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Abstract
Coronavirus	disease	2019	(COVID-19),	caused	by	the	SARS-CoV-2	novel	coronavirus,	
has spread worldwide causing high fatality rates. Neither a vaccine nor specific thera-
peutic	 approaches	 are	 available,	 hindering	 the	 fight	 against	 this	 disease	 and	mak-
ing better understanding of its pathogenesis essential. Despite similarities between 
SARS-CoV-2	and	SARS-CoV,	the	former	has	unique	characteristics	which	represent	a	
great	challenge	to	physicians.	The	mechanism	of	COVID-19	infection	and	pathogen-
esis	is	still	poorly	understood.	In	the	present	review,	we	highlight	possible	pathways	
involved	in	the	pathogenesis	of	COVID-19	and	potential	therapeutic	targets,	focusing	
on	the	role	of	the	renin–angiotensin–aldosterone	system.
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1  | INTRODUC TION

In	December	2019,	an	atypical	viral	pneumonia	caused	by	a	novel	
coronavirus	was	identified	in	Wuhan,	China	(https://www.who.int/).	
Within	months,	the	disease,	 later	named	coronavirus	disease	2019	
(COVID-19)	by	 the	World	Health	Organization	 (WHO),	had	spread	
worldwide and become a global health emergency.1	 According	 to	
WHO,	as	of	June	09,	2020,	the	number	of	confirmed	cases	was	over	
7,039,918	and	the	number	of	deaths	more	than	404	396.	 (https://
www.who.int/).	United	Kingdom,	Spain,	and	Italy	followed	by	France,	
have	the	highest	number	of	cases	in	Europe,	while	the	United	States	
represents	the	epicenter	of	the	disease	in	the	American	continent.	
Some	countries,	such	as	China,	Germany,	and	Denmark,	are	exhibit-
ing	a	progressive	decline	in	cases,	with	hopes	that	the	pandemic	has	
not only peaked but also been controlled in these territories (https://
covid	19.who.int).

The	median	age	of	infected	individuals	who	need	hospitalization	
ranges	 from	49	 to	56;	 however,	 patients	who	need	 intensive	 care	
unit	 (ICU)	care	have	been	significantly	older,	with	a	median	age	of	
approximately	 66	 years.2-4	Moreover,	 individuals	with	 chronic	 co-
morbidities such as hypertension and diabetes are at the highest risk 
of poor outcomes when infected.5,6	The	clinical	picture	of	COVID-19	
ranges from asymptomatic to severe respiratory failure. The main 
symptoms	are	 fever,	 fatigue,	 and	cough;	patients	can	be	classified	
as	 mild,	 severe,	 and	 critical	 according	 to	 clinical	 presentation.7 
Different	pathophysiological	pathways	have	been	identified	and	ex-
plored,	but	there	is	no	clear	evidence	of	protective	or	risk	factors	for	
SARS-CoV-2	infection.	In	the	present	review,	we	highlight	possible	
pathways	involved	in	the	pathogenesis	of	COVID-19,	with	focus	on	
the	role	of	the	renin–angiotensin–aldosterone	system	(RAAS).

2  | ACE2 IN SARS- COV-2 INFEC TION

A	key	structural	component	of	all	coronaviruses	is	the	envelope-an-
chored	spike	(S)	protein,	which	enables	the	virus	to	bind	to	receptors	
on	the	host	cell	 (Figure	1).8,9	According	to	Zhou	et	al,	SARS-CoV-2	
uses	the	angiotensin-converting	enzyme	2	(ACE2)	receptor	to	invade	
and infect cells.10	Hoffmann	et	al	further	suggested	that	a	host	cell	
protease is necessary to allow virus fusion.11

ACE2	 is	a	 type	 I	 integral	monocarboxypeptidase	with	46%	ho-
mology	 to	 ACE	 protein	 sequence.12,13	 Structurally,	 ACE2	 has	 a	
catalytical	 metalloprotease	 domain,	 a	 signal	 peptide,	 and	 a	 trans-
membrane domain.12	 Its	 extracellular	 catalytic	 domain	 contains	 a	
substrate	binding	region	and	zinc-binding	site	critical	for	its	activity.	
Usually,	its	cleavage	site	is	preceded	by	a	X-Pro	or	Pro-X-Pro	motif.14 
ACE2	cleavages	Ang	II	at	C-terminal	domain	removing	phenylalanine	
(7Pro-8Phe)	forming	angiotensin	(1-7)	(Ang(1-7)).

ACE2	is	highly	expressed	in	lung	epithelial	and	endothelial	cells,	
which	explains	 the	primary	occurrence	of	 respiratory	 system	dys-
function	during	COVID-19	infection.15	Among	lung	cells,	it	has	been	
observed	 that	 virus-related	 genes	 were	 more	 likely	 expressed	 in	
type	2	 lung	epithelial	 cells,	which	may	explain	 the	 severe	alveolar	

damage	seen	after	infection.	Nevertheless,	ACE2	is	also	expressed	
in	the	kidney,	heart,	tongue,	ileum,	and	esophagus,	thus	explaining	
the presence of nonrespiratory symptoms.16,17

As	noted	above,	binding	of	SARS-CoV-2	to	ACE2	is	mediated	by	
the	S	protein.11,18	The	SARS-CoV-2	S	protein	has	approximately	76%	
homology	with	that	of	SARS-CoV,	the	virus	which	caused	the	2002-
2004 severe acute respiratory syndrome outbreak.19	He	 et	 al	 ob-
served that a mutation leading to substitution of arginine residue 44 
of	the	SARS-CoV	S	protein	by	alanine	(R44A)	abolished	its	binding	
to	ACE2.20	Structural	data	have	demonstrated	that	the	SARS-CoV-2	
receptor	binding	domain	(RBD),	located	in	the	S1	domain	of	the	spike	
protein,	interacts	with	the	catalytic	domain	of	ACE2.21-24

Importantly,	 SARS-CoV-2	 carries	mutation	 in	 the	 spike	protein	
RBD	that	could	confer	higher	affinity	for	ACE2	when	compared	to	
the	SARS-CoV	spike	protein,	including	Val404	to	Lys307	and	Arg426	
to	Asn439,	due	to	salt	bridge	and	van	der	Waals	contact,	respectively,	
as	shown	by	cryo-EM	interface	comparison.22,24	This	could	explain,	
at	least	in	part,	the	higher	transmissibility	of	SARS-CoV-2.21-23

Upon	engagement	of	ACE2,	 SARS-CoV-2	S	protein	 is	 primed	
by	 the	 transmembrane	 serine	protease	2	 (TMPRSS2)	 in	 two	dis-
tinct	subunits,	S1	and	S2,	a	step	essential	for	efficient	virus	repli-
cation.11	Importantly,	despite	the	suggestion	that	SARS-CoV	could	
fuse	with	 the	host	plasma	memrane	after	ACE2	binding,25 it has 
been	demonstrated	that	viral	entry	is	also	mediated	by	clathrin-in-
dependent	 and	 caveolin-independent	 endocytosis,26 involved 
in	 lipid	 raft	 formation	 crucial	 for	 SARS-CoV	 internalization.26 
However,	 the	molecular	 mechanism	 involved	 in	 SARS-CoV-2	 in-
fection	 has	 not	 been	 completely	 determined.	An	 important	 clue	

F I G U R E  1  Structural	proteins	of	SARS-COV-2:	spike	(S),	
envelope	(E),	and	matrix	(M),	as	well	as	nucleocapsid	(N)	proteins	
3-5.	The	S	protein	is	divided	into	two	subunits,	S1	and	S2.	The	S1	
domain	attaches	to	cells	through	angiotensin-converting	enzyme	2	
(ACE2).	The	resulting	virus-ACE2	complex	is	translocated	into	the	
cell	and	a	host	protease	cleaves	the	S2	domain,	which	releases	the	
viral	genome	into	the	cytoplasm.	In	the	cytoplasm,	the	viral	genome	
is	translated	into	replicase	polyproteins	that	drive	RNA	synthesis	
and replication. Virus structural and nonstructural proteins are 
then	synthesized	using	intracellular	machinery.	These	proteins	bud	
into	the	endoplasmic	reticulum-Golgi	intermediate	compartment	
(ERGIC);	new	viral	particles	are	then	assembled	and	released	to	
infect new target cells
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comes	from	the	observation	that	endosomal	alkalization	induced	
by	 ammonium	 chloride	 inhibited	 SARS-CoV-2	 replication.11 Ou 
et	al,19	using	 in	vitro	 infection	of	HEK293/hACE2	cells	 (express-
ing	ACE2)	with	SARS-CoV-2	S	pseudovirions,	observed	that	virus	
infection	required	the	cell	surface	endocytosis.	In	agreement	with	
this	finding,	it	has	been	observed	that	drugs	such	as	chloroquine,	
which	 halt	 the	 progression	 from	 early	 endosome	 to	 lysosome,	
decrease the viral replication rate.27 These observations have 
sparked great interest in the potential utility of these drugs for 
treatment	 of	 COVID-19,	 although	 no	 scientific	 evidence	 to	 sup-
port this has been obtained to date.

3  | R A A S AND ITS REL ATIONSHIP WITH 
COVID -19:  FRIEND OR FOE?

The	 identification	 of	 ACE2	 as	 the	 receptor	 of	 SARS-CoV-2	 places	
the	 RAAS	 at	 the	 centre	 of	 COVID-19	 pathogenesis.	 Furthermore,	
since	 this	 protease	 is	 involved	 in	 angiotensin	 peptide	metabolism,	
which	regulates	 the	 immune	system,	 it	 is	plausible	 to	suggest	 that	
other	 components	 of	 the	 RAAS	 might	 play	 roles	 in	 COVID-19	
pathogenesis.

The	RAAS	is	a	regulatory	proteolytic	cascade	 involved	 in	a	va-
riety	 of	 physiological	 functions	 in	 different	 organs,	 including	 the	
heart,	 kidneys,	 and	 lungs.28	 The	 central	 axis	 involves	 the	 produc-
tion	of	angiotensin	II	(Ang	II)	by	proteolytic	cleavage	of	angiotensin	
I	(Ang	I),	promoted	by	angiotensin-converting	enzyme	(ACE).	Ang	II	
elicits	responses	through	two	G	protein-coupled	receptors	(GPCR)—
AT1	 (AT1R)	and	AT2	 (AT2R).29,30	AT1R	signaling	 is	 associated	with	
effects	that	include	vasoconstriction,	a	pro-inflammatory	response,	
and	anti-natriuresis.29-31	 In	 contrast,	AT2R	signaling	 is	 reported	 to	
oppose	AT1R	effects,	promoting	vasodilation,	an	anti-inflammatory	
response,	and	natriuresis.29,30,32,33

ACE2	preferentially	cleaves	Ang	II,	producing	Ang	(1-7)34,35	and,	
to	a	lesser	extent,	cleaves	Ang	I	to	form	Ang	(1-9),	a	peptide	whose	
role remains unknown.12	 The	mechanisms	mediating	 Ang	 (1-7)	 ef-
fects	 involve	 a	 complex	 network	mediated	 by	 another	GPCR—the	
MAS	 receptor	 (MASR)—and	 AT2R.13,36-38 Other peptides whose 
functions	are	 less	known,	such	as	alamandine,	might	play	a	signifi-
cant	role	in	the	RAAS,	but	their	possible	role	in	COVID-19	will	not	be	
discussed in the present review.39-41

There	is	now	a	consensus	that	the	final	effect	of	the	RAAS	cas-
cade	depends	on	a	fine	equilibrium	between	the	ACE/Ang	II/AT1R	
and	ACE2/Ang	(1-7)/MASR/AT2R	axes	(Figure	2);	their	uncoupling	is	
implicated	in	the	pathogenesis	of	different	lung	diseases,	including	
viral	infection	by	respiratory	syncytial	virus	and	SARS-CoV,18,42 pul-
monary	hypertension,43,44 and acute lung injury.45,46	Accordingly,	it	
has	been	previously	shown	that	the	SARS-CoV	S	protein	decreases	
ACE2	protein	expression	in	the	lung,	increases	Ang	II	levels,	and	en-
hances	 lung	 injury	 in	 an	 Ang	 II/AT1R-dependent	manner.18 These 
observations	raise	extremely	relevant	questions—is	RAAS	involved	
in	the	pathogenesis	of	COVID-19?	How?	Is	this	a	targetable	thera-
peutic	opportunity?

RAAS	dysregulation	is	a	well-known	mechanism	involved	in	the	
genesis and progression of several comorbidities known to enhance 
COVID-19	 susceptibility,	 including	 hypertension	 and	 diabetes.47-49 
Indeed,	angiotensin	AT1	receptor	blockers	(ARBs)	and	ACE	inhibitors	
(ACEi)	are	the	first-line	therapeutic	strategies	used	to	decrease	cyto-
kine	production	and	halt	end-organ	damage	in	both	conditions.50-53 
These positive effects have been also observed after recombinant 
ACE2	treatment	and	Ang	(1-7)	administration.54 These observations 
suggest the possibility of a therapeutic opportunity for the use of 
ARB	and	ACEi	to	attenuate	patient	responses	to	SARS-CoV-2	infec-
tion,	in	combination	with	viral-targeted	therapy.

On	 the	 other	 hand,	 some	 authors	 have	 observed	 that	 severe	
COVID-19	cases	were	associated	with	chronic	use	of	ARB	and	ACEi.	
One	 possible	 mechanism	 might	 be	 the	 upregulation	 of	 ACE2	 ex-
pression	induced	by	these	treatments,	as	previously	described,55,56 
although	 lung	ACE2	expression	 in	this	setting	has	yet	to	be	exam-
ined.	This	preliminary	hypothesis	 led	to	a	debate	on	whether	ARB	
and	 ACEi	 should	 be	 discontinued	 in	 order	 to	 decrease	 COVID-19	
susceptibility.57	However,	a	consensus	quickly	emerged	 that	 these	
therapies	 should	 be	 maintained,	 since	 there	 is	 not	 enough	 evi-
dence to support withdrawal of established therapeutic strategies 
against hypertension and diabetes (https://profe ssion al.heart.org/
profe	ssion	al/Scien	ceNew	s/UCM_505836_HFSAA	CCAHA	-state	
ment-addre	sses-conce	rns-re-using	-RAAS-antag	onist	s-in-COVID	
-19.jsp,https://www.escar	dio.org/Counc	ils/Counc	il-on-Hyper	tensi	
on-(CHT)/News/posit	ion-state	ment-of-the-esc-counc	il-on-hyper	
tensi	on-on-ace-inhib	itors	-and-ang).	 This	 position	 seeks	 both	 to	
maintain comorbidities under control and to avoid secondary events 
during	 COVID-19	 infection.	 Corroborating	 this	 recommendation,	
Zhang	et	 al	 found	 in	 a	 retrospective	 study	 that	COVID-19-related	
mortality	was	significantly	lower	in	patients	treated	with	ARB/ACEi	
than in those not treated with these drugs.58

F I G U R E  2  A	fine	balance	between	the	ACE/Ang	II/AT1R	and	
ACE2/Ang	(1-7)/MASR	axes	of	the	renin–angiotensin–aldosterone	
system	is	observed	in	physiological	conditions.	(1)	During	SARS-
CoV-2	infection,	ACE2	is	downregulated,	promoting	the	ACE/Ang	
II/AT1R	axis	and,	consequently,	a	proinflammatory	and	profibrotic	
response.	(2)	Patients	with	chronic	diseases	such	as	hypertension	
and	diabetes	are	often	treated	with	ARB/ACEi.	These	medications	
upregulate	the	ACE2/Ang	(1-7)/MASR	axis,	which	in	turn	reduces	
inflammation	and	fibrosis	signals.	(3)	How	these	different	
conditions	are	correlated,	however,	remains	to	be	explored

https://professional.heart.org/professional/ScienceNews/UCM_505836_HFSAACCAHA-statement-addresses-concerns-re-using-RAAS-antagonists-in-COVID-19.jsp
https://professional.heart.org/professional/ScienceNews/UCM_505836_HFSAACCAHA-statement-addresses-concerns-re-using-RAAS-antagonists-in-COVID-19.jsp
https://professional.heart.org/professional/ScienceNews/UCM_505836_HFSAACCAHA-statement-addresses-concerns-re-using-RAAS-antagonists-in-COVID-19.jsp
https://professional.heart.org/professional/ScienceNews/UCM_505836_HFSAACCAHA-statement-addresses-concerns-re-using-RAAS-antagonists-in-COVID-19.jsp
https://www.escardio.org/Councils/Council-on-Hypertension-(CHT)/News/position-statement-of-the-esc-council-on-hypertension-on-ace-inhibitors-and-ang
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Taken	 together,	 the	 evidence	 suggests	 a	 time-dependent	 cor-
relation	between	the	RAAS	and	COVID-19	pathogenesis	(Figure	3).	
Initially,	 treatment	with	ARB	and/or	ACEi	promotes	an	 increase	 in	
ACE2/Ang	(1-7)/MASR	axis	activity,	associated	with	an	anti-inflam-
matory	profile.	At	 this	 stage,	SARS-CoV-2	binding	and	 infection	 is	
promoted.	 As	 the	 course	 of	 infection	 progresses,	 the	 ACE2/Ang	
(1-7)/MASR	axis	is	downregulated,	leading	to	internalization	of	ACE2	
and	a	consequent	reduction	in	its	expression.	This	ACE2	downreg-
ulation	enhances	the	ACE/Ang	II/AT1R	axis,	which	may	explain	sev-
eral	 pathological	 events	 observed	 during	 COVID-19	 progression,	
such	as	lung	edema,	immune	cell	infiltration	within	the	lung,	and	an	
intense proinflammatory response.

Importantly,	vascular	damage	has	been	highlighted	as	a	hallmark	
of	 COVID-19	 severity.	 Ackermann	 et	 al59 observed that marked 
endothelial	 injury,	 with	 signs	 of	 viral	 replication,	 accompanied	 by	
microangiopathy and thrombosis that are associated to severe 
COVID-19.	Indeed,	it	has	been	described	that	Ang	II	promotes	vas-
cular	leakage,	endothelial	release	of	reactive	oxygen	species	(ROS),	
and endothelial cell proliferation that is correlated with endothelial 
dysfunction.60-63	 Furthermore,	 ACE2	 and	 TRMPS2	 are	 expressed	
in	 endothelial	 cells,	 indicating	 possible	 productive	 replication	 of	
SARS-CoV-2	 in	 this	 compartment.64	Based	on	 these	observations,	
it	is	plausible	to	postulate	that	SARS-CoV-2	infection	and	replication	
within lung microvasculature might contribute to initial increase in 
viral	 load.	Therefore,	 increased	Ang	 II/AT1R	axis	 further	promotes	
COVID-19	 progression	 to	 severe	 and	 fatal	 cases	 through,	 at	 least	
in	part,	 induction	of	endothelium	dysfunction	and	vascular	perme-
ability	and,	consequently,	edema.	The	actual	contribution	of	SARS-
CoV-2	replication	within	the	endothelial	cells	for	COVID-19	outcome	
should	 be	 further	 investigated.	 Other	 possible	 link	 between	 RAS	
and	vascular	damage	could	be	the	Kallikrein	Kinin	System.	It	is	well	

known	that	ACE2	breaks	down	bradykinin	into	desArg9-bradykinin,	
which,	 through	 B1	 receptor	 activation,	 is	 involved	 in	 endothelial	
dysfunction.65

However,	one	fundamental	question	remains—why	are	hyperten-
sive	patients	more	susceptible	to	severe	COVID-19?	One	possibility	
comes from the observation that an overactivation of proinflam-
matory	 response	 triggered	by	SARS-CoV-2,	 the	 so-called	cytokine	
storm,	is	associated	with	worse	outcomes.2,4,66	Huang	et	al	showed	
that	critically	ill	COVID-19	patients	have	high	levels	of	serum	proin-
flammatory	cytokines	such	as	IL-1β,	IFN-γ,	IP-10,	and	MCP-1,	which	
are associated with disease severity.7	Additionally,	Qin	et	al	showed	
that	the	number	of	helper,	suppressor,	and	regulatory	T	cells	is	de-
creased.67	The	cytokine	storm	leads	to	host	cell	damage,	resulting	in	
alveolar	edema	and	pulmonary	fibrosis	as	well	as	less-known	heart	
and kidney injuries.28

The	 evidence	 suggests	 that	 a	 low-grade	 proinflammatory	 re-
sponse could be implicated in hypertension having a causative re-
lationship with changes observed in peripheral vascular resistance 
and	the	neural,	cardiac,	and	renal	systems.68	Ang	II-induced	hyper-
tension	is	known	to	involve	polarization	of	CD4+ T cells toward the 
Th1	and	Th17	phenotypes	to	the	detriment	of	a	Th2	phenotype,	and	
involves	an	 increase	 in	 IFN-γ,	 IL-6,	and	 IL-17.69-71	Furthermore,	cy-
totoxic	CD8+	T	cells	play	an	important	role	in	this	process,	as	their	
levels	are	increased	in	the	kidney,72	a	possible	target	organ	of	SARS-
CoV-2.	 Interestingly,	 the	 innate	 immune	 response,	 which	 involves	
monocytes,	macrophages,	granulocytes,	and	dendritic	cells,	 seems	
to	be	involved	in	endothelial	dysfunction	observed	in	Ang	II-induced	
hypertension.68

Based	on	these	observations,	we	may	infer	that	the	association	
between	hypertension	and	worse	prognosis	 in	COVID-19	could	be	
due	to	a	preexisting	proinflammatory	state	observed	in	hypertensive	
patients.	Once	a	hypertensive	patient	is	infected	with	SARS-CoV-2,	
sensitization	of	the	immune	system	toward	an	overactivation	of	the	
inflammatory	response	could	be	associated	with	subsequent	devel-
opment of cytokine storm.

4  | THER APEUTIC OPTIONS FOR SARS-
COV-2 TARGETING THE R A A S

The pathophysiological insights described above open up new 
possibilities	 for	 therapeutic	 proposals	 as	 follows:	 (a)	 use	 of	 pro-
tease	 inhibitors	to	block	S	protein	priming.	 In	this	context,	 it	has	
been proposed that the clinically approved serine protease in-
hibitor	 camostat	 mesylate	 might	 decrease	 SARS-CoV-2	 entry	 in	
vitro.11	Clinical	trials	testing	of	the	effect	of	camostat	on	COVID-
19	 are	now	ongoing	 (NCT04321096);	 (b)	 use	of	 chloroquine/hy-
droxychloroquine	do	 inhibit	viral	 replication,	as	demonstrated	 in	
different preclinical models.73-75	 In	 the	 last	 months,	 the	 use	 of	
chloroquine/hydroxychloroquine	 has	 been	 extensively	 debated	
and	 further	 randomized,	 placebo-controlled,	 clinical	 studies	 are	
required	 to	 clarify	 the	 benefits	 of	 chloroquine/hydroxychloro-
quine	 therapy	 for	 COVID-19	 patients.	 The	 purported	 molecular	

F I G U R E  3  COVID-19	disease	pathogenesis	and	a	proposal	for	
ARB/ACEi-based	intervention.	Schematic	diagram	of	the	time-
dependent	correlation	between	RAAS	activity	and	COVID-19	
pathogenesis.	Risk-group	patients	receiving	ARB/ACEi	likely	
overexpress	ACE2,	which	could	at	least	partly	explain	their	higher	
susceptibility	to	severe	illness.	However,	experimental	evidence	
suggests	that,	during	the	course	of	SARS-CoV-2	infection,	there	
is	upregulation	of	the	ACE/Ang	II/AT1R	axis	to	the	detriment	of	
the	ACE2/Ang	(1-7)/MASR	axis.	This	could	account	for	the	lung	
edema,	immune	cell	infiltration	within	the	lung,	and	cytokine	storm	
observed	in	infected	patients.	In	this	stage	of	the	disease,	ARB/
ACEi	could	represent	a	therapeutic	opportunity	to	halt	the	host	
response	to	SARS-CoV-2	infection
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mechanism	involves	alkalization	of	endosomal	pH	and	subsequent	
inhibition of membrane fusion76;	 (c)	 based	 on	 the	 homology	 be-
tween	SARS-CoV	and	SARS-CoV-2	S	protein,	antisera	from	immu-
nized	patients,	ACE2	neutralizing	antibody,	or	recombinant	ACE2	
have been proposed as possible inhibitors of viral engagement 
on epithelial cells.11,77	Indeed,	a	monoclonal	antibody	against	the	
receptor	binding	domain	 (RBD)	of	SARS-CoV-2,	obtained	 from	B	
cells	of	 immunized	COVID-19	patients,	has	been	shown	to	block	
the	 SARS-CoV-2	 S	 protein/ACE2	 interaction.15	Moreover,	 struc-
tural data on this interaction have highlighted design strategies 
for the development of molecular inhibitors 21-24;	d)	based	on	the	
observation	 that	 ARBs	 and/or	 ACEi	 could	 blunt	 the	 proinflam-
matory	 response	 in	different	chronic	degenerative	diseases,	 it	 is	
plausible	to	suggest	their	use	in	severe	cases	of	COVID-19,	where	
cytokine	 storm	 is	 one	 of	 the	main	 concerns.	 Accordingly,	Meng	
et al78 observed that Chinese hypertensive patients treated with 
ACEi	or	ARB	who	were	stricken	with	COVID-19	had	a	lower	rate	
of	 progression	 to	 severe	 illness,	 with	 a	 trend	 toward	 lower	 IL-6	
plasma	levels.	A	clinical	trial	of	treatment	with	 losartan	is	under-
way	(NCT04328012).

5  | CONCLUSION

COVID-19	 is	 spreading	 at	 an	 alarming	 rate	 worldwide.	 Although	
SARS-CoV-2	 has	 structural	 and	 functional	 similarities	 with	 SARS-
CoV,	new	attributed	capabilities	of	SARS-CoV-2	have	been	discov-
ered. The absence of a vaccine or specific treatment and the intense 
immune	 response	 triggered	 by	 SARS-CoV-2	 have	 been	 associated	
with	the	large	number	of	infections	and	deaths.	Here	we	highlighted	
a	 particularly	 important	 pathway—the	 renin–angiotensin–aldoster-
one	system—whose	role	in	COVID-19	pathogenesis	must	be	further	
understood in order to develop effective therapeutic strategies for 
COVID-19.
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