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Abstract: Various effects caused by surface plasmons including enhanced electromagnetic field, local
heating, and excited electrons/holes can not only redistribute the electromagnetic field in the time
domain and space but also redistribute the excited carriers and drive chemical reactions. In this
study, firstly, an Au nanoporous array photocatalyst with the arrayed gauge was prepared by means
of the anodic alumina template. Then, the formation of 4,4′-dimercaptoazobenzene (DMAB) by the
surface plasmon-driven photocatalysis under 633 nm laser irradiation was investigated by means
of Raman spectroscopy using aminothiophenol (PATP) as a probe molecule on gold nananoporous
arrays. In addition, sodium borohydride was introduced in situ to realize the reverse photocatalytic
reaction driven by the surface plasma. With the help of FDTD software, the plasma distribution
characteristics on the surface of Au nanoporous arrays were simulated and analyzed. Through this
practical method, it is expected to draw specific graphics, letters, and Chinese characters on the
micro/nano scale, and realize the functions of graphics drawing, information encryption, reading,
and erasing on the micro/nano scale.

Keywords: gold nanoporous arrays; surface plasmon; Raman; photocatalysis

1. Introduction

Surface enhanced Raman spectroscopy (SERS) is a common spectral technique in
which the inelastic light scattering of molecules is greatly enhanced. SERS can enhance
the weak Raman signal by 105–108, providing detailed structural information and binding
properties of molecules on the surface. Since the discovery of SERS, the interest in SERS has
been steadily growing and many other spectral techniques have been introduced. These
techniques utilize the enhanced local field generated by surface plasmon excitation to
apply to optical phenomena such as fluorescence or nonlinearity [1–6]. In addition, the
coupling of SERS with the tip of atomic force microscope (AFM) or scanning tunneling
microscope (STM) makes tip-enhanced Raman scattering (TERS) a powerful imaging
tool. For analytical applications, SERS provides abundant vibration spectrum information,
which makes it different from other technologies and makes it widely used in various fields,
including electrochemistry, catalysis, biology, medicine, art protection, material science,
etc. [7–12].

The enhancement mechanism of SERS has been known as one of the prevalent topics
in this field. The Raman signal enhancement of the probe molecules adsorbed on the metal
nanostructures comes from two factors including the enhancement of the electromagnetic
field on the metal surface and increase of charge transfer between the metal center and
molecules. These two factors are attributed to the electromagnetic enhancement (EM)
and chemical enhancement (CE) mechanisms, respectively [13–15]. The EM enhancement
is defined as the collective oscillation of conduction electrons on the surface of metal
nanostructures, which is called local surface plasmon resonance (LSPR). The plasmons
in the noble metal nanostructures can be significantly amplified relative to the incident
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light intensity. Although SERS can be obtained from the electric field enhancement at a
single nanoparticle (NP), it is advantageous to design more fine nanostructures for SERS.
By placing molecules in the nanoscale gap between the two metal NPs (the so-called hot
spot), the Raman signal of the probe molecule will be further enhanced to obtain a higher
SERS enhancement factor.

Plasma-driven surface catalytic oxidation-reduction reactions have attracted wide
attention since they were first reported. By consideration of its working principles to its
wide applications in physics, chemistry, environmental science, material science, and other
fields, several reaction mechanisms have been proposed for plasma-driven surface catalytic
oxidation-reduction reactions. The hot electrons produced by plasma decay play a key role
and not only provide the electrons needed for the reduction reaction but also induce a large
amount of kinetic energy to overcome the potential energy barrier.

As an important tool to study plasma driven photocatalytic reactions, SERS can not
only detect the chemical information of probe molecules, but also provide suitable catalytic
substrates for surface catalytic reactions [16–19]. Wu et al. [15] reported that PATP adsorbed
on the surface of metal nanoparticles can be catalyzed to form 4,4′-dimercaptoazobenzene
(DMAB) by LSPR [20]. Our previous work has also proven that PATP can be oxidized to
DMAB in the micro-region by using TERS [21]. In the present study, the real-time monitor-
ing of the formation of DMAB by the photocatalytic reaction of PATP, as a probe molecule
driven by local surface plasma, was investigated based on the regular arrangement of gold
nanoporous array catalytic substrate and using the advantage of surface enhanced Raman
spectroscopy. After that, sodium borohydride was introduced in an in situ manner. Under
the same experimental conditions, the product DMAB was driven by plasma to produce
PATP again.

2. Materials and Methods

Firstly, according to the two-step anodization method mentioned in the literature, the
hexagonal anodic aluminum oxide template (AAO) was fabricated [22]. Then, a layer of
gold with moderate thickness was deposited on the surface of the AAO template by vacuum
thermal evaporation technology and a gold nanoporous array substrate with a regular
hexagonal arrangement was obtained. The concentration of PATP was 10−3 mol/L−1 in
absolute ethanol. Then, the prepared gold nanoporous array substrate was placed in a
PATP solution. After standing for 1 h, the substrate was taken out and naturally dried for
subsequent collection of surface plasmon-driven photocatalytic Raman spectra. The Au
nanoarray substrate with PATP probe molecules was placed in the Raman spectrometer
(HORIBA-HR800, Tokyo, Japan). The Raman spectra were collected with 633 nm excitation,
50 × objective, and 1 mW laser power at the exit of the objective. In order to avoid the
catalysis of PATP under natural light, the whole experimental process needed to be carried
out in a dark room.

3. Results

In this work, we used PATP as a probe to study the surface plasma-driven photo-
catalytic reaction based on the gold nanoporous arrays. Figure 1a shows the structure
and Raman spectrum of PATP probe molecule. The black line is the Raman spectrum
simulated by Gaussian 09 software and the red line is the Raman spectrum collected by
PATP solid powder. It can be seen from this figure that the Raman peak at 1084 cm−1 is a
significant characteristic peak of PATP molecule. Figure 1b shows the structure of DMAB
molecule and the Raman spectrum characteristic peaks obtained by the experimental and
theoretical calculations. By comparing Figure 1a,b, it can be seen that the Raman peaks of
PATP at 1084 and 1590 cm−1 and those of DAMB at 1142, 1388, and 1440 cm−1 were not
repeated. Therefore, in the next experiment, the Raman characteristic peaks at 1084 cm−1

can be used to characterize the existence of PATP, and the Raman peaks at 1142, 1388,
and 1440 cm−1 can be used to indicate the existence of DMAB. Figure 1c is a schematic
diagram of the photocatalytic reaction process driven by the surface plasma of the gold
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nanoporous array substrate. Firstly, the gold nanoarray substrate was immersed in the
PATP solution and the PATP molecules were uniformly adsorbed on the gold surface; then,
the sulfur atoms in the PATP molecules formed gold sulfur bonds with the gold atoms.
When the surface of the substrate was irradiated by 633 nm laser, the region around the
nanoporous produced a very strong local surface plasmon-enhanced hot spot region due
to the regular hexagonal arrangement of Au nanoporous. Compared with the excitation
light itself, the intensity of the excitation photoelectric magnetic field in the hot spot was
greatly enhanced, and the nitrogen hydrogen bond of PATP probe molecule in the hot spot
was broken to form a nitrogen double bond under the dual action of surface plasmon and
excitation light. Thus, the photocatalytic reaction took place to form a new structure of
DMAB molecule. After that, the product DMAB produced in the early stage underwent a
reverse photocatalytic reaction by dropping 10−2 mol/L−1 anhydrous ethanol solution of
sodium borohydride in situ, under the action of surface plasmon, stimulated luminescence,
and sodium borohydride to form a PATP molecule.

Figure 1. The formation process of DMAB from PATP surface plasma driven photocatalytic reaction:
(a) PATP Raman characteristic peak; (b) DMAB Raman characteristic peak; (c) the schematic diagram
of the plasma driven photocatalytic reaction.

Figure 2 is the morphology analysis of the AAO template and gold nanoporous array.
Figure 2a,b are AFM pictures of the AAO template. It can be seen from these pictures that
the surface of the template is very flat and nanoporous, and the nanopores are arranged in a
hexagonal shape with a uniform pore size. Figure 2c is the SEM image of gold nanoporous
array prepared by the vacuum evaporation coating technology based on the AAO template.
It can be seen that the distribution of gold nanoporous array is regular, which is consistent
with that of AAO. The diameter of the prepared gold nanoporous is about 75 nm, and
the pore size distribution is uniform. It can be seen from the comprehensive analysis in
Figure 2 that the gold nanoporous array with the regular arrangement has a flat surface,
uniform size, and invariable hot spot distribution, which is an ideal catalytic substrate for
the study of surface plasma-driven photocatalytic reactions.
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Figure 2. Surface topography of gold nanoporous arrays substrate: (a) 2D AFM image of gold
nanoporous arrays; (b) three-dimensional AFM image of nanoporous arrays; (c) SEM image of
nanoporous arrays.

However, in fact, the PATP probe molecules located on the surface of gold nanoporous
array substrate, as shown in Figure 1c, may be effective in the photocatalysis and reverse
photocatalysis under the action of 633 nm excitation and sodium borohydride, respec-
tively. It can be verified by the real-time collection of Raman spectra and identification
of characteristic peaks in the Raman spectra. Figure 3 shows the Raman spectra of PATP
probe molecules based on the gold nanoporous array catalyst substrate in the two stages of
photocatalytic reaction under the action of 633 nm laser and reverse catalytic reaction due
to the in situ introduction of sodium borohydride. Figure 3a displays the Raman spectra
collected in real time at the first stage. The five spectral lines in this figure from bottom
to top are the Raman spectra collected every 2 s, when the 633 nm laser was focused on
the surface of the substrate in a dark room. These are the spectral lines when the laser
continuously acted on the photocatalytic system for 2, 4, 6, 8, and 10 s. According to the
previous analysis, the Raman peaks at 1084 cm−1 can be attributed to the characteristic
peaks of PATP and the Raman peaks at 1142, 1388, and 1440 cm−1 can be attributed to the
characteristic peaks of DMAB. From the bottom to top, the spectral lines in Figure 3a show
that the Raman characteristic peak of PATP molecule at 1084 cm−1 always exists, which
can prove that PATP always exists in the first stage of the photocatalytic process. This
means that the PATP molecule is excessive in the whole process. The Raman peaks at 1142,
1388, and 1440 cm−1 appeared at the laser irradiation for 2 s and their intensities gradually
increased with time. The characteristic peak of DMAB located at 1142 cm−1 in Figure 3a is
fitted with the peak intensity of area, as shown in Figure 3b. This figure shows that the
intensity of the characteristic Raman peak confirms the presence and relative content of
DMAB at 1142 cm−1, as increased gradually with time. It can be seen that PATP molecules
on the gold nano-array catalytic substrate have a very rapid photocatalytic reaction to
generate DMAB molecules under the action of a 633 nm laser. With the extension of time
and increasing concentration of DMAB, the PATP molecules were continuously converted
into DMAB molecules.
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Figure 3. Raman spectra of plasma-driven photocatalysis based on gold nanohole array substrate:
(a) Raman spectrum of PATP photocatalysis generating DMAB; (b) the change trend of Raman peak
intensity at 1142 cm−1 with time; (c) Raman spectrum of DMAB reverse reaction generating PATP.
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Figure 3c shows the Raman spectra collected under the same experimental conditions
by adding sodium borohydride solution in situ after the first photocatalytic reaction. The
1084 cm−1 Raman characteristic peak of PATP molecule was always present from bottom to
top, which proves the existence of PATP in the entire second stage. The intensity of Raman
peaks at 1142, 1388, and 1440 cm−1 decreased rapidly and disappeared with time under the
action of sodium borohydride and laser. At the same time, there are no new Raman peaks,
which means that there are no new molecules except for PATP and DMAB. It can be seen
that the firstly generated photocatalytic product DMAB reverses the photocatalytic reaction
in the presence of sodium borohydride and laser to generate the PATP molecules. Through
the analysis of Figure 2, it can be concluded that the PATP probe molecules located on the
surface of gold nanoporous array substrate had a rapid photocatalytic reaction under the
action of 633 nm excitation light and hot spots on the gold nanoporous array; therefore,
the product DMAB molecules can be generated continuously and rapidly. Subsequently,
the reverse photocatalytic reaction of DMAB molecules on the surface of Au nanoporous
arrays could be catalyzed by sodium borohydride, 633 nm excitation light, and hot spots
on the Au nanoporous arrays, therefore, the PATP molecules were generated again.

The FDTD software was used to simulate the surface plasmon distribution on the
surface of gold nanoarray (as shown in Figure 4). Figure 4a is a theoretical model based
on the geometric dimensions of AFM and SEM images of the prepared gold nanohole
array structure substrate and the polarization direction of surface plasmon-stimulated
luminescence. Figure 4b shows calculation results of the surface plasmon intensity distri-
bution characteristics of gold nanohole array by the FDTD software. It can be deduced
that strong local surface plasmon enhancement hot spots are generated in the area around
the edge of gold nanohole array under the effect of excitation light. These hot spots are
regularly arranged according to the distribution of nanoporous, and are dependent on the
polarization direction of the excitation light. Figure 4c shows the relationship between the
electromagnetic field intensity and ‘x’ on the straight line at ‘y’ = 0 in the calculation results.
It can be concluded that the electromagnetic field intensity on the surface between the gold
nanoholes is very low, and the area near the inner edge of the nanoholes is very strong.
At the same time, the intensity state depends on the arrangement of the nanoholes and
presents a periodic distribution. There are 6 subfigures numbered from 1 to 6 in Figure 4d.
They show the changes of the spatial distribution characteristics of the surface plasmon
with time after the surface of the gold nanohole array was subjected to an induced light
surface wave. It can be seen that the localized surface plasmon oscillated along the inner
edge of the Au nanohole and gradually decreased until it disappeared.

Figure 4. The mechanism of gold nanohole array substrate plasma-driven photocatalysis is as
follows: (a) theoretical model of gold nanohole array and polarization direction of luminescence
simulated by the surface plasmon; (b) calculation results of intensity distribution characteristics of
the surface plasmon of gold nanohole array; (c) analysis of intensity distribution simulated by the
surface plasmon of gold nanohole array; (d) surface plasmon distribution of gold nanohole array;
(e) the mechanism of Au nanohole array substrate plasma-driven photocatalysis.
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Figure 4e is a schematic diagram of the photocatalytic mechanism driven by the surface
plasma of the gold nanoporous array substrate. In the figure, ‘Ef’ is the Fermi level of gold;
‘E1
′ is the energy of a single photon; ‘LUMO’ and ‘HOMO’ are the ‘Lowest Unoccupied

Molecular Orbital’ and ’Highest Occupied Molecular Orbital’ of PATP, respectively; and ‘h+’
is the energy distribution of hot electrons excited by 633 nm laser. This diagram denotes
that the energy required for the photocatalytic reaction of PATP mainly comes from three
aspects. The first is that PATP molecules are in contact with gold nanoporous arrays, and
its electrons are affected by the gold Fermi energy level, which improves their energy. In
the second part, the energy directly comes from the absorption of 633 nm excited photons.
The third part of the energy source is due to the absorption of the energy of hot electrons
and holes produced by the decay of surface plasmon emitted by 633 nm laser.

4. Conclusions

In summary, an Au nanoporous array catalytic substrate with regular arrangement
was prepared based on AAO template. When the specific wavelength of the excitation
light acted on the substrate, a large number of regularly arranged local surface plasmon
enhancement regions were generated on its surface. With the advantage of SERS, we can
monitor the photocatalytic reaction of PATP to DMAB in a real time. After that, the in situ
introduction of sodium borohydride simplified the reaction of DMAB with the plasma to
form a pair of PATP molecules under the same experimental conditions. This research will
provide a new route for the drawing and erasing of molecular graphics on micro and nano
scales, as well as significant applications in information encryption, reading, and erasing
processes.
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