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Abstract: At present, there is no efficient treatment to prevent the evolution of Parkinson’s disease
(PD). PD is generated by the concurrent activity of multiple factors, which is a serious obstacle for
the development of etio-pathogenic treatments. Astrocytes may act on most factors involved in
PD and the promotion of their neuroprotection activity may be particularly suitable to prevent the
onset and progression of this basal ganglia (BG) disorder. The main causes proposed for PD, the
ability of astrocytes to control these causes, and the procedures that can be used to promote the
neuroprotective action of astrocytes will be commented upon, here.
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1. Introduction

Parkinson’s disease (PD) is produced by the confluence of multiple circumstances that,
acting together, accelerate an aging-related degeneration of the nigrostriatal dopaminergic
cells (DA-cells) and of other neuronal populations [1]. There is a growing interest in
studying the involvement of astrocytes in the etiopathogenesis of PD, but their actual
role remains unclear. Astrocytes may both protect and damage neurons, and it has been
suggested that they prevent the onset but also accelerate the progression of PD. Astrocytes
can modulate most of the multiple causes of PD, in some cases inhibiting their action
but, in other cases, triggering their activation and facilitating their activity. As a result of
this complex scenario, most of the treatments that are being evaluated for the prevention
of PD do not include the action of astrocytes. It has been suggested that the first step
of PD neurodegeneration may be produced in different brain areas or, even, outside the
brain [2,3]. The PD brain presents structural changes in different neuronal types (e.g.,
noradrenergic neurons of the nucleus accumbens, dopaminergic neurons of the ventral
tegmental area, GABAergic neurons of the striatum . . . ), but the keystone of this disease is
the degeneration of the dopaminergic nigrostriatal cells (DA-cells). The present study is
focused on the actions of astrocytes on these neurons. The first part of the review presents
a summary view of the main causes involved in the DA-cell degeneration, discussing
how astrocytes can influence them either by preventing (slowing the PD progression) or
promoting (accelerating the PD onset/progression) their activity. The second part of the
review is focused on possible therapeutic strategies to facilitate the neuroprotective actions
and to prevent the neurotoxic actions of astrocytes. Many of these strategies have been
tested in animal models of PD but not in patients, and the final objective of this review is to
encourage the development of clinical trials with therapeutic agents aimed at facilitating
the neuroprotective actions of astrocytes in PD.
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2. The Vulnerability of Dopaminergic Cells and Parkinson’s Disease

DA-cells are particularly vulnerable to damage, as they suffer a progressive accu-
mulative deterioration throughout life [4]. Human DA-cells have a long unmyelinated
axon which repeatedly arborizes (total length exceeding 4 m) to produce up to 1 million
synapses per cell [5]. The electrophysiological and neurochemical activity of the axon and
synapses consume a large amount energy that needs to be continuously supplied by the
hundreds of thousands of mitochondria distributed throughout the somata, axon, and
synapses of DA-cells [6–9]. Between 0.5–2% of the oxygen consumed by mitochondria
is transformed into reactive oxygen species (ROS; O2

−, H2O2) which, together with the
oxidative damage generated by the spontaneous oxidation of dopamine into dopamine
quinone, disturb the mitochondrial activity, oxidize DNA, proteins and lipids which are
necessary for DA-cell survival [7,8,10–15]. The accumulation of the mitochondrial damage
(>70% of healthy people over 60 present massive mitochondrial mutations) produces a
progressive energy imbalance that hinders cell repair and generates a slow loss of DA-cells
(6–8% DA-cells each decade in the normal population). The regulatory mechanisms of the
dopaminergic (DAergic) synapse prevent the clinical expression of the DA-cell loss, but
in some people (2–3% of people over 60 years of age) the DA-cell loss accelerates (>10%
cell loss/year), affecting more than 50–60% of DA-cells and inducing PD [4,16]. A number
of structural and functional anomalies can be found in the DA-cell at this time, including
mitophagy deterioration, proteasome malfunction, protein aggregation (e.g., α-synuclein
in Lewy bodies), and neuroinflammation (e.g., with microglial activation) [17–20]. Many
causes may be at the basis of the acceleration of the DA-cell degeneration, some of them
might be induced by other cells of the BG (e.g., excitotoxicity induced by glutamatergic
inputs), others by cells outside the blood brain barrier (BBB) (e.g., a transfer of peripheral
inflammation to the brain), and others from the environment (e.g., slow intoxication with
pesticides). Figure 1 (black) shows the main etio-pathological factors which have been
involved in DA-cell degeneration. These deleterious factors normally act together, and the
prevention of the evolution of PD should be oriented towards the simultaneous control of
a substantial part of them. Astrocytes are able to perform this multiple approach (Figure 1
blue, Table 1).

Table 1. Acting on the different stages of the PD evolution.

DA-Cell Requirements Astrocyte Support

high energy requirements energy resource [21–25]

high oxidative stress antioxidant activity [26–37]

cumulative damage transautophagy [21–57]

α-synuclein accumulation α-synuclein remotion [38]

mitochondrial damage mitochondrial transfer [58–60]

impaired mitophagy transmitophagy [61]

glutamatergic excitotoxicity glutamate uptake [44–53]

neuroinflammation anti-inflammatory activity [62–74]

need for trophic support release of neurotrophic factors [75–87]
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Figure 1. Etio-pathological factors (black) for DA-cell degeneration in PD and neuroprotective activities of astrocytes 
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Figure 1. Etio-pathological factors (black) for DA-cell degeneration in PD and neuroprotective activities of astrocytes (blue).

3. Astrocytes Modulate the Vulnerability of DA-Cells in Parkinson’s Disease

Astrocytes are not a homogeneous cell group [88–91]. The main structural types of
astrocytes are the fibrous astrocytes of the white matter, the protoplasmic astrocytes of
the grey matter, and the specialized astrocytes of particular brain centres (e.g., Bergmann
cells of the cerebellum) [92–94]. At the moment, the most relevant astrocytes in PD are the
protoplasmic astrocytes, cells which express S100β, GLT-1, Aldh1L1, aquaporin-4, GFAP
and µ-crystallin [93,95–97]. The expression of these proteins varies among the BG. For
instance, the µ-crystallin level is higher in the protoplasmic astrocytes of the striatum
than in the nigral astrocytes (which express more GFAP), and it is also higher in the
ventral striatum (where it is found in 85% astrocytes) than in the dorsal striatum (30%
astrocytes) [88]. The location of these proteins also varies inside the astrocyte structure.
For instance, GFAP is normally found in the main processes of the astrocyte, whereas
aquaporin-4 is mainly observed in the astrocyte processes that surround vessels to form
the BBB [98]. Astrocytes also present marked changes with aging [99–101], increasing
the expression of GFAP (which generates a flat morphology), accumulating iron (which
disrupts the end-feeds and the BBB), and increasing the expression of cytokines (which
induces a low-level chronic inflammation called neuro-inflammaging) [102].

Striatal astrocytes are massively coupled (−60 mV membrane potential) by means of
gap junctions (the intracellular injections of dyes spread to >500 surrounding astrocytes in
few minutes) [103]. Transmitters released by local neurons increase the intracellular Ca2+ of
individual astrocytes, an effect that spreads to neighbouring astrocytes (Ca2+ wave) where
it activates the release of glutamate and other transmitters (gliotransmission), thus con-
forming complex circuits with the medium-sized spiny neurons in the striatum [104,105].
Astrocytes express membrane transporters (e.g., glutamate and dopamine), membrane
receptors (e.g., D2 dopamine receptor), and enzymes involved in the metabolization of
neurotransmitters (e.g., glutamine synthetase for the metabolization of glutamate and
monoamine oxidase for the metabolization of dopamine) [106].
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Astrocytes respond to tissue damage (reactive astrocyte) by differentiating them-
selves into scar-forming astrocytes (generated from perivascular proliferating astrocytes
not normally activated in PD), and hypertrophic astrocytes (generated from resident non-
proliferating astrocytes that are normally activated in PD) [90]. Reactive astrocytes have
toxic actions on synapses, neurons and oligodendrocytes (A1 astrocytes with complement
3 and MX dynamin-like DTPasa1 upregulation) or neuroprotective actions that activate
synaptogenesis, inhibit apoptosis, and restore cell membranes (A2 astrocytes with upregu-
lation of neurotrophics and expression of the S100A10 gen) [104,107–110]. Although the
astrocyte reaction to damage adopts distinct molecular states in different diseases [111–114]
and brain regions [114], and the A1–A2 binary classification may be considered as a simpli-
fication of the possible functional status of astrocytes [115], this classification is used here
because it facilitates the presentation of data and because there is no commonly agreed
alternative classification.

Human astrocytes have important differences to those of other mammals [116], show-
ing intensive ramifications that cover a large tissue volume (a territory four times greater
than that of rodent astrocytes) and modulate up to 2 million synapses [116,117]. Human
astrocytes display a unique set of genes not found in other mammals, and some types of
human astrocytes (e.g., interlaminar and varicose-projection astrocytes of the cortex) have
not been found in other species [118,119]. These differences are at the basis of functional
advantages which improve the cognitive functions of animals when they are implanted
with human astrocytes [120].

Astrocytes perform both neuroprotective and neurotoxic activities, and the actual role
of these cells in PD is dependent on the relative activation of these opposing functions [121].
DA-cells may not have efficient astrocytic support in the substantia nigra (SN), where
astrocytes present a low cell-density and a low expression of neuroprotective factors
in the SN, suggesting that their supporting activity is not particularly intensive in this
center [121–123]. Animal studies have found a high expression of GFAP that decreases the
activity of the glutamate transporters of nigral astrocytes, which facilitates the excitotoxic
activity of the nigral glutamatergic inputs [124,125]. However, data reported in PD do not
clarify this possibility, since although some studies found an increased GFAP level in the
substantia nigra [126,127], other studies reported no differences [93–95]. Astrocytic support
may also be low in the parkinsonian striatum, where astrocytes show a reduced expression
of the neuroprotecting growth-inhibitory protein ROCK2 [128]. Some astrocytes could try
to compensate for these deficiencies in PD [129] by increasing the expression of GBNMB
(transmembrane glycoprotein with anti-inflammatory and anti-oxidant actions) [130,131]
and CB2 (cannabinoid receptor which prevents neuronal degeneration by adjusting the cell
metabolism) [132].

Different factors may obstruct the neuroprotective action of astrocytes. The beginning
of PD may be facilitated by an age-related malfunction of astrocytes that reduces their num-
ber, increases their cellular volume, facilitates the overlap of their processes, and increases
their GFAP content [102,133–136]. PD may also be facilitated by changes in the activity
of different genes which increase the incidence of PD and are directly involved in the
astrocyte biology [137–149]. This is the case of PARK7 (DJ-1 protein), which is involved in
the glutamate uptake, mitochondrial function, oxidative stress, and inflammatory response
of astrocytes [150–154]; PARK2 (Parkin), which is involved in the inflammatory response,
neuroprotection, proliferation, and mitochondrial functions of astrocytes [149,155–157];
SNCA (α-synuclein), which is involved in glutamate uptake, neurotrophic activity, wa-
ter transport, and endocytosis functions of astrocytes [158–162]; PINK1 (PTEN-induced
putative kinase 1), which is involved in proliferation and mitochondrial function of astro-
cytes [139,163]; GBA (β-glucorecebrosidase), which is involved in autophagy, lysosome
functions, and mitochondrial functions of astrocytes [164,165]; LRRK2 (leucine-rich repeat
kinase 2), which is involved in autophagy and lysosome functions of astrocytes [166–168];
ATP13A2 (lysosomal type 5 ATPase), which is involved in the neurotrophic activity, in-
flammatory response, and lysosome functions of astrocytes [169]; and PLA2G6 (group VI
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Ca2+-independent phospholipase A2), which is involved in inflammatory response and
calcium signaling functions of astrocytes [170,171]. Thus, the significance that the effects of
these mutations have on the onset and progression of PD are probably linked to alterations
in the physiological activity of astrocytes.

The progression of PD could also be facilitated by a malfunction of the supporting
activity of astrocytes secondary to a previous neurodegeneration of DA-cells. The accu-
mulation of α-synuclein is an example of this process. DA-cells in PD present intracellular
inclusions of proteins (Lewy bodies) whose main component is α-synuclein aggregation.
The low α-synuclein level normally found in astrocytes, is substantially increased in the
PD brain and this increase correlates with the severity of the DA-cell loss [172]. Although
astrocytes are resistant to protein accumulation and facilitate the removal of dopaminergic
detritus [38], an excessive accumulation of α-synuclein compromises the A2 neuroprotec-
tive functions (e.g., after losing a part of their glutamate transporters), and activates the A1
neurotoxic phenotype of astrocytes [162].

Thus, astrocytes have a number of efficient mechanisms that may prevent or promote
DA-cell degeneration [39,148], with a fine balance between both actions being critical
for the onset and progression of PD [40,123]. As will be described in detail below, both
neuroprotective and neurotoxic mechanisms can be used to develop new therapies to
prevent the start (by promoting A2 activity) and progression (by inhibiting A1 activity)
of PD.

4. Are Astrocytes Involved in the Clinical Expression of Parkinson’s Disease?

The influence of astrocytes on the physiology of DA-cells is often studied in experi-
mental animals, but their actual role in the human brain and in the clinical expression of PD
remains practically unexplored. This may be explained by the lack of methods to, in vivo,
study the activity of astrocytes in the human brain. It is likely that not all patients present
the same astrocytic deterioration, and that the clinical expression of the disease may depend
on the degree of deterioration of the astrocytes of the striatum, medial forebrain bundle
and SN. However, without having the appropriate techniques this possibility cannot be
adequately evaluated.

5. Controlling Evolution PD with Astrocyte-Based Therapies

The control of A1 and A2 astrocyte functions is a promising field for the development
of new PD therapies. Many particular astrocyte-based therapies that have proved useful in
animal models of PD have not been tested in PD patients. The administration of astrocyte
products (e.g., GDNF) have shown no conclusive results in PD but, in most studies, these
products were administered directly and not using the endogenous astrocytes to release the
neuroprotective agent. In addition, most studies administered particular astrocyte products,
and approaches aimed at producing a widespread activation of the supporting activities of
astrocytes are few and far between. Neuroprotective therapies based on astrocytic products
are discussed below.

5.1. Astrocytes Provide Energy Resources to DA-Cells

Astrocytes are efficient glycolytic cells, supplying the tricarboxylic acid cycle of neu-
rons with lactate (“lactate shuttle”) and accumulating glycogen reserves that can be rapidly
hydrolyzed to produce glucose on demand [21]. These astrocyte abilities are necessary
for DA-cells which, as commented above, are normally subjected to a particularly high
metabolic pressure that requires a constant energy support. Available evidence shows that
the energy resources in the PD brain are normally deficient [22–24], and that the facilitation
of astrocyte glycolysis decreases the DA-cell vulnerability in animal models of PD [25]. The
facilitation of astrocyte glycolysis could be useful to prevent PD progression, a possibility
that could be tested by increasing the energy bioavailability with ketogenic diets [41] or
with intranasal insulin [42].
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5.2. Astrocytes Prevent Oxidative Stress in DA-Cells

As mentioned above, DA-cells generate large amounts of ROS and free radicals
whose deleterious effects need to be continuously prevented and repaired. Astrocytes are
particularly efficient in maintaining redox homeostasis, expressing different transporters
(e.g., Cys-Glu antiporter which provides cystine for glutathione synthesis), exchangers
(e.g., Glu-Asc exchanger which releases ascorbate for preventing DA oxidation), and
enzymes (e.g., glutation peroxidase, glutation S-transferase, catalase and thioredoxin
reductase that remove free radicals) that prevent the pro-oxidant action of H2O2, nitric
oxide, peroxinitrites, and of the dopamine oxidative metabolism [26]. Astrocytes are the
predominant source of glutathione, a tripeptide that protects cells from the oxidative
action of superoxide radicals, hydroxyl radicals, peroxynitrites, and quinones, and which
is selectively reduced (40%) in the SN of PD patients [27]. Glutation does not cross the
BBB and its administration cannot prevent oxidative stress in the brain [28]. N-acetyl
cysteine, an N-acetyl derivative of the naturally occurring amino acid L-cysteine, can be
used to increase the synthesis of glutation and, therefore, to prevent the pro-oxidant action
of H2O2, nitric oxide, peroxinitrites of DA-cells. There is evidence suggesting that its
administration protects DAergic cells in animal models of PD and restores the DA-cell
activity in PD patients [29–31]. The N-acetylcysteine amide (AD4) is another drug that
crosses the BBB and facilitates the synthesis of glutation in the brain [32]. Some dipeptide
precursors of glutathione (e.g., γ-glutamylcysteine and cysteinylglycine) can also reach
the brain tissue, particularly when they are attached to nanoparticles formed from human
serum albumin or when their chemical structure is modified to facilitate their liposolubility
(e.g., γ-glutamylcysteine ethyl ester). Glutathione activation could also be induced with
triterpenoids (e.g., azadiradione and ursolic acid) [33,34] or salidroside (Rhodiola rosea
extract) [35]. The activation of the synthesis of glutathione in astrocytes may be useful to
delay the evolution of PD, particularly if it is performed from the first stages of the illness
and it is not interrupted.

Astrocytes express DA membrane transporters [36] and monoamine oxidases (MAO) [37],
the latter of which decreases the oxidative stress produced by the DA degradation. MAO
inhibitors (iMAO) (e.g., selergiline, rasagiline) which reduce oxidative stress in animals
do not show a clear neuroprotection in PD [43]. This is probably because iMAOs pro-
duce antagonistic effects, directly decreasing the oxidative stress in DA-cells but indirectly
reducing the dopamine metabolism in astrocytes (in such a way that the DA that is not
metabolized in astrocytes produces free radicals in the extracellular medium or, after its
uptake, in the DA-cells). iMAOs with a more selective action on DA-cells and few actions
on astrocytes might probably be more useful for preventing the oxidative stress of DA-cells.

5.3. Astrocytes Prevent Excitotoxicity in DA-Cells

Astrocytes remove glutamate from the extracellular medium, thus preventing the exci-
totoxicity generated by the persistent activation of ionotropic glutamate receptors [44–48].
The PD brain presents excitotoxicity in both the striatum (where the DA decrease facilitates
glutamate release, dendritic spiny loss, and the retrograde degeneration of DAergic ax-
ons) [44] and the SN (where the activation of the indirect pathway facilitates the glutamate
release by the subthalamo-nigral projections) [49]. PD patients show a low basal glutamate
uptake (50% reduction in the platelets of PD patients) [50] that can deteriorate with the DA
decrease [51]. The pharmacological control of the glutamatergic synapses is challenging
because glutamate is the transmitter of more than 70% of synapses all over the brain,
and its modification can produce a number of side-effects. However, drugs that activate
the glutamate transporter of astrocytes (e.g., parawexin 1 -isolated from spider venom-
and ceftriaxone -a β-lactam antibiotic-) or to blockade of the AMPA glutamate receptor
of DA-cells (e.g., talampanel) could be useful to prevent excitotoxicity in PD [52]. The
neuroprotective effect of caffeine in PD could be induced by a reduction of the release of
glutamate in striatal astrocytes [53].
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5.4. Astrocytes Prevent Neuroinflammation in PD

Astrocytes have become a major player in the neuroinflammation scenario, where
microglia and the peripheral macrophages that infiltrate the brain had been practically the
only important cells for many years [129]. The stimuli that activate neuroinflammation, the
brain cells which detect these stimuli, and the moment when this process starts are still not
well known in PD. Neuroinflammation may be triggered by brain stimuli (e.g., DA-cell
debris that cannot be eliminated by A2 astrocytes) [38,54–57,61,129] or by a peripheral in-
flammation (e.g., induced by the gut microbiota) that cross the BBB [173,174]. The microglia
may be the first cell that detect brain damage and triggers neuroinflammation. Microglial
cells are continuously moving across the brain and, after detecting inflammatory stimuli,
they change their M2 neuroprotective phenotype for a M1 neurotoxic phenotype which
releases pro-inflammatory signals (e.g., IL-1α, TNFα, TGFα, NO, C1q) and converts A2
astrocytes into A1 astrocytes [175,176]. Protoplasmic astrocytes are distributed throughout
the brain covering all the nervous tissue, and they may also be the first cells that detect
damage and trigger neuroinflammation. In response to inflammatory stimuli, astrocytes
change their A2 neuroprotective phenotype for a A1 neurotoxic phenotype which releases
pro-inflammatory signals (e.g., orosomucoid-2, lipocalin, monocyte chemoattractant pro-
tein MCP-1/CCL2, IFN-γ inducible protein, pentraxin 3) and activates the production of
M1 microglia [177]. Both A1 and M1 neurotoxic cells are probably involved in the PD
neuroinflammation, where they remove neuronal detritus also inducing collateral damage
to the DA-cells that are still alive. However, there is no clear evidence indicating which of
these cells is activated first.

This scenario is at the basis of studies using anti-inflammatory drugs as a neuro-
protection therapy in PD [129]. Non-steroideal anti-inflammatory drugs used to induce
a non-selective blockade of neuroinflammation have not been shown to have consistent
results [62]. Inconclusive results have also been reported after blocking the M1-microglia ac-
tivity with minocycline [63]. Doxycycline is perhaps the most promising drug to prevent
the M1 pro-inflammatory actions and protecting DA-cells in in vitro and in vivo animal
models of PD [64,65]. This drug has a high tolerance in humans and should be tested in
PD patients [66].

The mechanisms involved in the astrocyte–microglia interaction may be a suitable
scenario for the selective control of the PD neuroinflammation. The stimulation of the
DAergic receptors of astrocytes with D2-agonists (e.g., quinpirole, pramipexole) inhibits the
pro-inflammatory activity of these cells [67], and this action is mediated by changes in the
αB-crystallin expression [68,69] and the βarrestin2-mediated action of α-synuclein [70]. The
M1 activation of the A2→A1 transition can be inhibited with both anti-TNFα medications
(normally used for the treatment of inflammatory bowel disease and that has preliminary
evidence for its neuroprotection in PD) [71] and glucagon-like peptide-1 receptor (GLP1R)
agonists (used to control type 2 diabetes mellitus) [72]. The NLY01 and exendin-4 GLP1R
agonists have proved useful for reducing DA-cell vulnerability in animal models of PD [73]
and may also protect DA-cells in PD [74].

Astrocytes could also be involved in the modulation of the effect of peripheral inflam-
mation on the brain. The BBB dysfunction found in PD patients [178,179] facilitates the
access of products or cells generated by the peripheral inflammation to the brain [180–182].
The end-feet of astrocytes make contact with the brain vasculature surface, modulating the
cerebral blood flow and the BBB permeability. The formation of tight junctions, the polariza-
tion of transporters [183] and the maintenance of the BBB activity [184,185] are modulated
by astrocyte neurotrophins such as GDNF, VEGF, bFGF and ANG-1. The anti-oxidant
activity of astrocytes and their release of neurotrophin prevent the deterioration of the
BBB permeability, protecting the DA-cells from peripheral inflammation [180,186]. On the
other hand, the astrocyte-mediated selective-opening of the BBB could help to facilitate the
effectiveness of some types of PD treatment. This may be the case of monoclonal antibodies
against α-synuclein or other toxic proteins involved in PD (PD01A and PRX002/RG7935
affitopes are currently undergoing clinical trials).
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5.5. Astrocytes Provide Neurotrophic Factors Which Are Necessary for DA-Cell Survival

Astrocytes release different neurotrophic factors (e.g., GDNF, BDNF, MANF, and
CDNF) that protect DA-cells in animal PD models [75,76], but whose injection in the brain
of PD patients has not produced the expected therapeutic effects [77–80]. Neurotrophins
do not cross the BBB, and their direct administration in the brain tissue increases their
concentration in the injection loci but not in the surrounding areas (they are rapidly
metabolized by extracellular proteases). Thus, the brain region injected with neurotrophins
presents an excessive dopaminergic re-innervation (that can generate dyskinesias and
other undesirable side-effects), whereas the DA level in the surrounding areas remains
low (thus generating the motor disorders of PD). In addition, the fast metabolization of
neurotrophins limits the duration of their effects, which is an important limitation for
treating chronic diseases with agents that need to be introduced into the BBB. The use
neurotrophic factors could be significantly improved with new administration procedures
that allow a sustained physiological increase of neurotrophins that may protect the whole
brain and not only the local areas around the injecting cannulas. Astrocytes perform a
precise control of their neurotrophins, releasing them at the exact time and place where
their effects may be specific and balanced. The stimulation of this astrocytic activity could
be a more effective way to control PD than the direct administration of neurotrophins.
The injection of lentiviral vectors carrying the GDNF gene under the control of a GFAP
promotor has proved to be useful to activate the astrocyte release of GDNF and to protect
DA-cells in animals [81]. Drugs could be an alternative way to stimulate the astrocytic
release of GDNF in humans. The administration of the grapefruit flavonoid naringenin
is an example of how a drug which acts on astrocytes [82] can produce a moderate but
persistent increase in the expression of GDNF and BDNF [83,84], thus protecting DA-cells
in PD models [85,86]. The commonly-used spice cinnamon, and its metabolite sodium
benzoate, are other examples, increasing the GFAP in the astrocytes of the SN and protecting
DA-cells in animal models of PD [87].

5.6. The Global Activation of the Neuroprotective Functions of Astrocytes

The best therapeutic approach could be to induce a global activation of the A2 behavior
of astrocytes preventing their evolution to the A1 phenotype. At present, there are no
suitable procedures to perform a global control of the astrocyte activity, some therapeutic
strategies may be useful. One possibility is to combine drugs that simulate the action of A2
astrocytes with drugs that inhibit the A2→A1 transition (see a summary of mechanisms and
possible drugs in Figure 2). As mentioned above, the neuroprotective activities of astrocytes
decrease with aging [99–101] and with the action of degenerating DA-cells [159,187,188],
and another possibility could be to preserve astrocytes from these deleterious actions
possibly by using genetic manipulations [189]. A further possibility is to replace the
damaged astrocytes with new astrocytes obtained from iPS [190,191] or other sources [192].
The implant of human astrocytes has proved to be useful in animals (e.g., implanting
human astrocytes in the brain of rodents; humanized mice).

The recent trials to facilitate the differentiation of nigral astrocytes to DA-cells goes
in the opposite direction, as the objective of these trials is to increase the number of DA-
cells has the collateral effect of reducing the local population of astrocytes. Astrocytes
may be reprogramed by manipulating the genetic environment or by acting on specific
pathways that facilitate their dedifferentiation to a pluripotent state that is later used to
produce neurons [193]. The main methods for reprogramming astrocytes to neurons are
the administration of transcription factors or microRNAs. Transcription factors are proteins
that either up-regulate or down-regulate the transcription of specific genes, generally
by interacting with the RNA polymerase’s transcription complex or by down-regulating
others factors involved in stimulating transcription [194–198]. Currently, the reprograming
of astrocytes into neurons may be performed with simpler procedures that overexpress a
single transcription factor [193,199]. MicroRNAs are noncoding sequences of RNA (often
of about 22 nucleotides) that may regulate gene expression at the posttranscriptional
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level, generally by selectively binding to a particular mRNA which produces the silencing
of a specific RNA [200,201]. It has recently been reported that nigral astrocytes can be
transformed into DA-cells by injecting an antisense oligonucleotide against the RNA-
binding protein PTB in the SN [202]. This injection increases the number of DA-cells in
the nigra and re-innervates the striatum with new DAergic synapses, thus recovering
the dopamine level of 6OHDA lesioned animals to 65% of the control levels [202–205].
These studies were performed in young animals and it is currently unknown whether the
astrocytes of aged animals may be also reprogramed to neurons. In addition, this method
produces DA-cells but also other types of cells (e.g., GABA-neurons) whose activity could
produce adverse side-effects, including the formation of teratoma [206,207]. Perhaps, the
most prevalent problem generated by astrocyte reprograming in the medium term may be
that the depletion of local astrocytes reduces the neuroprotective actions of these cells in
the nigra, a fact that may increase DA-cell vulnerability and accelerate PD progression.
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Figure 2. DA-cell interactions with astrocytes and microglia, and possible treatments to facilitate neuroprotection and to
prevent neurodegeneration of DA-cells. ORM2: α-1-acid glycoprotein 2 precursor; LCN: lipocalin; MCP-1/CCL2: monocyte
chemoattractant protein-1; IP10/CXCL10: interferon-gamma inducible protein; TGFα: transforming growth factor α; TNFα:
tumor necrosis factor α; NO: nitric oxide; IFN α/β: alpha/beta interferon; IL1α: interleukin-1 α; CLq: component of the
complement initiator C1 complex; AA: ascorbic acid; GDNF: glial cell line-derived neurotrophic factor; CDNF: cerebral
dopamine neurotrophic factor; MANF: mesencephalic astrocyte-derived neurotrophic factor; Glu: glutamate.

As commented above, the damage of mitochondria is critical for the progression of DA-
cell degeneration. The massive damage of mitochondria of dopaminergic synapses (mainly
induced by the over production of ROS) together with the fragmentation of the DA-cell axon
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(generated by the retrograde degeneration of DA-cells) prevent mitophagy in the PD brain.
Mitophagy eliminates damaged mitochondria that produce low levels of chemical energy
but high levels of ROS [7,8,10,13,14,208,209]. Thus, mitophagy decreases the progression of
the DA-cell degeneration, and its obstruction may accelerate the clinical progression of PD.
Astrocytes prevent this process by capturing and processing the damaged mitochondria
of DA-cells (transmitophagy). Degenerating DA-cells store their mitochondria in saccular
structures (spheroids) [38,57] that are later penetrated by astrocytic processes that transfer
damaged mitochondria to astrocytes for their degradation [61]. Transmitophagy may
prevent the release of damaged mitochondria into the extracellular medium where they
activate neuroinflammation and accelerate the DA-cell degeneration [11,17–19]. On the
other hand, there are preliminary data suggesting that the mitochondria of astrocytes may
be transferred to neurons [58,59], a fact that, in the case of being produced in DA-cells, could
compensate for the deleterious effects produced by their damaged mitochondria [60]. It
has been suggested that astrocytes present mitochondrial dysfunctions in PD that facilitate
the progression of the disease [149,210]. This mitochondrial dysfunction could originate in
the mitochondria itself (e.g., induced by mutations of mitochondrial genes involved in PD)
or it can affect the mitochondria indirectly (e.g., induced by α-synuclein or other proteins
previously transferred by transautophagy of degenerating DA-cells) [38]. The damaged
mitochondria found in astrocytes could also be those generated in DA-cells and which
were later transferred to astrocytes by transmitophagy. In any case, the preservation of the
protective role of astrocytes in the DA-cell mitochondria is probably critical for preventing
the onset and progression of PD.

6. Final Comments

In summary, the supporting activity that astrocytes perform throughout life is nec-
essary for the survival of neurons, and particularly of those neurons that, as occurs with
DA-cells, have a high energy consumption and are submitted to high oxidative stress. The
highly diverse neuroprotective and neurotoxic actions of astrocytes are a wide highway for
the development of new therapeutic strategies in PD. Clinical researchers should pay more
attention to astrocytes and to therapeutic approaches that, as described here, have shown
promising results in animal models of PD. There are many possible therapeutic strategies
that can be used to increase the neuroprotective action of astrocytes, some of them using
drugs and other using cells or some of their components. Many of these strategies have
already shown encouraging results in animal models and their effectiveness could begin to
be tested in patients. The development of therapies to prevent the onset and progression
of PD is complex and expensive. To be effective, many of the proposed therapies must
be administered continuously and from the earliest stages of the disease. In addition, the
demonstration of their effectiveness requires long-term studies and a prospective multi-
center organization. The development of drugs for the symptomatic control of the clinical
expression of PD is faster, easier, cheaper, and more profitable than the development of
drugs for the etiopathogenic control of PD evolution. However, age-related neurodegener-
ative diseases are presently a growing “plague” with serious personal, family, work and
social consequences, and the development of etiopathogenic therapies is a pressing social
demand. Astrocytes should be considered for inclusion in these new developments.
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