∗ 13 [2.5–99] <0.005 3.8 [1.0–14.3] 0.05

Nomogram∗ 6.6 [2.3–20] <0.001 7.9 [2.9–22.6] <0.0001
∗∗

: metastatic-like. ∗: greater than 50% probability of BCR used as cut-off. OR: odds ratio. CI: confidence interval.

approaches have been facilitated by high-throughput tech-
nologies such as microarrays and more recently next-
generation sequencing. Additionally, appreciation of the
fact that most of the transcriptome is non-coding in both
normal and cancer tissues [29] has significantly expanded
the repertoire of available expressed biomarkers. In prostate
cancer, a study by Chinnaiyan and colleagues using RNA-Seq
highlights the existence of hundreds of non-coding RNAs
that are differentially expressed between normal tissue and
prostate tumor samples [37]. Additionally, a recent study by
our group has shown that significant prognostic information
is contained within the non-coding transcriptome of prostate
cancer [10].

Gene expression profiling efforts in prostate cancer have
not yet become mainstream. The argument against the use
of gene-based biomarker signatures is that, despite numerous
efforts, none have been shown to perform significantly better
than established clinical variables and predictive models
such as nomograms. Here, we demonstrate that improved
predictive models can be obtained in prostate cancer by
leveraging the complexity of transcript-specific isoforms.

In this study, we show that HuEx arrays are populated
with thousands of probe selection regions (PSRs) that
hybridize to a specific transcript (TS-PSRs). Given their
unambiguous nature, these TS-PSRs become a useful and
reliable tool to test the differential expression of individual
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Figure 3: Heat map of genes for which all transcripts were assessed with one or more transcripts differentially expressed across any pairwise
comparison. Transcript names are provided as annotated in Ensembl. Gene names are annotated based on their gene symbol. Heat map
is colored according to median expression values for normal, primary and metastatic samples. “∗” indicates that the transcript is protein-
coding. “+” indicates significant differential expression of a given transcript or gene. Background indicates the expression value considered
as background level based on control probe sets on the HuEx array.

transcripts across benign and cancerous tissues. Still, some
of these TS-PSRs could be hybridizing to more than one
transcript if additional transcripts of a given gene exist
but have not been discovered yet and, hence, are missing
from the genomic annotation. Even though we focus our
analysis on a subset of TS-PSRs that correspond to 22,517
transcripts (from 7,867 genes) and that shed light on the
behaviour of two or more transcripts within the same gene,
the same approach can be generalized to 49,302 transcripts
corresponding to 34,599 genes. The 881 transcripts found
differentially expressed across normal adjacent, primary
tumor, and metastatic prostate samples from the MSKCC
Oncogenome Project [9] contained many cases previously
reported in the literature to be involved in prostate cancer.
Nevertheless, the disconnect between the names of variants
for a given gene in the literature and the one provided in
genome annotations such as Ensembl makes the comparison
difficult to pursue in a case by case scenario and virtually
impossible to automatize. Still, at the gene level it became

evident that many genes associated with the 881 transcripts
have been linked to prostate cancer but many of them
have not been reported to play a role in prostate cancer
progression. This is particularly true for non-coding variants
of genes as well as non-coding genes such as lincRNAs and
other unannotated genes, thus, adding to the stream of
evidence that non-coding RNAs have significant potential for
prognostic purposes.

In addition to genes presenting multiple transcripts
differentially expressed as well as genes for which each indi-
vidual transcript was probed, this study demonstrates that
transcript-specific differential expression provides a clini-
cally significant and unique source of biomarker signatures
for prostate cancer risk stratification. We demonstrate that
these biomarker signatures segregate patients into groups
with significant differences in BCR-free survival and are
significant prognostic factors for BCR prediction in multi-
variable analysis after adjusting for established prognostic
factors such as the Kattan nomogram [36].
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Figure 4: Kaplan Meier plots of primary tumor samples classified by KNN (“normal-like” versus “metastatic-like”) using the BCR endpoint.
(a) Transcripts, (b) Kattan nomogram, and (c) genes. The blue curve indicates “metastasis-like” patients; the green curve indicates “normal-
like” patients. For the nomogram a probability of greater than 50% for BCR was chosen to classify patients as “metastasis-like” or “normal-
like.”
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More datasets with associated clinical outcome are
needed to further validate these findings. However, the
results presented here serve as a catalog of differentially
expressed transcript-specific markers throughout prostate
cancer progression continuum that can be used as a basis for
further exploration of disease biology and translation into
clinical practice as novel diagnostics and therapeutics.
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