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Cellular identity relies on cell-type–specific gene expression controlled at the transcriptional level by cis-regulatory elements

(CREs). CREs are unevenly distributed across the genome, giving rise to individual CREs and clusters of CREs (COREs).

Technical and biological features hinder CORE identification. We addressed these issues by developing an unsupervised

machine learning approach termed clustering of genomic regions analysis method (CREAM). CREAM automates CORE

detection from chromatin accessibility profiles that are enriched in CREs strongly bound bymaster transcription regulators,

proximal to highly expressed and essential genes, and discriminating cell identity. Although COREs share similarities with

super-enhancers, we highlight differences in terms of the genomic distribution and structure of these cis-regulatory units.

We further show the enhanced value of COREs over super-enhancers to identify master transcription regulators, highly

expressed and essential genes defining cell identity. COREs enrich at topologically associated domain (TAD) boundaries.

They are also preferentially bound by the chromatin looping factors CTCF and cohesin, in contrast to super-enhancers,

forming clusters of CTCF and cohesin binding regions and defining homotypic clusters of transcription regulator binding

regions (HCTs). Finally, we show the clinical utility of CREAM to identify COREs across chromatin accessibility profiles to

stratify more than 400 tumor samples according to their cancer type and to delineate cancer type–specific active biological

pathways. Collectively, our results support the utility of CREAM to delineate COREs underlying, with greater accuracy

than individual CREs or super-enhancers, the cell-type–specific biological underpinning across a wide range of normal

and cancer cell types.

[Supplemental material is available for this article.]

More than 98% of the human genome consists of sequences lying
outside of gene coding regions that harbor functional features, in-
cluding cis-regulatory elements (CREs) that are important in defin-
ing cellular identity by establishing lineage-specific gene
expression profiles (Lupien et al. 2008; Heintzman et al. 2009;
Ernst et al. 2011). CREs, such as enhancers, promoters, and an-
chors of chromatin interactions, are predicted to cover 20%–40%
of noncoding sequences of the human genome (Kellis et al.
2014). Currentmethods to annotate CREs in biological samples in-
clude ChIP-seq for histone modifications (e.g., H3K4me1,
H3K4me3, and H3K27ac) (Heintzman et al. 2007, 2009; Lupien
et al. 2008; Ernst and Kellis 2010), chromatin binding protein
(e.g., MED1, EP300, CTCF, and ZNF143) (Heintzman et al. 2007;
Bailey et al. 2015), or chromatin accessibility assays (e.g., DNase-
seq and ATAC-seq) (Thurman et al. 2012; Buenrostro et al. 2013).
CREs are unevenly distributed across the genome, suggesting dis-
tinct biological underpinning to genomic coordinates based on
CRE density, namely, between clusters of CREs (COREs) and indi-
vidual CREs. Indeed, high CRE density, such as those reported as
super-enhancers or stretch-enhancers, is associated to cell identity

and is bound by transcription regulators with higher intensity
than individual CREs (Hnisz et al. 2013; Whyte et al. 2013;
Dowen et al. 2014; Boeva et al. 2017). In addition, such high-den-
sity CRE regions from cancer cells lie proximal to oncogenic driver
genes (Lovén et al. 2013; Chipumuro et al. 2014; Northcott et al.
2014; Kron et al. 2017). Together, these features showcase the util-
ity of classifying CREs into clusters versus individual CREs.

Here, we present a newmethodology termed clustering of ge-
nomic regions analysismethod (CREAM) relying on chromatin ac-
cessibility profiles, either from DNase-seq or ATAC-seq assays, as a
unifying model to identify COREs in any cell type (Fig. 1). CREAM
is a computational method relying on unsupervised machine
learning that considers the distribution of distances between
CREs in a given biological sample to systematically identify
COREs consisting of at least two individual CREs. By conducting
a comprehensive comparative study, we introduce CREAM as a
new systematic way for the identification of COREs, outperform-
ing other widely used CRE annotations, such as super-enhancers.
We compared the enrichment of essential and highly expressed
genes in the proximity of CREAM-identifiedCOREs and individual
CREs. We further compare the binding intensity of master tran-
scription regulators between COREs and individual CREs. We
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also show the utility of COREs in studying the three-dimensional
structure of the genome. Finally, we report on the clinical value of
identifying COREs in tumor samples to discriminate the cancer
type and the biological underpinning specific to each sample.

Results

CREAM detects COREs from chromatin accessibility profiles

We developed CREAM as a new computational approach for the
systematic identification of COREs. CREAM is designed to identify
COREs from chromatin accessibility profiles through five iterative
learning steps described in detail in the Methods section. Overall,
these steps include the following: (1) grouping the individual CREs
in clusters of varying number of individual CREs (referred to as
Order); (2) identifying the threshold for the stitching distance be-
tween individual CREs within the clusters of the same Order;
(3) identifying the maximum Order of COREs; (4) clustering indi-
vidual CREs as COREs starting from the highest Order; and (5) fil-
tering out low Order COREs with a stitching distance close to the
corresponding stitching distance threshold of the same Order.

Applying CREAM across the DNase-seq data, aligned using
human genome assembly GRCh37/hg19, from 102 cell lines avail-
able through the ENCODE Project Consortium (The ENCODE
Project Consortium 2012) reveals between 1022 and 7597

COREs per cell line (Supplemental Fig. S1A), correlatedwith the to-
tal number of CREs identified in each cell line (Supplemental Fig.
S1B). However, the fraction of CREs called within COREs is inde-
pendent of the number of individual CREs (Supplemental Fig.
S1C) and does not impact the median width of COREs across cell
lines (Spearman’s correlation ρ<0.25) (Supplemental Fig. S1D),
supporting the specificity of CORE widths with respect to each bi-
ological sample irrespective of the total number of CREs. We fur-
ther show the ability of COREs to classify samples according to
their tissue of origin using the ENCODE Project Consortium cell
lines. Our results specifically show that COREs identify the tissue
of origin for the 78 DNase I profiles of the ENCODE Project
Consortium cell lines with high accuracy (Matthews correlation
coefficient [MCC] of 0.85 for tissues with four or more cell lines)
(Supplemental Fig. S1E). In agreement, close to 40% of the
32,997 COREs found across the ENCODE Project Consortium
cell lines are unique to one cell line, and only a very small number
are shared across all cell lines (Supplemental Fig. S2A). Further-
more, even COREs common to >50% of cell lines (12% of all
COREs found in the ENCODE Project Consortium cell lines) (Sup-
plemental Fig. S2) are not enriched at housekeeping genes (P-value
>0.05) (Hsiao et al. 2001). Collectively, these results emphasize the
cell line specificity of COREs.

COREs are unique cis-regulatory units of biological

significance

We next used the DNase-seq data from the ENCODE Project
Consortium tier I cell lines (GM12878, K562, andH1-hESC) to fur-
ther characterize the biological underpinnings of COREs versus in-
dividual CREs. We focused on the ENCODE Project Consortium
tier I cell lines because of their extensive characterization (The
ENCODE Project Consortium 2012), inclusive of expression pro-
files and DNA–protein interactions assessed by ChIP-seq assays, al-
lowing for a comprehensive biological assessment of COREs
identified across different cell lines.

We first assessed the signal intensity for chromatin accessibil-
ity at COREs versus individual CREs. Our results show that COREs
have a higher average chromatin accessibility signal per base pair
compared with that of individual CREs across the three tested
cell lines (GM12878: fold change [FC] = 1.9; K562: FC=8.4; H1-
hESC: FC=1.1) (Fig. 2A). We next examined the difference in
the expression level of genes proximal to COREs versus those prox-
imal to individual CREs. We found that COREs are proximal to
genes expressed at higher levels than those near individual CREs
in the GM12878, K562, and H1-hESC cell lines (Wilcoxon
signed-rank test FDR<0.001; GM12878: FC=4.6; K562: FC=6.8;
H1-hESC: FC=1.3) (Fig. 2B). Up to 52%, 59%, and 39% of COREs
overlap with active transcription start sites (TSSs) (TSSs harboring
peaks of chromatin accessibility) in the GM12878, K562, and
H1-hESC cell lines, respectively (Supplemental Fig. S2B). The asso-
ciation of COREs compared with individual CREs with highly ex-
pressed genes remains significant (FDR<0.05) evenwhen focusing
on COREs distal to TSS (up to ±25 kb away from the TSSs; Supple-
mental Fig. S3), although differences in the expression of genes
proximal to COREs and individual CREs decreases with increasing
distance (Spearman’s correlation ρ<−0.8; Fig. 2C). Hence, COREs
are in proximity of genes with higher expression with respect to
genes proximal to individual CREs irrespective of the distance
and overlap between the CREs and gene TSSs.

We next assessed the relevance of COREs versus individual
CREs in bookmarking genes essential for growth. For this, we

Figure 1. Schematic representation of the five main steps of the cluster-
ing of genomic regions analysismethod (CREAM). For step 1, CREAM iden-
tifies all groups of two, three, four, and more neighboring CREs. The total
number of CREs in a group defines its “Order.” Step 2 is identification of
the maximum window size (MWS) between two neighboring CREs in
group for each Order. The MWS corresponds to the greatest distance al-
lowed between two neighboring CREs in a given cluster. Step 3 is identifi-
cation of the maximum Order limit of COREs from a given data set. Step 4
is CORE reporting according to the criteria set in step 3 from the highest to
the lowest Order. Step 5 is identification of the minimum Order limit of
COREs based on the identified COREs in step 4.
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combined the CRISPR/Cas9 gene essentiality screen data reported
in the K562 cell line (Wang et al. 2015) with CORE identification
from the K562 cell line, revealing the enrichment of gene essential
for growth proximal to COREs (FDR<0.001 using permutation
test) (Fig. 2D). This is exemplified at the BCR gene that is the
most essential gene and proximal to a CORE in K562 chronic my-
elogenous leukemia (CML) cell line (Fig. 2D), positive for the BCR-
ABL gene fusion reported in CML (Ren 2005), By extending our
analysis to essentiality scores from other cell lines tested by
Wang et al. (2015), we show that the essentiality score of genes
proximal to K562 COREs is less in the KBM-7, Jiyoye, and Raji
cell lines compared with the K562 cell line (FDR<0.001) (Fig.
2E). We further show that the expression of genes essential for
growth in K562 proximal to COREs is higher than the expression
of essential genes associated with individual CREs (FDR<0.001)
(Fig. 2F). These results support the cell-type–specific nature of
COREs and their association with essential genes and argue in fa-
vor of COREs accounting for a greater regulatory potential relevant
to cell type essentiality than individual CREs.

CREAM identifies COREs bound

by master transcription regulators

Transcription regulators (TRs) bind CREs
to modulate the expression of cell-type–
specific gene expression patterns. Quan-
tifying the binding intensity of transcrip-
tion regulators over COREs in the
GM12878, K562, and H1-hESC cell lines
reveals that >20% of ChIP-seq data of
transcription regulators (GM12878: 92/
237; K562: 256/325; H1-hESC: 24/119)
show binding intensity higher over
COREs compared with individual CREs
when normalizing the ChIP-seq signal
over COREs to the size of each CORE
(FC>2, FDR<0.001) (Fig. 3A). The high-
er enrichment of TR binding intensity in
COREs can be also seen using COREs ex-
cluding the CRE-free gaps (Supplemental
Fig. S4A) regardless of whether COREs
overlap active TSSs (TSSs harboring peaks
of chromatin accessibility) or not (Sup-
plemental Fig. S4B). This higher tran-
scription regulator binding intensity at
COREs is showcased in GM12878
by the master transcription regulators
TCF3 and EBF1 (Somasundaram et al.
2015). Specifically, we observed a greater
than threefold difference in binding in-
tensity for TCF3 and EBF1 in the
GM12878 cell line over COREs compared
with individual CREs (Fig. 3B), exempli-
fied at the CORE proximal to the ZFAT
gene (Fig. 3C). Similarly, the master tran-
scription regulators GABPA and CREB1
(Shankar et al. 2005; Yang et al. 2013)
bind with a more than threefold greater
intensity over COREs compared with in-
dividual CREs in the K562 cell line (Fig.
3B), exemplified at the CORE overlap-
ping the LMBR1, NOM1, and MNX1
genes (Fig. 3C). Finally, in the H1-hESC

cell line, the master transcription regulators NANOG and MYC
(Pan and Thomson 2007) bind with higher intensity at COREs
(FC>1.2, FDR<0.001) (Fig. 3B) in the H1-hESC cell line, exempli-
fied at the HOXA locus CORE (Fig. 3C).

CTCF- and cohesin-enriched COREs map to topologically

associated domain boundaries

Beyond COREs, the human genome can be partitioned in various
clusters including those based on contact frequencies between dis-
tal genomic coordinates that define topologically associated do-
mains (TADs) (Ea et al. 2015). To assess the relation between
COREs and TADs, we integrated the distribution of COREs with
TADs reported fromHi-C data in the GM12878 and K562 cell lines
(Rao et al. 2014). Our analysis reveals higher fraction of COREs
compared with individual CREs at TAD boundaries (permutation
test FDR<0.001) (Fig. 4A,B; Supplemental Fig. S5A). Similar
results are seen in the HeLa, HMEC, HUVEC, and NHEK cell
lines (Supplemental Fig. S5B; Rao et al. 2014; Ea et al. 2015).

BA C

ED F

Figure 2. Comparison of genomic characteristics of the COREs identified by CREAM versus individual
CREs in the GM12878, K562, and H1-hESC cell lines. (A) Distribution of DNase I signal intensity in indi-
vidual CREs andCOREs (signal per base pair). (B) Expression level of genes in 10-kb proximity of individual
CREs or COREs. (∗∗∗∗) P-value <0.0001. (C) Median expression of genes according to distance to the clos-
est individual CRE (gray) or CORE (red). (D) Volcano plot of significance (FDR) and effect size (essentiality
score) of genes in proximity of CREAM-identified COREs in the K562 cell line (red indicates significant fold
change; gray, insignificant fold change). (E) Essentiality score fromK562, KBM-7, Jiyoye, and Raji cell lines
for genes proximal (±10 kb) to COREs identified by CREAM in the K562 cell line. (∗∗∗∗) P-value <0.0001
using Wilcoxon signed-rank test. (F) Expression level of essential genes associated with individual CREs
versus COREs. (∗∗) P-value <0.01.
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Together, this suggests that COREs are preferentially found at TAD
boundaries.

CTCF, cohesin (RAD21 and SMC3), YY1, and the ZNF143
transcription regulators preferentially bind chromatin at anchors
of chromatin interactions, inclusive of TAD boundaries (Heidari
et al. 2014; Rao et al. 2014; Bailey et al. 2015; Weintraub et al.
2017). We therefore assessed whether these transcription regula-
torswere enrichedwithinCOREs at TADboundaries based on their
ChIP-seq signal intensity. CTCF and RAD21were preferentially en-
riched within COREs compared with individual CREs restricted to
TAD boundaries in both the GM12878 and K562 cell lines (FC>
1.5 for both COREs and individual CREs; FC at COREs more
than 1.5 times the FC at individual CREs) (Fig. 4C). No enrichment
over COREs at TAD boundaries was seen for ZNF143 and YY1 or
for any of the 82 and 94 additional transcription regulators
with ChIP-seq data in the GM12878 and K562 cell lines, res-
pectively. Together, this argues that CTCF and cohesin behave
differently from all other transcription regulators at TAD boundar-
ies, mapping more to COREs as opposed to individual CREs.

Furthermore, we show that CTCF and
cohesin bind at TAD-boundary COREs
with higher intensity than at intra-TAD
COREs, defined as COREs within TADs
found ≥10 kb away from boundaries, in
both the GM12878 and K562 cell lines
(FC>2, FDR<0.001 for CTCF and
RAD21; FC>1.7, FDR<0.001 for SMC3
in GM12878 and K562 respectively)
(Fig. 4D). ZNF143 also preferentially oc-
cupied TAD-boundaryCOREs as opposed
to intra-TADCOREs but only in the K562
cell line (FC=1.42, FDR<0.001) (Fig.
4D). We observed lesser differences in
the binding intensity of YY1 at TAD-
boundary COREs versus intra-TAD
COREs in the GM12878 and K562 cell
lines (FC<1.25 in both cell lines) (Fig.
4D). Extending this analysis to the re-
maining ChIP-seq data for transcription
regulators in the GM12878 and K562
cell lines (The ENCODE Project Consor-
tium 2012) revealed 69% and 35% of
transcription regulators with increased
binding intensity at TAD-boundary
COREs versus intra-TAD COREs but
with low effect size in the GM12878
and K562 cell lines, respectively (FC>1,
FDR<0.001) (Fig. 4D).

The enrichment of CTCF and cohe-
sin within COREs at TAD boundaries led
us to assess if they were themselves form-
ing homotypic clusters of transcription
regulator binding regions (HCTs) (Gotea
et al. 2010) at TAD boundaries. Using
CREAM on the 86 and 98 ChIP-seq data
from the GM12878 and K562 cell lines,
respectively, identified 41 and 59 tran-
scription regulators in each cell line
forming at least 100HCTs (Supplemental
Table S1). Comparing the distribution of
HCT at TAD boundaries versus intra-
TADs revealed that >50% of CTCF,

RAD21, SMC3, and ZNF143 HCTs lie at TAD boundaries (Fig.
4E), exemplified at theMYC and BCL6 gene loci (Fig. 4F). This con-
trasts with other transcription regulators, such as SP1 and GATA2
with <10% of HCTs mapping to TAD boundaries in the GM12878
and K562 cell lines, respectively (Fig. 4E). The differences in frac-
tion of HCTs at TAD boundaries is not biased to the GC content
of the individual binding regions within HCTs (Supplemental
Fig. S5C). Taken together, these results suggest that clusters of
CTCF and cohesin binding regions establishingHCTs are preferen-
tially found at TAD boundaries.

COREs and super-enhancers are two distinct biological

features of cells

Similar to COREs, super-enhancers were introduced as high-signal
intensity regions identified fromChIP-seq data from features, such
as H3K27ac or MED1, typical of a subset of CREs, including pro-
moters and enhancers (Hnisz et al. 2013; Lovén et al. 2013;
Vahedi et al. 2015). Although the concept of clusters of CREs

BA

C

Figure 3. Transcription regulator (TR) binding intensity in individual CREs and COREs. (A) Enrichment
of TR binding intensity from ChIP-seq data in COREs identified by CREAM versus individual CREs from
DNase-seq in the GM12878, K562, or H1-hESC cell lines. Volcano plots represent −log10(FDR) versus
log2(fold change [FC]) in ChIP-seq signal intensities. Each dot is one TR (colored indicates significant
FC; gray, insignificant FC). The barplots show howmany TRs have higher signal intensity in COREs or in-
dividual CREs (FDR <0.001 and log2[FC] > 1). FC is defined as the ratio between the average signal per
base pair in COREs versus individual CREs. (B) Distribution of ChIP-seq signal intensity at COREs and in-
dividual CREs for TCF3 and EBF1 as examples of master TRs in GM12878, for GABPA and CREB1 as ex-
amples of master TRs in the K562 cell line, and for NANOG and MYC as examples of master TRs in the
H1-hESC cell line. (C) Examples of genomic regions with COREs (with different coverage) occupied by
TRs presented in B.
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Figure 4. Arrangement of COREs and individual CREs with respect to TAD boundaries. (A) Schematic representation of TAD boundaries and intra-TAD
regions (25-kb Hi-C resolution). (B) Comparison of fraction of COREs and individual CREs from DNase-seq that lie at TAD boundaries with increasing dis-
tance fromTAD-boundary cutoffs in the GM12878 and K562 cell lines. (C) Enrichment of TR binding intensities within COREs over individual CREs that lie in
proximity of TAD boundaries (±10 kb) versus COREs and CREs farther away from TAD boundaries (intra-TAD elements) in the GM12878 or K562 cell line.
(D) Enrichment of TR binding intensity in COREs proximal to TAD boundaries (±10 kb) versus intra-TAD domains. (E) Fraction of HCTs (purple) and indi-
vidual TR binding regions (gray) at TAD boundaries (±10 kb). The total number of individual binding regions for each TR in the GM12878 and K562 cell
lines is also reported (orange). (F ) Examples of HCTs for CTCF, RAD21, SMC3, and ZNF143 at the TAD boundary for theMYC and BCL6 genes (10-kb Hi-C
resolution).
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was introduced before super-enhancers (de Laat and Grosveld
2003; Gaulton et al. 2010; Song et al. 2011), the computational
method developed for super-enhancer calling, known as ROSE
(Hnisz et al. 2013; Lovén et al. 2013; Whyte et al. 2013), accelerat-
ed the inclusion of super-enhancer identification across numerous
studies. We therefore comprehensively compared CORE identifi-
cation by CREAMwith super-enhancer mapping from ROSE using
the data from the GM12878, K562, and H1-hESC cell lines.

Our comparison of super-enhancers, identified either by
ROSE or its latest version (ROSE2) (Stratton et al. 2016; https://
github.com/linlabbcm/rose2), with COREs revealed limited over-
lap in all the three cell lines (Jaccard index <0.5) (Fig. 5A).
Moreover, the pathway enrichment analysis based on genes with-
in 10 kb of COREs or super-enhancers shows higher enrichment of
phenotypic-specific pathways for COREs. For instance, enrich-
ment for the B CELL RECEPTOR SIGNALING PATHWAY term is
2.6-fold more significant based on COREs as opposed to super-
enhancers found in the lymphoblastoid GM12878 cell line
(Fig. 5B). Similarly, the CHRONIC MYELOID LEUKEMIA term is
3.07-fold more enriched in genes proximal to COREs compared
with super-enhancer in the chronic myeloid leukemia K562 cell
line (Fig. 5B). Finally, the WNT SIGNALING PATHWAY term is
2.36-fold more enriched in genes proximal to COREs compared
with super-enhancers in the H1 human embryonic stem cell line
(Fig. 5B).

We further compared the structure of COREs and super-en-
hancers according to their proportion reported to harbor two or
more CREs. Although all COREs consisted of at least two CREs, be-
tween 75% and 90% of super-enhancers identified by ROSE were
composed of at least two CREs in the GM12878, K562, and
H1-hESC cell lines (Fig. 5C). This number plummets to <65% for
super-enhancers called by ROSE2 in these same cell lines (Fig.
5C). This argues for a greater similarity between COREs and
super-enhancers identified by ROSE than ROSE2. We next com-
pared the relationship between gene expression versus COREs
and super-enhancers. Our results reveal the higher expression of
genes located in proximity to both COREs and super-enhancers,
called either using ROSE or ROSE2, as opposed to genes exclusively
proximal to COREs or super-enhancers in the GM12878 and K562
cell lines (Fig. 5D). Similarly, in the H1-hESC cell line, genes com-
monly assigned to COREs and super-enhancers called by ROSE
show higher expression compared with genes assigned uniquely
to either COREs or super-enhancers (FDR<0.001) (Fig. 5D), but
this does not apply to super-enhancers called by ROSE2, in which
CREAMalone serves to identifyCOREs near geneswith the highest
level of expression (FDR<0.001) (Fig. 5D).

Moreover, the expression of CORE-specific genes was higher
in the GM12878 and K562 cell lines compared with genes exclu-
sively in proximity of ROSE or ROSE2 super-enhancers (FDR<
0.001) (Fig. 5D). Regarding H1-hESC, the expression of CORE-spe-
cific genes was higher than ROSE2-specific genes (FDR<0.001)
(Fig. 5D) but lower than ROSE-specific genes (FDR<0.001; Fig.
5D). Expanding our analysis to genes essential for growth in the
K562 cell lines revealed that genes located in proximity of both
COREs and super-enhancers have the highest enrichment for
essential genes, followed by genes only proximal to COREs and, fi-
nally, genes only proximal to super-enhancers (Fig. 5E). Collective-
ly, these results show a level of similarity between COREs and
super-enhancers and also highlight differences in which COREs
are more associated with biological functions than super-enhanc-
ers. This argues that COREs identified usingCREAMare amore pre-
cise reflection of cellular identity and function.

As a final comparison, we assessed the enrichment of tran-
scription regulators according to their ChIP-seq profiles within
COREs versus super-enhancers. Our analysis reveals that >60% of
transcription regulators are enriched in COREs compared with
ROSE-super-enhancers in the GM12878 and H1-hESC cell lines
(FC>2 and FDR<0.001) (Fig. 5F). In the K562 cell line, >30% of
transcription regulators are more enriched in COREs compared
with ROSE-super-enhancers (FC>2 and FDR<0.001) (Fig. 5F). In
contrast, <2% of transcription regulators are more enriched in
ROSE-super-enhancers compared with COREs in any of the three
cell lines (Fig. 5F). Similar results are obtained with comparing
COREs to ROSE2-super-enhancers in the H1-hESC cell line, with
lower enrichment reported in GM12878 and K562 cell lines (FC
>2 and FDR<0.001) (Fig. 5F). CTCF and the cohesin complex
are among the transcription regulators preferentially enriched in
COREs as opposed to super-enhancers in each cell line tested.
This led us to assess the enrichment of CTCF at COREs versus su-
per-enhancers located at TADboundaries, inclusive of a 10-kbwin-
dow around these boundaries. Our analysis revealed the strong
binding intensity of CTCF within COREs at TAD boundaries, as
well as weaker binding intensity within super-enhancers at TAD
boundaries, in the GM12878 and K562 cell lines (FDR<0.001)
(Fig. 5G). Collectively, these results support the unique biological
nature of COREs compared with super-enhancers toward chroma-
tin looping factors and TAD boundaries, of relevance to the three-
dimensional organization of the genome.

Clinical utility of CREAM to identify COREs discriminating

tumor type and underpinning biological pathway

CRE identificationon thehumangenomeassemblyGRCh38/hg38
was recently completed throughATAC-seqassays in400humantu-
mor samples from 23 different cancer types part of The Cancer
Genome Atlas (TCGA) (Corces et al. 2018). Using the k-nearest
neighbormethod (k=3) on theCOREs identified byCREAMclassi-
fied these TCGA ATAC-seq profiles according to their tumor type
(MCC=0.86) (Fig. 6A). Out of 22 cancer types with more than
four patient samples with available ATAC-seq profiles, 17 had ba-
lanced accuracy of >85% (Fig. 6A).We found that, in patient tumor
ATAC-seq profiles, COREs were located in proximity of genes with
higher expression than individual CREs (Fig. 6B) andwere overrep-
resented in 49 out of 50 hallmarks of cancer gene sets (FDR<0.05)
(Fig. 6C; Liberzon et al. 2015). The TNF-α SIGNALING VIA NF-κB
hallmark gene set was enriched for almost all of the TCGA samples,
whereas other hallmark gene sets were tissue specifically enriched,
such as the ANDROGEN RESPONSE hallmark gene set enriched in
prostate adenocarcinoma (PRAD) tumor samples (Fig. 6C).
Altogether our results show the potential utility of COREs in clini-
cal setting to discriminate cancer types and identify hallmark gene
sets within each tumor sample of biological relevance.

Discussion

Although the concept that CREs are not all equal is well estab-
lished, their classification into clusters is recent and warrants the
development of strategies for their classification according to the
various approaches developed to map CREs. Here, we developed
CREAM as the first unsupervised machine learning method pro-
viding a systematic approach to set the filters through an iterative
learning process to identify COREs from chromatin accessibility
profiles generated in any cell type.We show that CREAM identifies
COREs that have higher transcription regulator binding intensity
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Figure 5. Comparison of CREAM-identified COREs and super-enhancers of the GM12878, K562, and H1-hESC cell lines. (A) Similarity of COREs and su-
per-enhancers based on their genomic loci overlap. (B) Top five enriched biological pathways using genes in 10-kb proximity of the identified COREs and
super-enhancers in each one of the GM12878, K562, and H1-hESC cell lines. (C) Percentage of COREs and super-enhancers containing two or more in-
dividual CREs. (D) Expression of genes in 10-kb proximity of both COREs and super-enhancers or exclusively in proximity of COREs or super-enhancers.
(E) Enrichment of essential genes among genes in proximity of both COREs and super-enhancers or exclusively in proximity of COREs or super-enhancers.
(F) Enrichment of TR binding intensity from ChIP-seq data in COREs identified by CREAM versus super-enhancers. Volcano plots represent −log10(FDR)
versus log2(FC) in ChIP-seq signal intensities. Each dot is one TR (colored indicates significant FC; gray, insignificant FC). The barplots show how many
TRs have higher signal intensity in COREs or super-enhancers (FDR <0.001 and log2[FC] > 1). FC is defined as the ratio between the average signal per
base pair in COREs versus super-enhancers. (G) Distribution of ChIP-seq signal intensity of CTCF at COREs and super-enhancers in 10-kb proximity of
TAD boundaries.
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and that are enriched proximal to genes essential for growth com-
pared with individual CREs. CREAM-identified COREs also classify
cell types according to their tissue of origin, discriminating normal
from cancer cells. These results support the utility of CREAM for re-
porting COREs from chromatin accessibility data of biological
significance.

We also assessed the biological relevance of COREs with re-
gards to the three-dimensional organization of the genome by

comparing their distribution with regard to TADs. Our results
show that COREs are enriched compared with individual CREs
at TAD boundaries. These COREs are preferentially bound by a
limited number of transcription regulators, namely, CTCF, the
cohesin complex (RAD21, SMC3), and, to a lesser extent,
ZNF143. These are transcription regulators previously shown to
regulate contact frequencies between distal genomic coordinates
defining the three-dimensional organization of the genome

BA

C

Figure 6. Biology of COREs in human tumor samples. (A) Balanced accuracy for classification of TCGA tumor samples based on their tissue of origin using
CREAM-identified COREs. (B) Enrichment of highly expressed genes in proximity (±10 kb) of CREAM-identified COREs versus individual CREs for TCGA tu-
mor samples. Boxplots show the null distribution corresponding to expression of randomly selected genes, and each dot corresponds to the expression of
proximal genes to COREs for each tumor sample in TCGA. (C) Enrichment of hallmark gene sets relying on genes in proximity (±10 kb) of COREs versus
genes in proximity (±10 kb) of individual CREs for TCGA tumor samples.
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(Heidari et al. 2014; Rao et al. 2014; Bailey et al. 2015; Weintraub
et al. 2017).

We further showed that COREs are distinct from super-en-
hancers defined by ROSE and ROSE2 when relying on DNase-seq
data (of note, ROSE and ROSE2 were designed for identifying su-
per-enhancers based on H3K27ac ChIP-seq data). Specifically,
COREs show higher enrichment of biological pathways associated
with phenotype of each cell type. Moreover, COREs compared
with super-enhancers show higher enrichment in proximity of
highly expressed and essential genes in binding of transcription
regulators and association to CTCF-enriched regions at TAD
boundaries.

Finally, we reveal the clinical value of CORE identification in
400 tumor samples to delineate their cancer type and enriched bi-
ological pathways based on genes proximal to COREs in each sam-
ple. In the process, we also provide the first pan-cancer CORE data
set from 400 publicly released chromatin accessibility profiles
(Corces et al. 2018) covering 23 distinct human cancer types.
Overall, our results support the relevance of CREAM to classify
CREs into COREs, and show the value of COREs, independently
on genome assembly version, to delineate the biology unique to
any sample profiled for its chromatin accessibility.

Methods

Statistical analysis of this paper has been conducted in R version
3.5.1 (R Core Team 2018).

CREAM

CREAM uses genome-wide maps of CREs in the tissue or cell type
of interest generated from chromatin-based assays such DNase-seq
and ATAC-seq. CREs can be identified from these data by peak call-
ing tools such as MACS (Zhang et al. 2008). The called individual
CREs then will be used as input of CREAM. Hence, CREAM does
not need the signal intensity files (BAM, FASTQ) as input.
CREAMconsiders proximity of the CREswithin each sample to ad-
just parameters of inclusion of CREs into a CORE in the following
steps (Fig. 1).

Step 1: grouping of individual CREs throughout the genome

CREAM initially groups neighboring individual CREs through-
out the genome. Each group can have different number of individ-
ual CREs. Then it categorizes the groups based on their included
CRE numbers. We defined Order (O) for each group as its includ-
ed CRE number. In the next step, CREAM identifies themaximum
allowed distance between individual CREs for calling a group as
CORE of a given O.

Step 2: maximum window size identification

We defined maximum window size (MWS) as the maximum al-
lowed distance between individual CREs included in a CORE. For
each O, CREAM estimates a distribution of window sizes as the
maximum distance between individual CREs in all groups of that
O within the genome. Afterward, MWS will be identified based
on the low stringent outlier threshold as follows:

MWS = Q1(log (WS))− 1.5× IQ(log (WS)),

where MWS is the maximum allowed distance between neighbor-
ing individual CREs within a CORE. Q1(log[WS]) and IQ(log[WS])
are the first quartile and interquartile of distributionofwindow siz-
es (Fig. 1).

Step 3: maximum Order identification

After determining MWS for each Order of COREs, CREAM identi-
fies the maximum O (Omax) for the given sample. Increasing the
O of COREs results in the gain of information within the clusters,
allowing the individual CREs to have further distance from each
other. Hence, starting from COREs of O=2, the O increases up to
a plateau at which an increase of O does not result in an increase
inMWS. This threshold is considered as theOmax for COREswith-
in the given sample.

Step 4: CORE calling

CREAM starts to identify COREs from theOmax down toO=2. For
each O, it calls groups with window size less thanMWS as COREs.
As a result, many COREs with lowerOs are clustered within COREs
with higherOs. Therefore, remaining lowerOCOREs, for example,
O=2 or 3, have individual CREs with a distance close toMWS (Fig.
1). These clusters could have been identified as COREs because of
the initial distribution of MWS derived mainly by COREs of the
same O that are clustered in COREs of higher Os. Hence, CREAM
eliminates these low O COREs as follows.

Step 5: minimum Order identification

COREs that contain individual CREs with a distance close toMWS
can be identified as COREs owing to the high skewness in the ini-
tial distribution ofMWS. To avoid reporting these COREs, CREAM
filters out the clusters with (O<Omin) that do not follow mono-
tonic increase of maximumdistance between individual CREs ver-
sus O (Fig. 1). CREAM starts from the lowest order (O= 2) and
checks changes of (MWS−median[WS])/median(WS), where WS
is the distribution of maximum distance between individual
CREs within COREs of that order. Then CREAM filters out called
COREs with Order = 2 up to the point at which this parameter,
(MWS−median[WS])/median(WS), is decreasing by increasing
order.

Association with genes

A gene is considered associated with a CRE or a CORE if found
within a ±10-kb window from each other. This distance was cho-
sen to avoid a false-positive association of elements with gene
TSSs based on previous reports (Sanyal et al. 2012). Expressions
of genes with respect to distance of COREs and individual CREs
with gene TSSs were conducted for different distances from ±1-
kb up to ±25-kb windows as suggested by Sanyal et al. (2012).

Association with essential genes

The number of genes that are in ±10-kb proximity of COREs and
are essential in the K562 cell line are identified (Wang et al.
2015). This number is then comparedwith the number of essential
genes in 10,000 randomly selected (permuted) genes, among the
genes included in the essentiality screen. This comparison is
used to compute FDR, as the number of false discoveries in permu-
tation test, and z-score regarding the significance of enrichment of
essential genes among genes in ±10-kb proximity of COREs iden-
tified for the K562 cell line.

Gene expression comparison

RNA sequencing profiles of theGM12878, K562, andH1-hESC cell
lines, available in the ENCODE Project Consortium database (The
ENCODE Project Consortium 2012), are used to identify expres-
sion of genes in proximity of individual CREs and COREs. The ex-
pression of genes is compared using Wilcoxon signed-rank test.
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Gene expression enrichment in TCGA

The expression of genes associatedwithCOREs of each tumor sam-
ple in TCGA was compared with the expression of 100 randomly
selected gene sets, with the same number of genes. The Z-score is
calculated considering the null distribution generated relying on
the average gene expression in the random gene sets. The P-values
were calculated by comparing the expression of genes associated
with COREs with genes associated with individual CREs using
Wilcoxon signed-rank test.

Pathway enrichment analysis

Ahypergeometric testwas used to identify P-values for enrichment
of hallmark gene sets using the dhyper function in the stats R pack-
age. CORE-associated genes for each sample and a catalog of genes
associated with peaks were used as the query and background gene
lists, respectively.

Housekeeping genes

The list of genes within the HSIAO_HOUSEKEEPING_GENES gene
set (Hsiao et al. 2001) was used as the housekeeping genes.

Transcription regulator and input signal binding enrichment

bedGraph files of ChIP-seq data of transcription regulators are
overlapped with the identified COREs and individual CREs in
the GM12878, K562, and H1-hESC cell line using BEDTools (ver-
sion 2.23.0) (Quinlan and Hall 2010). The resulting signals were
summed over all the individual CREs or COREs and then normal-
ized to the total genomic coverage of individual CREs or COREs,
respectively. These normalized transcription regulator binding in-
tensities are used for comparing TR binding intensity in individual
CREs and COREs (Fig. 4). A Wilcoxon signed-rank test is used for
this comparison.

Similar analysis is used, for enrichment of transcriptional reg-
ulators, to get overlap of DNase I signal data of the cell lines within
individual CREs and COREs. The overlapped signal then normal-
ized to the size of COREs and individual CREs. The distributions
of these normalized signal per base within COREs and individual
CREs were then compared for a given cell line.

We included the DNase I, ChIP-seq, and gene expression pro-
files available from all three tier I cell lines from the ENCODE
Project Consortium (GM12878, K562, and H1-hESC) to provide
a comprehensive analysis of COREs versus biochemical measure-
ments across a diverse collection of cell types, acknowledging
that differences in the significance in trends across cell lines could
arise from cell-type–specific biology or variability in the quality of
data between cell types.

Sample similarity

Similarity between two samples from the ENCODE Project
Consortium or TCGA data sets was identified relying on the
Jaccard index for the commonality of their identified COREs
throughout the genome. Then this Jaccard index is used as the sim-
ilarity statistics in a three-nearest-neighbor classification ap-
proach. We assess the performance of the classification using
leave-one-out cross-validation. We used Matthews correlation co-
efficient for performance of the classification model (Smirnov
et al. 2016). The phenotype of each tissue is considered as a class,
and the obtained vector is used to calculate MCC using the imple-
mented MCC function in PharmacoGx package in R (Smirnov
et al. 2016). In this classification scheme, we considered the phe-
notype of the closest sample to an out of pool sample as its
phenotype.

Multiple hypothesis correction

P-values were corrected for multiple hypothesis testing using the
Benjamini-Hochberg procedure (McDonald 2009).

Software availability

CREAM is publicly available as an open source R package (https://
cran.r-project.org/doc/FAQ/R-FAQ.html) on theComprehensive R
Archive Network (https://CRAN.R-project.org/package=CREAM)
and as Supplemental Code.
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