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OBJECTIVE—Phosphoinositide 3-kinase enhancer A (PIKE-A)
is a proto-oncogene that promotes tumor growth and transfor-
mation by enhancing Akt activity. However, the physiological
functions of PIKE-A in peripheral tissues are unknown. Here, we
describe the effect of PIKE deletion in mice and explore the role
of PIKE-A in obesity development.

RESEARCH DESIGN AND METHODS—Whole-body PIKE
knockout mice were generated and subjected to high-fat–diet
feeding for 20 weeks. The glucose tolerance, tissue-specific
insulin sensitivity, adipocyte differentiation, and lipid oxidation
status were determined. The molecular mechanism of PIKE in
the insulin signaling pathway was also studied.

RESULTS—We show that PIKE-A regulates obesity develop-
ment by modulating AMP-activated protein kinase (AMPK) phos-
phorylation. PIKE-A is important for insulin to suppress AMPK
phosphorylation. The expression of PIKE-A is markedly in-
creased in adipose tissue of obese mice, whereas depletion of
PIKE-A inhibits adipocyte differentiation. PIKE knockout mice
exhibit a prominent phenotype of lipoatrophy and are resistant to
high-fat diet–induced obesity, liver steatosis, and diabetes. PIKE

knockout mice also have augmented lipid oxidation, which is
accompanied by enhanced AMPK phosphorylation in both mus-
cle and adipose tissue. Moreover, insulin sensitivity is improved
in PIKE-A–deficient muscle and fat, thus protecting the animals
from diet-induced diabetes.

CONCLUSIONS—Our results suggest that PIKE-A is implicated
in obesity and associated diabetes development by negatively
regulating AMPK activity. Diabetes 59:883–893, 2010

O
besity is a result of imbalanced energy intake
and expenditure in which the accumulation of
excessive fat causes disorders such as type 2
diabetes, atherosclerosis, and dyslipidemia (1).

Because of its increasing prevalence in most of the world,
obesity has became a major health problem (2). Although
genetic linkage analysis has successfully mapped potential
loci in human genome for adiposity development (3),
identifying all genetic variants that contribute to differ-
ences in body weight is still one of the major goals to fully
understand the mechanism of obesity progression. Recent
studies using genome-wide linkage scan revealed human
chromosome trait 12q14.1, where the phosphatidylinositol
3-kinase (PI 3-kinase) enhancer (PIKE) gene CENTG1
locates, has a strong correlation with serum lipid level and
energy intake (4,5), suggesting PIKE may be a potential
factor in regulating body weight.

PIKEs are a family of GTPases that directly interact with
PI 3-kinase and Akt and enhance their kinase activities
(6–8). The family contains three members: PIKE-L,
PIKE-S, and PIKE-A, which is generated from alternative
splicing of the CENTG1 gene. Whereas PIKE-S and -L are
brain specific, PIKE-A is widely expressed, such that its
mRNA could be detected in brain, heart, liver, muscle,
spleen, thymus, and small intestine (9,10). The mode of
action of PIKE is isoform specific in different cell types.
PIKE-L couples to receptors such as netrin receptor
(UNC5B) and metabotropic glutamate receptors I (mGluR-I)
and links the activated receptor to PI 3-kinase pathway in
neurons (11,12). PIKE-S localizes in nucleus and executes
the protective effects of nerve growth factor by activating
the nuclear PI 3-kinase cascade (8). PIKE-A, on the other
hand, substantiates the kinase activity of Akt in glioblas-
tomas and is involved in cancer invasion activity (6,13,14).
However, the role of PIKE-A in peripheral tissues remains
unknown.

In many cases, insulin resistance is the major associated
pathologic condition of obesity. However, the molecular
mechanism of this obesity-induced disorder remains am-
biguous. It has been proposed that lipotoxicity is one of
the candidates to explain the role of excess lipid storage in
insulin resistance onset. Accumulation of excess cellular
lipid changes the lipid metabolism, enhances oxidative
stress, and disrupts endoplasmic reticulum homeostasis
(15). Increasing cellular lipid oxidation by pharmacologic
interventions in obese subjects thus represents a potential
therapeutic regimen to mitigate their diabetic complica-
tions. In this regard, AMP-activated protein kinase (AMPK)
is one of the targets. AMPK is the master sensor for energy
status and is responsible for metabolic homeostasis (16).

From the 1Department of Pathology and Laboratory Medicine, Emory
University School of Medicine, Atlanta, Georgia; the 2Department of
Cellular and Molecular Physiology, Pennsylvania State University Col-
lege of Medicine, Hershey, Pennsylvania; the 3Program in Molecular
Medicine and Department of Medicine, Division of Endocrinology,
Metabolism and Diabetes, University of Massachusetts Medical School,
Worcester, Massachusetts; and the 4Department of Pathology and Lab
Medicine, Harvard Medical School and Children’s Hospital Boston,
Boston, Massachusetts.

Corresponding author: Keqiang Ye, kye@emory.edu.
Received 21 September 2009 and accepted 21 December 2009. Published

ahead of print at http://diabetes.diabetesjournals.org on 12 January 2010.
DOI: 10.2337/db09-1404.

© 2010 by the American Diabetes Association. Readers may use this article as
long as the work is properly cited, the use is educational and not for profit,
and the work is not altered. See http://creativecommons.org/licenses/by
-nc-nd/3.0/ for details.

The costs of publication of this article were defrayed in part by the payment of page

charges. This article must therefore be hereby marked “advertisement” in accordance

with 18 U.S.C. Section 1734 solely to indicate this fact.

ORIGINAL ARTICLE

diabetes.diabetesjournals.org DIABETES, VOL. 59, APRIL 2010 883



Activation of AMPK results in reducing hepatic gluconeo-
genic gene expression and glucose production, increasing
fatty acid oxidation, and enhancing glucose uptake. There-
fore, AMPK activators such as AICAR and metformin are
effective agents in relieving the obesity-induced insulin
resistance in both laboratory and clinical tests (17).

To examine the role of PIKE in obesity, we developed
the whole-body PIKE knockout (PIKE�/�) mice with
ablation of all PIKE isoforms. Here we report that PIKE-A
is implicated in adipocyte differentiation and obesity de-
velopment. PIKE knockout elicits lipoatrophy and in-
creased insulin sensitivity by enhancing AMPK activity,
leading to resistance against high-fat diet (HFD)-induced
obesity and diabetes.

RESEARCH DESIGN AND METHODS

Generation of knockout animals and genotyping. Heterozygous PIKE�/�

C57BL/6 mice with a targeted deletion of exons 3–6 of CENTG1 were
generated under contract by Ozgene (Bentley DC, Australia). Genotyping was
performed by PCR using genomic DNA isolated from the tail tip. PCR was
performed using a combination of primers D (5�ACAGGATCAGTGCAT-
CATCTC3�), H (5�CTGCCCAGCTACAGGAGTAG3�), A (5�TCAGTTGACTG-
GAAGCTCTG3�), and C (5�CCAGAGCCTATCTATGCCTAG3�).
Immunoprecipitation and Western blotting. Tissue extracts were pre-
pared by homogenizing the tissues in buffer as reported (18). Immunoprecipi-
tation was performed as described (18). Antibodies used in the Western blot
analysis were obtained from Santa Cruz Biotechnology (insulin receptor, Akt)
and Cell Signaling Technology (anti–phosphor-Thr308 of Akt, anti–phosphor-
Thr172 of AMPK, anti–phosphor-Ser79 of acetyl-CoA carboxylase [ACC], anti-
AMPK�, and anti-ACC).
Southern blot analysis. Southern blot analysis using mouse tail genomic
DNA was performed as reported (19).
Analytic procedures. All animal experiments were performed according to
the care of experimental animal guidelines from Emory University. Twelve-
week-old female mice were fed with chow or HFD (Research Diets) for 20
weeks. Blood glucose level was measured by ACCU-CHEK Advantage Blood
Glucose Meter (F. Hoffmann-La Roche, Basel, Switzerland). Serum insulin was
measured by ELISA (Crystal Chem). Serum triglyceride level was measured by
Serum Triglyceride Determination Kit (Sigma-Aldrich). Serum tumor necrosis
factor-� (TNF-�) was measured by ELISA (BD Biosciences). Glucose toler-
ance test (GTT) was performed on mice after peritoneal injection of D-glucose
(2 g/kg body wt).
In vivo insulin stimulation. Animals (16 h fasting) were anesthetized by
intraperitoneal administration of sodium pentobarbital (50 mg/kg body wt).
Saline or 5 units human insulin (Eli Lilly) was injected through inferior vena
cava. After 5 min, liver, hind limb muscles, and inguinal fat were removed and
immediately frozen in liquid nitrogen.
PI 3-kinase assay. In vitro PI 3-kinase assay was performed using anti-p110�
(Santa Cruz Biotechnology) as described previously (8).
RT-PCR. Total RNA from various tissues was prepared by Trizol Isolation
Reagent (Invitrogen). First-strand cDNA from total RNA was synthesized using
Superscript III reverse transcriptase (Invitrogen) and Oligo-dT17 as primer.
Amplification of preadipocyte factor 1 (Pref-1), adipocyte protein 2 (aP2),
peroxisome proliferator–activated receptor-� (PPAR�), and C BP� was per-
formed using primers mPref1-F (5�-GACCCACCCTGTGACCCC-3�), mPref1-R
(5�-CAGGCAGCTCGTGCACCCC-3�); maP2-F (5�-CAAAATGTGTGATGCCTTT
GTG-3�), maP2-R (5�-CTCTTCCTTTGGCTCATGCC-3�); mPPARg2-F (5�-ATGCT
GTTATGGGTGAAACT-3�), mPPARg2-R (5�-CTTGGAGCTTCAGGTCATATTT
GTA-3�); and mC BPa-F (5�-ATCCCAGAGGGACTGGAGTT-3�), mC BPa-R (5�-
AAGTCTTAGCCGGAGGAAGC-3�). Expression of PIKE-A was determined using
primers D and H as described above. Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) was also amplified as internal standard using primers 5�-CGCATCTT
CTTGTGCAGTGCC-3� (forward) and 5�-GGCCTTGACTGTGCCGTTGAATTT-3�
(reverse).
In vitro 3H-2-deoxyglucose uptake. 3H-2-deoxyglucose uptake in soleus
muscle and inguinal fat pad was performed in the presence or absence of
human insulin (Eli Lilly) as reported (20).
Fatty acid oxidation assay. Fatty acid oxidation was measured by deter-
mining the production of 3H2O from [9,10-3H]-palmitate as reported (21).
Hyperinsulinemic-euglycemic clamp and metabolic cage studies. Meta-
bolic cage studies and in vivo glucose metabolisms including glucose infusion
rate, glucose turnover rate, and glycogen synthesis were determined by
hyperinsulinemic-euglycemic clamp as reported (22,23).

Statistical analysis. Results were considered significant when P � 0.05.
Statistical analysis was performed using either Student t test, one-way
ANOVA, or two-way ANOVA followed by Tukey multiple comparison test or
Bonferroni post-tests using the computer program GraphPad Prism (Graph-
Pad Software).

Detailed experimental procedures are in the supplementary methods (http://
diabetes.diabetesjournals.org/cgi/content/full/db09-1404/DC1).

RESULTS

Generation of PIKE knockout mice. As a pioneer study
on the physiological role of PIKE in obesity development,
we generated whole-body PIKE�/� mice with targeted
disruption in the CENTG1 locus using the LoxP/Cre sys-
tem. We first created a transgenic line with PIKE flox/�

allele by inserting two loxP sites into the introns flanking
exons 3 and 6 (Fig. 1A). PIKEflox/� mice were then bred
with transgenic mice expressing Cre recombinase in all
tissues. Deletion of exons 3–6 results in removal of
GTPase domain and introduces a frameshift mutation that
creates a new stop codon, producing truncated PIKE
proteins for all isoforms. Heterozygous mating generated
newborn pups at expected Mendelian frequency that ap-
peared indistinguishable from the wild-type littermates,
suggesting that PIKE was dispensable for embryonic de-
velopment. Southern blot analysis showed exons 3–6 of
the CENTG1 gene were effectively excised (Fig. 1B),
which was further supported by PCR analysis (Fig. 1C).
Immunoblotting analysis using antibody specific to the
COOH-terminal of PIKE-A and RT-PCR confirmed the
ablation of PIKE-A expression in various tissues (Fig. 1D
and E). PIKE�/� mice are viable and fertile. However, a
significant reduction of white adipose tissues (WATs) was
detected in the PIKE�/� mice, whereas no noticeable
difference was found in other peripheral tissues (Fig. 1E).
PIKE

�/� mice are resistant to diet-induced obesity.
When fed a chow diet, the body weight of female PIKE�/�

mice was slightly, but significantly, lower at 8 weeks old
compared with wild-type mice (17.29 � 0.27 vs. 16.33 �
0.29 g, P � 0.05, n � 7, Student t test). The difference was
more prominent in mice fed with HFD (55% of calories
derived from fat). After HFD feeding for 14 weeks, obesity
developed in wild-type but not in PIKE�/� animals (Fig.
2A). Daily food intake of PIKE�/� mice fed a chow diet
was normal, but the amount of food intake in PIKE�/�

mice was substantially less than that in the control fed
HFD (Fig. 2B). Increased body weight was associated with
a drastic gain of inguinal WAT weight in wild-type but not
in PIKE�/� mice (312% in wild-type vs. 46.5% in knockout)
(Fig. 2C). The adipocytes in PIKE�/� mice were also
smaller in both feeding conditions (Fig. 2D and E). More-
over, circulating leptin and TNF-� concentrations were
lower in PIKE�/� mice (Fig. 2F and G). Expression of
PIKE-A was greatly enhanced in the WAT and muscle of
mice fed with HFD and the genetically obese (ob/ob) mice
(Fig. 2H, first and fifth panels). In contrast, no noticeable
alternation of hepatic PIKE expression was detected
among all the tested groups (Fig. 2H, third panel), sug-
gesting a tissue-specific function of PIKE-A in obesity
development.
PIKE is essential for adipocyte differentiation. Under
chow diet feeding conditions, expressions of mature adi-
pocyte markers aP2 and the master regulators of adipo-
cyte differentiation, PPAR� and C/EBP� (24,25), were
reduced in PIKE�/� WAT (Fig. 3A). However, no signifi-
cant difference was found in preadipocyte marker Pref-1
between wild-type and mutant. Comparable increment of
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FIG. 1. Targeted disruption of PIKE. A: Schematic representation of mouse PIKE (top), the targeting vector (middle), and the targeted gene
region (bottom). The locations of loxP sites were marked as solid triangles and of FRT sites, as solid bars. B: Southern blot analysis of progeny
produced from heterozygote mating. Genomic DNA was isolated from mouse tail and was digested with NheI and probed with fragment A as
indicated. The 8.5-kb band represents the wild-type allele and the 6-kb fragment corresponds to the knockout allele. C: PCR screening of mice
from heterozygote mating. Genomic DNA isolated from wild-type (�/�), heterozygous (�/�), and knockout (�/�) mice tail was used in PCR
screening. The locations of primers used in the reactions were indicated in A. D: RT-PCR screening of PIKE expression in different tissues.
Complementary DNA was synthesized from RNA extracted from various tissues as indicated. Primers D and H as shown in A were used in PCR
(upper panel). Expression of GAPDH was examined as the internal control (lower panel). E: Western blot analysis of PIKE-A. Proteins extracts
of different tissues from wild-type (�/�) and knockout (�/�) mice (3 months old) were prepared, and the expression of PIKE-A was detected
using specific antibody against the COOH-terminal of human PIKE-A (top panel). The amount of tubulin in each sample was examined to
demonstrate equal loading (bottom panel). Representative result of three mice from each genotype was shown. F: Weight of heart, spleen,
pancreas, kidney, and inguinal WAT in 3-month-old mice. The weight was normalized with the total body weight and was expressed as means �
SEM (n � 5). Significant reduction of WAT weight was observed in PIKE�/� mice (***P < 0.001, Student t test).
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Pref-1 was also detected in both genotypes treated with
HFD, suggesting the proliferation of preadipocyte was
similar in both genotypes (Fig. 3A). However, subsequent
adipocyte differentiation was impaired in PIKE�/� mice as
the expression of aP2, PPAR�, and C/EBP� was greatly
reduced.

Next, we sought to determine whether the deletion of
PIKE-A per se is sufficient to prevent adipogenesis in vitro.
Whereas mouse embryonic fibroblasts (MEFs) from wild-
type mice differentiated into adipocytes, as evident by the
accumulation of lipid droplets within the cells, PIKE�/�

MEFs failed to fully differentiate under the same condition
(Fig. 3B). A significantly lower amount of oil red O staining
was found in PIKE�/� MEFs after induction (Fig. 3C).
Moreover, expression of mature adipocyte markers aP2,
C/EBP�, and PPAR� was lower in PIKE�/� MEFs after
differentiation (Fig. 3D), which was consistent with the
findings in WAT. These results suggest lipoatrophy is a
direct consequence of PIKE-A depletion in WAT, which
may explain the reduced adiposity of mutant mice.
PIKE knockout mice are protected from diet-induced
hyperglycemia by enhanced systemic insulin sensitivity.
Adipocyte dysfunction is one of the major factors that
causes insulin resistance (26); therefore, we examined the
effects of diet-induced diabetes in PIKE�/� mice. In HFD
treatment, hyperglycemia was observed in both genotypes
when the animals were fed. Hyperglycemia was sustained
in fasted wild-type animals but not in PIKE�/� mice (Fig.
4A). Moreover, PIKE�/� mice on HFD showed improved
glucose tolerance during the GTT (Fig. 4B). A lower
amount of insulin was also secreted in PIKE�/� mice
treated with HFD during the GTT (supplementary Fig. 1A).
In parallel, less circulating insulin was detected in
PIKE�/� mice in both feeding conditions (Fig. 4C), sug-
gesting a higher insulin sensitivity. This notion was further
supported by higher glucose infusion rate (Fig. 4D), whole-
body glucose turnover (supplementary Fig. 1B), and gly-
cogen synthesis (supplementary Fig. 1C) in PIKE�/� mice
during the hyperinsulinemic-euglycemic clamp studies.
Hepatic insulin resistance was also alleviated in PIKE�/�

mice fed with HFD (supplementary Fig. 1D), which pro-
vides further explanation to the relieved diabetic pheno-
type in PIKE�/� mice because hepatic insulin resistance is
associated with diabetes (27). We also examined the
insulin-stimulated signaling in tissues responsible for glu-
cose utilization to reveal the molecular basis of the en-
hanced insulin sensitivity in PIKE�/� mice. In mice fed a
normal chow diet, comparable tyrosine phosphorylation
of insulin receptor occurred in WAT and muscle of both
genotypes after in vivo insulin injection (Fig. 4E, first
panel). However, insulin provoked higher insulin sub-
strate-1 (IRS-1) phosphorylation, PI 3-kinase activity, and
Akt phosphorylation in PIKE�/� WAT and muscle (Fig. 4E,
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FIG. 2. PIKE knockout mice are resistant to diet-induced obesity. A:
Growth curve of 3-month-old wild-type (�/�) and PIKE knockout
(�/�) mice fed with HFD. Body weight was measured weekly and
expressed as mean � SEM (n � 7–10; **P < 0.01, ***P < 0.001, two-way
ANOVA). B: Food intake by wild-type (�/�) and knockout (�/�) mice
fed with chow or HFD was measured in a 3-day period. Results were
expressed as mean � SEM (**P < 0.01 vs. the same genotype; c: P <
0.001 vs. the same diet; one-way ANOVA, n � 4). C: Weight of inguinal
WAT from wild-type (�/�) and PIKE knockout (�/�) mice (8–9
months old, n � 5) that have been fed with chow diet or HFD for 20
weeks. Data were expressed as mean � SEM (***P < 0.001 vs. the
same genotype, b: P < 0.01, c: P < 0.001 vs. the same diet treatment;
one-way ANOVA). D: Pictures of hematoxylin-eosin (H&E) staining of
inguinal WAT sections from wild-type (�/�) and PIKE-null (�/�)
animals (8–9 months old) that have been fed with chow diet or HFD for
20 weeks. Representative results of three different mice from each
genotype were shown. Scale bar represents 50 �m. E: Quantification of
inguinal WAT cell area from wild-type (�/�) and PIKE-null (�/�)
animals (8–9 months old) that have been fed with chow diet or HFD
for 20 weeks (n � 4). Results were expressed as mean � SEM
(***P < 0.001 vs. the same genotype, b: P < 0.01 vs. the same diet

treatment; one-way ANOVA). F: Circulating leptin concentration of
wild-type (�/�) and PIKE knockout (�/�) mice (8–9 months old) that
have been fed with chow or HFD for 20 weeks. Results were expressed
as mean � SEM (n � 4; *P < 0.05, ***P < 0.001 vs. the same genotype;
a: P < 0.05, b: P < 0.01 vs. the same diet treatment; one-way ANOVA).
G: Circulating TNF-� concentration of wild-type (�/�) and PIKE
knockout (�/�) mice (8–9 months old) that have been fed with chow or
HFD for 20 weeks. Results were expressed as mean � SEM (n � 4; *P <
0.05, ***P < 0.001 vs. the same genotype; c: P < 0.01 vs. the same diet
treatment; one-way ANOVA). H: Elevated PIKE-A expression in the
WAT and muscle of diet-induced or genetically obese mice. RNA from
WAT, liver, and muscle of ob/ob mice or normal mice (8–9 months old)
that have been fed with chow diet or HFD was extracted and reverse
transcripted. (A high-quality color representation of this figure is
available in the online issue.)
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third, fifth, sixth, and seventh panels). On the other hand,
insulin hypersensitivity was not detected in PIKE�/� liver
(data not shown). Consistent with higher Akt phosphory-
lation in WAT and muscle, in vitro 3H-2-deoxyglucose
uptake under insulin stimulation was significantly aug-
mented in PIKE�/� muscle and WAT (Fig. 4F). Together,
our data suggest that PIKE�/� muscle and WAT are
hypersensitive to insulin stimulation, leading to higher
glucose uptake, thus protecting the mice from hyperglyce-
mia during HFD treatment.

PIKE-A is an Akt upstream effector, which binds Akt and
enhances its kinase activity in glioblastomas (6,13). It is
thus anticipated that PIKE�/� mice would display diabetic
phenotypes as deletion of Akt2 in mice showed impaired
glucose tolerance (28). To our surprise, blood glucose
level is normal in PIKE�/� mice. Because Akt1�/� or
Akt3�/� mice have no obvious defect in glucose homeosta-
sis, the normoglycemic condition in PIKE�/� mice could
be explained if PIKE-A associates selectively with Akt1

and Akt3 rather than Akt2. As predicted, PIKE-A preferen-
tially bound both Akt1 and Akt3 (supplementary Fig. 2A),
suggesting that only Akt1 and Akt3 activities may be
altered in PIKE�/� tissues. Concurrent with this notion,
the brain mass of PIKE�/� mice was smaller than the
control mice (supplementary Fig. 2B), a phenotype that is
specifically observed in Akt3-null animals (29).
Lipid oxidation is enhanced in PIKE

�/� mice. Animal
models with lipoatrophy often associate with hyperlipid-
emia and ectopic lipid accumulation (30). However, signif-
icant changes in neither circulating triglyceride (Fig. 5A)
nor ectopic lipid depositions in liver (Fig. 5B) were seen in
the PIKE�/� mice, suggesting the excessively absorbed
lipid during HFD feeding in PIKE-null animals may be
metabolized rather than deposited as storage. To test this
possibility, we first monitored the frequency of animal
movements using open-field locomotor assay (31).
Whereas the activity in wild-type mice decreased when
they adapted to the test cage, physical movement of
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FIG. 3. PIKE is essential for adipocyte differentiation A: Impaired adipose gene expression in PIKE-null WAT. RNA from inguinal WAT of
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**P < 0.01; ***P < 0.001, Student t test). B: Oil red O staining of MEFs isolated from wild-type (�/�) and knockout (�/�) mice before (day 0)
and after (day 8) induced adipocyte differentiation. Scale bar represents 50 �m. Representative result of three independent experiments is
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t test). (A high-quality digital representation of this figure is available in the online issue.)
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PIKE�/� mice remained substantially higher throughout
the experiment in both diet conditions (Fig. 5C). We also
examined the metabolic rate using metabolic cages (23).
Respiratory exchange ratio was lower in PIKE�/� animals
in both diet treatments, suggesting that mutant mice have
a higher fatty acid catabolism (Fig. 5D). This suggested
high lipid oxidation was further supported by the high
phosphorylation level of AMPK and ACC in PIKE�/�

muscle, brown adipose tissue (BAT), and WAT. AMPK
phosphorylation was reduced after HFD feeding in wild-
type BAT and WAT. However, AMPK in PIKE�/� WAT
remained highly phosphorylated in both feeding groups

(Fig. 5E, first and tenth panels). In parallel, phosphoryla-
tion of ACC in PIKE�/� BAT and WAT was higher than the
control group (Fig. 5E, third, fourth, and 12th panels).
Whereas AMPK expression in WAT remained unchanged
after HFD feeding, AMPK in BAT was greatly reduced in
both genotypes (Fig. 5E, second and 11th panels). Expres-
sion of ACC was reduced after HFD treatment in both
wild-type and PIKE�/� BAT and WAT (Fig. 5E, fifth and
13th panels). Interestingly, PIKE�/� BAT has higher ACC
expression (Fig. 5E, 13th panel). Similar phosphorylation
pattern occurred in both AMPK and ACC in PIKE�/�

muscle (Fig. 5E, sixth and eighth panels) with unchanged
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were expressed as mean � SEM (*P < 0.05; **P < 0.01 vs. the same genotype treated with different diets; a: P < 0.05 vs. different genotypes
treated with the same diet under fasting condition; c: P < 0.001 vs. fed and fasted PIKE�/� mice treated with chow diet; one-way ANOVA, n � 4–7).
B: Glucose tolerance test in wild-type (�/�) and PIKE knockout (�/�) mice (8–9 months old) that have been fed with HFD for 20 weeks (8–9
months old) after overnight fasting. Blood glucose level was monitored at different time intervals after intraperitoneal injection of glucose (2
g/kg). Results were expressed as mean � SEM (n � 7; **P < 0.01; ***P < 0.05 vs. the same genotype; b: P < 0.01, c: P < 0.001 vs. the same diet;
two-way ANOVA). C: Circulating insulin concentration of wild-type (�/�) and knockout (�/�) mice (8–9 months old) that have been fed with
chow diet or HFD for 20 weeks (n � 4). Results were expressed as mean � SEM (*P < 0.05, **P < 0.01 vs. the same genotype; b: P < 0.01 vs. the
same diet; one-way ANOVA). D: Glucose infusion rate in wild-type (�/�) and knockout (�/�) mice (8–9 months old) that have been fed with chow
diet or HFD for 20 weeks during hyperinsulinemic-euglycemic clamp experiment. Results were expressed as mean � SEM (n � 9; *P < 0.05, ***P <
0.01 vs. the same diet; c: P < 0.001 vs. the same genotype; one-way ANOVA). E: Enhanced insulin signaling in fasted 3-month-old wild-type (�/�)
and PIKE-null (�/�) mice fed with chow diet. Mice were administered saline (�) or 5 units human insulin (�) via the inferior vena cava. After
5 min, inguinal WAT and skeletal muscle were isolated and frozen in liquid nitrogen. The phosphorylation of insulin receptor (first panel), IRS-1
(third panel), and Akt (Thr308 and Ser473) (sixth and seventh panels) was determined using specific antibodies as indicated. PI 3-kinases in the
tissues were precipitated using anti-p110� antibody and their activities were assayed (fifth panel). The expression of total insulin receptor (second

panel), IRS-1 (fourth panel), and Akt (eighth panel) was determined to show equal loading. Representative results from three mice of each genotype
were shown. F: Insulin elicits higher glucose uptake in fat and muscle of PIKE-null mice. Soleus muscle and inguinal WAT excised from 3- to 5-month-old
wild-type (�/�) or PIKE knockout (�/�) mice were used in determining the 3H-2-deoxyglucose uptake in the presence of 10 mU/ml human insulin.
Results were presented as mean � SEM (n � 3; *P < 0.05 vs. the same genotype; a: P < 0.05 vs. the same treatment, one-way ANOVA).
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protein levels (32) (Fig. 5E, seventh and ninth panels). In
contrast, no significant changes in hypothalamic AMPK
and ACC phosphorylation were found in PIKE�/� animals
in both feeding conditions (supplementary Fig. 3A). More-
over, AMPK and ACC phosphorylation was not enhanced
in PIKE�/� MEFs (supplementary Fig. 3B). These results
suggest a tissue-specific effect of PIKE-A in modulating
AMPK and ACC activity. We have also performed the fatty
acid oxidation assay in cultured PIKE�/� muscle cells and
hepatocytes. In agreement with the immunoblotting anal-
ysis in Fig. 5E, an elevated palmitate oxidation rate was
detected in PIKE�/� muscle cells but not hepatocytes
(Fig. 5F).

Therefore, the high physical activity of PIKE�/� mice
and enhanced lipid oxidation in BAT, WAT, and muscle
may account for their lean phenotype during HFD
feeding. The higher AMPK phosphorylation in PIKE�/�

WAT also provides a possible explanation for the defec-
tive adipogenesis observed, because prolonged AICAR-
induced AMPK activation inhibits adipocyte differentiation
by diminishing PPAR� and C/EBP� expressions (33,34).
Furthermore, agonist-activated AMPK potentiates the
insulin-stimulated glucose uptake by activating IRS-1
(35,36), which may explain the enhanced PI 3-kinase
and Akt activities in the muscle and WAT of PIKE�/�

mice.
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(�/�) mice. Results were expressed as mean � SEM (*P < 0.05, one-way ANOVA, n � 5). (A high-quality digital representation of this figure is
available in the online issue.)
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PIKE-A is essential for insulin-suppressed AMPK
phosphorylation. Next, we sought to clarify the role of
PIKE-A in modulating AMPK phosphorylation. Fyn knock-
out (Fyn�/�) mice are lipodystrophic with enhanced
AMPK activity in muscle and WAT (37). These metabolic
characteristics highly resemble the phenotypes of
PIKE�/� mice. Given that PIKE-A is a substrate of Fyn
(38) and Fyn interacts with IRS-1 in an insulin-dependent
manner (39), we hypothesized that PIKE-A may form a
complex with Fyn and insulin receptor upon insulin stim-
ulation, which is essential for insulin to suppress AMPK
activity (40,41). In HEK293 cells, PIKE-A associated with
insulin receptor through its NH2-terminal (1–72 amino
acids) (Fig. 6A and B), in which their interaction could be
enhanced by insulin stimulation (Fig. 6C, first panel).
However, this interaction was abolished when the Fyn
phosphorylation site (Tyr682 and Tyr774) in PIKE-A
(PIKE-A YY) was mutated (Fig. 6C, first panel), suggesting
Fyn phosphorylation is critical to the formation of PIKE-
A/insulin receptor complex. The kinetics of insulin recep-
tor/PIKE-A complex formation inversely correlated with
the phosphorylation of AMPK (Fig. 6D, first and sixth
panels). Remarkably, neither Thr172 nor Ser485/Ser491 phos-
phorylation (42) was altered by insulin in GST-PIKE-A
YY–transfected cells (Fig. 4D, sixth and seventh panels),
suggesting that PIKE-A binding to insulin receptor is
critical to mediate the inhibitory action of insulin on
AMPK phosphorylation. On the other hand, Akt phosphor-
ylation was not affected in either wild-type PIKE-A or
PIKE-A YY cells in response to insulin (Fig. 6D, fourth
panel). The formation of PIKE/insulin receptor/Fyn com-
plex was further demonstrated in muscle tissue. In vivo
insulin injection in wild-type mice enhanced the formation
of PIKE-A/insulin receptor complex, which was substan-
tially reduced in Fyn�/� tissue (Fig. 4G, first panel). This
complex was not detected in PIKE-null tissues (Fig. 6E,
first panel). Our immunoprecipitation results also con-
firmed that the association of Fyn and insulin receptor in
muscle is insulin dependent (Fig. 6E, second panel).
Furthermore, the formation of Fyn/insulin receptor com-
plex was not affected in PIKE-null tissues, suggesting that
PIKE-A is not essential for their interaction (Fig. 6E,
second panel). Thus, the interaction between PIKE-A and
insulin receptor is important for insulin to suppress AMPK
phosphorylation, which provides a possible explanation to
the enhanced AMPK phosphorylation in PIKE�/� WAT
and muscle.

DISCUSSION

One of the major findings in the current report is that
PIKE-A is critical for adipocyte differentiation. Several
lines of evidence support the role of PIKE-A in terminal

adipocyte differentiation instead of preadipocyte forma-
tion. First, the mature adipocyte marker aP2 is signifi-
cantly decreased during in vitro adipocyte differentiation
in PIKE�/� MEFs, indicating PIKE-A is important for
adipocyte differentiation (Fig. 3B and C). Second, PIKE-A
expression is increased in fat tissue development of HFD-
fed and ob/ob mice, which highlights its function in the
process (Fig. 2H). Lastly, HFD induced comparable prea-
dipocyte marker Pref-1 expression in both wild-type and
PIKE�/� mice, indicating that formation of new adipo-
cytes is normal in PIKE-null adipose tissue (Fig. 3A).
Interestingly, we found a small portion of PIKE�/� MEFs
was able to differentiate into mature adipocytes (Fig. 3B),
and quantitative analysis revealed a small but statistically
significant increment of lipid accumulation in PIKE�/�

MEFs (Fig. 3C). This result indicates that a PIKE-A–
independent mechanism is responsible for some adipocyte
differentiation, which also accounts for the existence but
not completely the absence of adipose tissue in PIKE�/�

mice.
Ectopic lipid storage due to adipocyte differentiation

defect is associated with hyperlipidemia and liver steatosis
(43). However, we could not detect these pathologic
conditions in PIKE�/� mice (Fig. 5A and B). It is thus
reasonable to predict that the lipid spillover from adipo-
cyte is metabolized in mutant animals. Our results that
PIKE-null fat and muscle have significantly elevated AMPK
and ACC phosphorylation suggest an elevated 	-oxidation
in these tissues (Fig. 5E), which is further supported by
the enhanced fatty acid oxidation rate in the in vitro assay
(Fig. 5F) and the low respiratory exchange ratio values
(Fig. 5D). AMPK has been viewed as a fuel sensor for
glucose and lipid metabolism. Once activated, AMPK
initiates a concomitant inhibition of energy-consuming
biosynthetic pathways and activation of ATP-producing
pathways such as fatty oxidation in mitochondria (44). As
a result, most of the lipids absorbed in PIKE�/� mice are
oxidized as the energy source, which accounts for the lean
phenotype during the HFD treatment.

The uplifted phosphorylation of AMPK and its down-
stream substrate ACC in PIKE-null muscle and adipose
tissues indicates that PIKE-A negatively regulates the
activities of these enzymes. This notion is further sup-
ported by the fact that PIKE-A is critical for insulin to
inhibit AMPK phosphorylation in 293 cells (Fig. 6D). This
upregulation of AMPK activity in PIKE�/� muscle and fat
also provides a possible mechanism accounting for the
elevated systemic insulin sensitivity, as AMPK and insulin
signaling are intimately connected. Agonist-induced AMPK
activation increases the glucose uptake in muscle (45). It
also potentiates the insulin-stimulated glucose uptake by
activating IRS-1 (35,36). A similar observation was made in

cells were cotransfected with His-IR and GST alone, GST-tagged wild-type PIKE-A (WT), or Tyr682, 774F (YY) mutant. The GST proteins were
pulled down by glutathione beads and the associated insulin receptor was examined using anti–insulin receptor antibody (first panel).
Expression of His-IR (second panel) and various GST-tagged proteins (third and fourth panels) was detected. Phosphorylation of Akt (Ser473)
was also examined to verify insulin action (fifth panel). Total Akt expression was checked as an indication of equal loading (sixth panel). D:
Mutation of Fyn phosphorylation site impairs insulin-suppressed AMPK phosphorylation. HEK293 cells were first transfected with GST-tagged
wild-type PIKE-A (WT) or Tyr682, 774F mutant (YY). After serum starvation for 24 h, the cells were stimulated with 100 nmol/l insulin for
different time intervals. The PIKE proteins were pulled down by glutathione beads, and the associated insulin receptor was detected using
anti–insulin receptor antibody (first panel). The phosphorylation of Akt (Ser473; fourth panel), AMPK� (Thr172; sixth panel), and AMPK�1
(Ser485)/AMPK�2 (Ser491; seventh panel) was determined using specific antibodies. Expression of His-IR (second panel) and GST-PIKE-A (third

panel) was verified. The amount of Akt (fifth panel) and AMPK (eighth panel) was detected to show equal loading. E: Insulin enhances PIKE-A
and insulin receptor interaction in muscle. Overnight-fasted wild-type (�/�), Fyn knockout (Fyn�/�), and PIKE knockout (PIKE�/�) mice (3–4
months old) were injected with saline (�) or 5 units human insulin (�) through the inferior vena cava for 5 min. The muscles were then collected
and homogenized, and the PIKE-A was immunoprecipitated using anti-PIKE antibody. The associated insulin receptor was detected using
anti–insulin receptor antibody (first panel). The interaction of Fyn and insulin receptor was also examined by immunoprecipitation using
anti-Fyn antibody (second panel). Phosphorylation of insulin receptor was examined as an indication of insulin stimulation (third panel). Total
insulin receptor was also detected to indicate loading (fourth panel).
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adipose tissue that treatment of adipocytes with AMPK
agonist AICAR enhanced basal glucose uptake by increas-
ing GLUT4 translocation (46). Long-term activation of
AMPK in mice increases the systemic insulin sensitivity
and protects animals from HFD-induced obesity and dia-
betes (34,47), which is in agreement with our observations
in PIKE�/� mice. It is noteworthy that the alleviated
insulin resistance in PIKE�/� mice after HFD treatment
may be a result of reduced inflammation. Because reduced
circulating TNF-� could improve insulin sensitivity and
increase AMPK activity (48,49), the low blood TNF-� in
PIKE�/� mice (Fig. 2G) may also contribute significantly
to improve the diet-induced insulin resistance.

Because the whole-body–knockout mice were used in
the present study, we cannot exclude the possibility that
deletion of PIKE-A in the brain causes a central effect to
modify whole-body activity and metabolism. Because
brain is the major site to control appetite and body weight
(50), where PIKE is highly expressed (Fig. 1D), it is
reasonable to suspect that reduced food intake (Fig. 2B)
and elevated physical activity (Fig. 5C) in PIKE�/� mice
are the primary causes of lean phenotype during HFD
treatment. However, our data strongly support that periph-
eral ablation of PIKE-A does play a role in preventing
obesity development. First, the feeding behavior is com-
parable between wild-type and PIKE�/� mice fed a chow
diet, when lipoatrophy is already obvious. Second, in-
duced differentiation in PIKE�/� MEFs is greatly impaired
(Fig. 3B), suggesting ablation of PIKE per se in MEFs is
adequate to suppress adipogenesis. Third, PIKE-A inter-
acts with the insulin receptor in a Fyn-dependent manner,
which is essential for insulin-induced AMPK phosphoryla-
tion in muscle (Fig. 6D). Deletion of PIKE in muscle,
therefore, would enhance the AMPK phosphorylation and
lipid oxidation (Fig. 5E and F). Lastly, isolated PIKE�/�

WAT and muscle, in which the metabolic influence by the
brain is eliminated, have higher 3H-2-deoxyglucose uptake
when stimulated by insulin (Fig. 4F).

Our data also suggest that the function of PIKE-A is not
restricted to enhance Akt activity alone. We have demon-
strated that PIKE-A physically interacts with the insulin
receptor, which is important for insulin to suppress AMPK
phosphorylation. Our data also provide a novel mechanis-
tic insight into the phenotypes observed in Fyn�/� mice
(37), as PIKE-A/insulin receptor association is Fyn depen-
dent. Conceivably, PIKE-A is a downstream target of Fyn
that inhibits the activity of AMPK during obesity develop-
ment. Thus, PIKE-A may represent an additional regula-
tory point, in addition to Akt, for insulin to suppress AMPK
phosphorylation.

In all, our results uncover the novel physiological func-
tions of PIKE-A, which plays important roles in obesity
development and the accompanied insulin resistance by
regulating AMPK activities negatively. Consequently, less
fat is deposited and the associated insulin resistance is
ameliorated. Therefore, PIKE-A may represent a potential
therapeutic target for obesity and the adjunct insulin
resistance.
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4. Bossé Y, Chagnon YC, Després JP, Rice T, Rao DC, Bouchard C, Pérusse
L, Vohl MC. Genome-wide linkage scan reveals multiple susceptibility loci
influencing lipid and lipoprotein levels in the Quebec Family Study. J Lipid
Res 2004;45:419–426

5. Collaku A, Rankinen T, Rice T, Leon AS, Rao DC, Skinner JS, Wilmore JH,
Bouchard C. A genome-wide linkage scan for dietary energy and nutrient
intakes: the Health, Risk Factors, Exercise Training, and Genetics (HER-
ITAGE) Family Study. Am J Clin Nutr 2004;79:881–886

6. Ahn JY, Rong R, Kroll TG, Van Meir EG, Snyder SH, Ye K. PIKE
(phosphatidylinositol 3-kinase enhancer)-A GTPase stimulates Akt activity
and mediates cellular invasion. J Biol Chem 2004;279:16441–16451

7. Ye K, Aghdasi B, Luo HR, Moriarity JL, Wu FY, Hong JJ, Hurt KJ, Bae SS,
Suh PG, Snyder SH. Phospholipase C gamma 1 is a physiological guanine
nucleotide exchange factor for the nuclear GTPase PIKE. Nature 2002;415:
541–544

8. Ye K, Aghdasi B, Luo HR, Moriarity JL, Wu FY, Hong JJ, Hurt KJ, Bae SS,
Suh PG, Snyder SH. Pike: a nuclear gtpase that enhances PI3kinase activity
and is regulated by protein 4.1N. Cell 2000;103:919–930

9. Xia C, Ma W, Stafford LJ, Liu C, Gong L, Martin JF, Liu M. GGAPs, a new
family of bifunctional GTP-binding and GTPase-activating proteins. Mol
Cell Biol 2003;23:2476–2488

10. Nagase T, Seki N, Ishikawa K, Tanaka A, Nomura N. Prediction of the
coding sequences of unidentified human genes: V, the coding sequences of
40 new genes (KIAA0161-KIAA0200) deduced by analysis of cDNA clones
from human cell line KG-1. DNA Res 1996;3:17–24

11. Rong R, Ahn JY, Huang H, Nagata E, Kalman D, Kapp JA, Tu J, Worley PF,
Snyder SH, Ye K. PI3 kinase enhancer-Homer complex couples mGluRI to
PI3 kinase, preventing neuronal apoptosis. Nat Neurosci 2003;6:1153–1161

12. Tang X, Jang SW, Okada M, Chan CB, Feng Y, Liu Y, Luo SW, Hong Y, Rama
N, Xiong WC, Mehlen P, Ye K. Netrin-1 mediates neuronal survival through
PIKE-L interaction with the dependence receptor UNC5B. Nat Cell Biol
2008;10:698–706

13. Ahn JY, Hu Y, Kroll TG, Allard P, Ye K. PIKE-A is amplified in human
cancers and prevents apoptosis by up-regulating Akt. Proc Natl Acad Sci
U S A 2004;101:6993–6998

14. Liu R, Tian B, Gearing M, Hunter S, Ye K, Mao Z. Cdk5-mediated regulation
of the PIKE-A-Akt pathway and glioblastoma cell invasion. Proc Natl Acad
Sci U S A 2008;105:7570–7575

15. Brookheart RT, Michel CI, Schaffer JE. As a matter of fat. Cell Metab
2009;10:9–12

16. Lage R, Diéguez C, Vidal-Puig A, López M. AMPK: a metabolic gauge
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