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Bayesian Data Analysis for 
Revealing Causes of the Middle 
Pleistocene Transition
Dmitry Mukhin   1, Andrey Gavrilov   1, Evgeny Loskutov   1, Juergen Kurths1,2 & 
Alexander Feigin1

Currently, causes of the middle Pleistocene transition (MPT) – the onset of large-amplitude glacial 
variability with 100 kyr time scale instead of regular 41 kyr cycles before – are a challenging puzzle in 
Paleoclimatology. Here we show how a Bayesian data analysis based on machine learning approaches 
can help to reveal the main mechanisms underlying the Pleistocene variability, which most likely 
explain proxy records and can be used for testing existing theories. We construct a Bayesian data-driven 
model from benthic δ18O records (LR04 stack) accounting for the main factors which may potentially 
impact climate of the Pleistocene: internal climate dynamics, gradual trends, variations of insolation, 
and millennial variability. In contrast to some theories, we uncover that under long-term trends in 
climate, the strong glacial cycles have appeared due to internal nonlinear oscillations induced by 
millennial noise. We find that while the orbital Milankovitch forcing does not matter for the MPT onset, 
the obliquity oscillation phase-locks the climate cycles through the meridional gradient of insolation.

The pronounced change in the glacial-interglacial regime that occurred about 1 million years ago – the so-called 
Middle Pleistocene transition (MPT) – is widely regarded as an apparent manifestation of climate system’s non-
linearity. The MPT is observed in various proxy records as a shift in glaciation periodicity (from 41 kyr to approxi-
mately 100 kyr) accompanied by both an increase of the ice/temperature oscillation amplitude and a change of the 
characteristic shape of the oscillations from almost symmetrical to a saw-tooth shape with gradual coolings and 
rapid deglaciations (see Fig. 1(A,B) and refs1–3). The most significant external forcing of climate – the insolation 
variations affected by the Earth’s orbital parameters (the Milankovitch forcing) – remained unchanged during the 
Pleistocene. Hence, it is clear that the MPT is closely connected with the internal properties of climate and their 
possible response to large-scale changes of the environment. Currently, there are ongoing discussions concerning 
the mechanisms of the MPT and the roles of different orbital parameters and the natural climate variability in it. 
The problem is that the climate is a complex high-dimensional system with various nonlinear feedbacks; there-
fore, to identify the mechanisms one should distinguish the most important subsystems driving such changes. 
The latter is indeed a very problematic task due to difficulties with the verification of different models. Existing 
theories of the Pleistocene dynamics regard various internal factors for an explanation of MPT causes, such as 
the ice-albedo, precipitation-temperature and sea level feedbacks, atmospheric and ocean circulation, CO2 cycle, 
dust accumulation, etc. (cf. refs2,4). Many dynamical mechanisms of glacial cycles have been suggested based on 
different conceptual models derived from simplified physical considerations. In particular, they include relaxation 
oscillations arising under long-term trends in parameters (see the review5 of the corresponding models), non-
linear resonance to the orbital forcing6, noise- and forcing-induced transitions between multiple steady states7, 
chaotic response to the insolation forcing8, stochastic resonance9, etc. Several of the suggested models provide a 
good fit to the observed proxy records, but the ability of a model to reproduce data is certainly not sufficient for 
the verification of a theory. Tziperman et al.10 argue that the nonlinear phase-locking mechanism common for 
many nonlinear dynamical models can easily provide the correct output through synchronization of a model with 
the Milankovitch forcing, but the physical mechanism put in the model does not have to be necessarily correct.

To overcome this challenging puzzle, we here intend to explore the Pleistocene glacial cycles by Bayesian data 
analysis revealing the model that is minimal but sufficient for describing data. Mathematically, such a model 
provides the highest probability to produce the proxy records we have, and hence, yields statistically justified 
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inferences. The advantages of the Bayesian methodology in selecting the proper scenario underlying the pale-
oclimate observations were discussed, e.g. in ref.5. Here we show how the data-driven model of the Pleistocene 
dynamics obtained from the Bayesian principles can be used for supporting or rejecting existing climatological 
theories.

We infer that nonlinear feedbacks in the climate system are principal factors for the MPT, whereas external 
forcing – the gradient of insolation – only paces the major deglaciations in the post-MPT climate. Thus, our 
objective analysis supports those theories bringing internal climate variability to the forefront, while those regard-
ing the orbital oscillations as a main driver of the 100 kyr glacial-interglacial cycles are essentially rejected.

Results
First, we describe the data we use and the dynamical model form we suggest. After that, we show how the model 
learned captures the main properties of the Pleistocene dynamics. Then we use the model for analyzing influences 
of different factors such as trends and forcings, as well as for studying the mechanism underlying the observed 
response. Finally, we present a prediction of climate cycles made by the model.

Data and data-driven model.  For the purpose stated above we restrict our consideration by the widely 
used LR04 stack of benthic δ18O records11. This stack accumulates data from 57 sites scattered over the globe and 
reflects the global average of total climate changes. We took only the last part of the time series beginning form 
2.6 Ma when the glacial-interglacial cycles became regular2. Additionally, for technical reasons, we made this time 
series uniformly sampled with 2.5 kyr time step by means of applying the 5 kyr sliding window (see Methods). 
The latter smoothing does not disturb much the structure of the cycles, while just slightly decreases short-term 
noise in the data. The time series used for analysis together with its wavelet transform are shown in Fig. 1(A,B).

The data-driven model is constructed in the form of stochastic discrete dynamical system following the works 
refs12–14.

Figure 1.  LR04 stack and output of the model. (A) LR04 time series of δ18O. The yellow circles mark the most 
rapid deglaciations with δ18O decrease faster than 1.1 per mil per 20 kyr. (B) Its wavelet power spectrum. (C) 
Model wavelet power spectrum averaged over 10000 model runs. (D) The same but with zero orbital forcing 
in the model. (E) The same but without the stochastic term in the model. Wavelet power is plotted in the 
logarithmic scale. Morlet wavelets were used via the Aaron O’Leary’s “Wavelets” Python module.
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  ζ= + .− − − −X f X X t g X Xq( , , , ) ( , ) (1)n n n L n n n n L n1 1

	 (i)	 The first term here is the deterministic evolution operator (dynamical system) mapping some history of cli-
mate’s states of duration L (the model dimension) to the next state. This term describes the internal dynam-
ical properties of the system. The second term parameterizes the stochastic forcing of the model, which is 
needed to account for processes with time scales under the time resolution of our data, e.g. the millennial 
and centennial dynamics. Such a “noise” was shown to play a crucial role in the ice ages (see e.g. refs5,7,9), 
so the random perturbations are expected to be an essential part of the model. In the suggested model 
form such a noise can be state-dependent due to the product of the function g and uncorrelated Gaussian 
noise ζ. Both the functions f and g are unknown a priori and found by means of Bayesian machine learning 
techniques. In this work we define them via universal approximators (see Methods for details), that makes 
the form of the model Eq. 1 quite general and able to describe a wide class of dynamical systems.

	(ii)	 Next, it was proposed by a number of theories of the MPT that the long-term Cenozoic cooling – e.g. a sec-
ular decrease in atmospheric pCO2

15, global mean temperature16, deep water temperature17 – have brought 
the climate system to some critical transition after which the nonlinear oscillations of ice sheets became 
feasible. To reflect possible changes of this type, we make the deterministic part f of the model depend 
explicitly on time tn by some modification of standard functions used for its approximation (see Methods). 
Such a time-dependence allows us to study a slow evolution of the climate system in time and thus to 
reveal dynamical mechanisms underlying the observed transitions. Moreover, it gives us an opportunity to 
extrapolate the model beyond the observations and predict the dynamical regime over some time interval 
in future12–14.

	(iii)	 The last factor Eq. 1 depends on is an orbital forcing q – the Earth’s insolation variations. This signal is 
affected primarily by three astronomical parameters: precession of both the Earth’s axis and orbit yield-
ing together 19 and 23 kyr spectral peaks, obliquity oscillations with the 41 kyr dominating period, and 
less-powerful variations of the Earth’s orbit eccentricity contributing to time scales around 100 kyrs (see 
power spectra of the insolation in Fig. S3). Although the insolation signals have the same spectral compo-
nents over the globe, the relationships between different harmonics are latitude-dependent: in particular, 
the obliquity peaks being strong far from the equator vanish in the tropics. We take into account such a 
dependence by using a two-dimensional forcing q taken from the dataset described in ref.18 consisting of 
July insolation time series at the tropical (15°N) and sub-polar (65°N) latitudes.

The complexity of the model Eq. 1 is determined by a set of the structural parameters – the dimension L and 
the numbers of nonlinear elements in the approximators of both functions f and g parameterizing the determin-
istic and stochastic parts respectively (see Methods and Supplementary Information (SI)). For the selection of 
the optimal model’s structure, we use Bayesian methodology: the optimal model is the one that maximizes the 
probability of generating the time series in hand; see the section Methods for details and practical implementation 
of the approach.

Regarding the LR04 dataset analysis presented here, the model Eq. 1 was trained with different sets of struc-
tural parameters. Then the different models were compared in accordance with the Bayesian criterion (see 
methods and SI) and the top-10 best models were considered further. All the models considered demonstrate 
qualitatively very similar results as well as the same mechanism of the MPT; therefore, hereinafter we illustrate 
the results using the best model only.

Dynamics of the model.  The model Eq. 1 is the stochastic dynamical system, hence its output depends on 
the random variable ζ and can differ from run to run. Figure 1(C) shows the wavelet transform (WT) of the model 
averaged over an ensemble of 10,000 model runs with different noise realizations, as compared to the WT of the 
single LR04 data (Fig. 1(B)). Due to averaging effects, WT of the model looks more “homogeneous” than that 
of the data (and that of individual model time series; see an example in Fig. S1) and allows a clear identification 
of the MPT onset in the model behavior. It is seen that the model reproduce the 41 kyr spectral line during the 
entire Pleistocene associated with the linear response to the obliquity signal as well as the moving of the substan-
tial part of the spectral power to lower frequencies that culminates in the interval from 1.3 to 1 Ma – the main 
manifestation of the MPT. Beyond that, the model reproduces correctly the changing characteristic shape of the 
climate cycles, as shown in Fig. 2(A,B): close to sinusoidal symmetric oscillations during the pre-MPT epoch and 
sawtooth long-period and large-amplitude motions with the rapid deglaciations (δ18O decreases) after the MPT.

The impact of stochastic forcing.  To study the role of the random fluctuations (noise) in the model, 
which represent the sub-grid millennial and centennial climate variability, we compare outputs of the model in 
three variants: (i) the full model containing all the forcings, (ii) the model without the insolation forcing, in which 
both forcing time series entering q are set to their mean values, and (iii) the noise-free model with g = 0. We find 
that the stochastic forcing is a crucial factor for the frequency-band change associated with the MPT: the transi-
tion to the 100 kyr scale occurs in the same way in the model without any insolation signal, whereas the model 
with insolation forcing only and no noise only exhibits a response to the obliquity 41 kyr oscillations through the 
entire Pleistocene (Fig. 1(D,E)). Thus, the model internal dynamical properties, short-scale climate fluctuations 
and the model nonstationarity induce together the frequency shift in the δ18O variations; by contrast, the variabil-
ity in insolation is not instrumental in the MPT.

The resulting probability distribution of noise in the model Eq. 1 is not constant in time due to the 
state-dependence of the noise amplitude g. The ratio of the “instantaneous” noise variance g2 to the variance of the 
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LR04 time series is marked by color in Fig. 3(A), where the time series from a single randomly chosen model run 
is plotted. The increase in the millennial variability in colder climate seen in Fig. 3(A) coincides well with findings 
of refs19,20 showing an amplification of the millennial-scale climate variability amplitude with an increasing of the 

Figure 2.  Model’s glacial-interglacial cycles. (A) 500 kyr fragment of a model trajectory for the early Pleistocene 
(2.4 Ma): a three-dimensional projection of the model’s phase space (left) and corresponding time series 
(right). (B) The same but for the late Pleistocene (0.5 Ma). Gradual glaciations (increases of δ18O) and rapid 
deglaciations are highlighted in black and red respectively. (C) Statistics of the major deglaciations defined as in 
Fig. 1(A): joint distribution density of deglaciation delay after the closest insolation gradient maximum and the 
time distance to the next deglaciation (measured in 41 kyr periods). The corresponding major deglaciations in 
the LR04 stack (see the yellow circles in Fig. 1(A)) are shown by circles.
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continental ice mass. As shown below, such an increase in the sub-grid fluctuations may contribute to but does 
not play a central role in the MPT mechanism.

The impact of insolation forcing.  Although the insolation signals q at the input of the model Eq. 1 are 
comprised of two distinct time series, we found that the optimal models only depend on a particular combination 
of these factors that is close to the difference between the tropical and sub-polar insolation inputs (see SI). Thus, in 
accordance with our analysis, the only insolation forcing that matters in the Pleistocene climate is the meridional 
gradient of the insolation mainly affected by the obliquity oscillations (see Fig. S3). All the harmonics related to 
the precession and eccentricity forcings nearly disappeared in the gradient and thereby cannot contribute to the 
observed dynamics. The insolation gradient was regarded as a main driver for the 41 kyr climate cycles in the 
pre-MPT epoch (from 3 Ma to 0.8 Ma), through its modulation of the atmospheric meridional heat and moisture 
fluxes21. Our results indeed provide further direct empirical evidence from the LR04 stack that such a forcing 
remains dominant through the rest of the Pleistocene too.

In spite of the fact that the insolation forcing is not responsible for the MPT onset, it contributes significantly 
to post-MPT most powerful glacial-interglacial cycles via the phase-locking mechanism through which the ori-
gins of the major deglaciations follow the maxima of the insolation gradient time series. To illustrate this, we 
considered an ensemble of major deglaciations with 1 per mil δ18O decrease per 20 kyr or faster in the model 
behavior, collected from 10,000 model time series over the considered time interval from 2.6 Ma to present. For 
each event from this ensemble we calculated the time to the closest insolation gradient maximum as well as the 
time to the next deglaciation from the ensemble. A joint distribution density of these values shown in Fig. 2(C) 
indicates that the major deglaciations occur, on average, 10 kyr after the insolation gradient maxima and, conse-
quently, the periods of glacial-interglacial cycles are close to multiples of the obliquity period 41 kyr. Moreover, 
most of the periods are distributed around the doubled and tripled obliquity period; this results in the near 100 
kyr line in the mean model wavelet spectrum (Fig. 1(C)). The corresponding 10 major deglaciations from the 
LR04 stack are marked by circles in both δ18O time series (Fig. 1(A)) and the density plot in Fig. 2(C): they fall 
well within the model statistics of deglaciation times.

Dynamical mechanism of the MPT.  To identify a mechanism underlying the model’s behavior described 
above, let us first look at the steady states of the deterministic part of the model Xn = f(Xn−1, … Xn−L, tn, qn) at 
different constant values of the insolation forcing q. Figure 3(B) shows the time evolution of the steady states 
at different insolation gradient levels, representing a “skeleton” of the obtained model’s dynamics. While at the 
low insolation gradient values, corresponding to warmer climate, the model is stable, the stability of the steady 
state decreases with the insolation gradient, and eventually, it becomes unstable at high insolation gradient lev-
els. Nevertheless, the deterministic model under the quasi-periodical insolation gradient always lives near the 
“warm” stable state: the relatively short period of the forcing prevents it from going far from it in spite of the 
epochs of the model’s instability. Instead, the model state just slightly moves along with the insolation gradient 
oscillations. This is why the model demonstrates the 41 kyr response plotted in Figs 1(E) and 2(A) during the 
whole Pleistocene in the absence of the stochastic part.

The behavior changes essentially if the millennial processes are switched on. Due to the trend in the model, 
the steady states corresponding to stable and unstable epochs of climate converge with time (as seen e.g. from 
Fig. 3(B)); simultaneously, the stability of the warm climate states decreases and the amplitude of the millennial 
noise increases (Fig. 3(A)). Eventually, starting from the middle Pleistocene, the noise is able to push out the 
model farther from the steady state to the area where the response of the model is essentially nonlinear: fast relax-
ations from the cold to warm climate and slower backward motions occur. The result is that in the full model with 

Figure 3.  Deterministic and stochastic model specifics. (A) An example of model time series (the same 
time series is used in Fig. S1) colored in accordance with the noise power: color represents the values of the 
“instantaneous” noise variance g2 in Eq. 1 normalized to the variance of the LR04 stack. (B) Deterministic 
model’s (see the text) steady states at different insolation gradient forcing levels (colors correspond to the 
insolation gradient values). The stable and unstable steady states are shown by thick and thin lines respectively.
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both millennial and insolation forcings we see the onset of the regime with noise-induced sawtooth oscillations 
(Fig. 2(B)) associated with the MPT.

In general, the insolation forcing is not necessary for the MPT: the decreased stability of the warm steady state 
allows the noise to provide the transition starting from the average insolation gradient level (see e.g. Fig. 1(D)). 
However, the insolation gradient paces the glacial-interglacial cycles in the following way. The fastest stages of the 
glacial-interglacial oscillations (i.e., the rapid deglaciations) tend to occur when the climate is cold enough (high 
δ18O level) and, at the same time, the insolation gradient has passed the maximal phase approaching the average. 
Under such conditions, the glacial climate is forced to go rapidly toward the warm steady state which appears in 
the model at the average insolation gradient level. Both these conditions determine the phase locking of the major 
deglaciations and the obliquity signal, which we observe in the model dynamics as well as in the LR04 time series 
(Fig. 2(C)). This mechanism is further explained in SI (the text and Figs S4–S6).

Model prediction.  Finally, let us look what the obtained model predicts, being simply extrapolated into 
future, under the assumption that the detected trend stays the same. Note that this assumption may not be realis-
tic, since there is no clear evidence of the ongoing long-term cooling even in the late Pleistocene1. It is even more 
suspect today, when the anthropogenic warming contributes to shifting the climatic means. Still, if such a trend 
held steady in future, the large glaciations in the model would still occur, since warm and glacial states would 
continue to converge as Fig. S7 indicates. While the amplitude of “future” climate variability is almost unchanged 
in time, an additional short-scale (around 20 kyr period) cycle appears in the model time series independently of 
the insolation forcing (see WT for the model extrapolations with and without the insolation forcing in Fig. S7).

Discussion
The optimal Bayesian data-driven model derived here from the LR04 stack shows that strong nonlinear feedbacks 
in climate, gradual trends of global cooling, stochastic and insolation (obliquity) forcings are all important for 
various aspects of the MPT. From a dynamical point of view, the MPT is shown to be generated due to a long-term 
trend in climate leading to a noise-induced nonlinear oscillation build-up. This trend makes the warm steady 
states less stable and hence allows the climate to reach colder states. As a result, the slow onset/rapid termination 
glacial-interglacial climate oscillations of large amplitude became more approachable in the late Pleistocene; this 
gives indication that the large glaciations started to be triggered at higher temperatures than in the pre-MPT 
epoch. This conclusion supports indirectly the hypothesis put forth in ref.17 about the leading role of a gradual 
deep ocean cooling in the MPT, through decreasing the ocean heat capacity and hence allowing sea ice to grow at 
higher atmospheric temperatures.

However, the strongly nonlinear relaxation oscillations responsible for the large sawtooth glacial-interglacial 
cycles cannot arise in our model without energetic millennial (and/or centennial) climate variability, represented 
by a stochastic process. So, the data-driven modeling of such short-scale variability (e.g. Dansgaard-Oeschger, 
Heinrich, Bond oscillations), with connection to large glacial-interglacial cycle models, could be helpful for fur-
ther clarification of the mechanisms underlying the Pleistocene dynamics.

Regarding the insolation forcing, we have found that only the insolation gradient, driven primary by the obliq-
uity oscillations, is important for the Pleistocene dynamics. For the pre-MPT 41 kyr world the principal role of 
insolation gradient was explained in ref.21, but the physical mechanism for its dominance in the late Pleistocene 
(shown by our model) is not presently clear. Accordingly to ref.22, the glacial oscillation is phase locked with the 
Milankovitch forcing via the high-latitude insolation: lower insolation leads to larger glacier growth and makes 
the sea ice switches (rapid expansions of sea ice) followed by the deglaciation stages more probable than at higher 
insolation values. But the high-latitude insolation signal is dominated by the precession rather than obliquity 
oscillation, whereas our analysis uncovers that the impacts of both precession and eccentricity forcings are neg-
ligible. To reconcile these differences, we conjecture here that the tropical insolation can be also important in 
this mechanism. Above the average tropical insolation in combination with the low high-latitude insolation may 
result in an intensification of moisture transport to high latitudes and a related increase in the ice accumulation 
rate. The latter prolongs the stability of continental ice allowing temperatures to reach much lower values through 
the ice-albedo feedback. Eventually, all behavior explained in refs4,17,22 still happens – the low temperatures, large 
sea ice extent, reducing precipitations followed by retreating of the glaciers, but the deglaciation stage starts from 
much colder conditions yielding higher amplitudes of the glacial cycles. Thus, the major deglaciations are tied to 
the positive phase of the low-high latitude insolation difference (i.e. the insolation gradient) oscillation, provid-
ing a phase locking of the climate cycles with the obliquity cycles. Probably, this is the direction the conceptual 
models could be modified in.

All the conclusions we made in this work are inferred by the analysis of the LR04 stack which only repre-
sents the global climate changes during the Pleistocene. Therefore the dynamical model derived from this data 
set can only describe the salient properties of the climate system and necessarily lacks potentially important 
regional details. In particular, it was shown3 that the Ocean Drilling Program records in the Southwest Pacific 
Ocean – an important region for studying the global ocean circulation – indicate a much more abrupt change 
in δ18O from 950 ka to 870 ka compared to much smoother globally-averaged changes. No doubt, differences in 
regional climate variability can be important for more detailed studies of glacial mechanisms, and future works on 
data-driven modeling of paleoclimate would be focused on the analysis of multivariate time series over the globe.

Another question beyond the scope of this work concerns the reversibility of the MPT: whether is it possible 
to bring the climate back to the 41-kyr world by reversing the long-term trend in the system? In principle, the 
dynamics of the model obtained here is reversible in this sense: if we initialize the model by current conditions 
and launch the sequence {tn} in Eq. 1 backward, we get the completely reversed scenario of the MPT, as shown 
in Fig. S8. This means that structurally, there is no hysteresis, or multistability, in the model on the time interval 
corresponding to the MPT. But the problem is that the LR04 time series does not provide sufficient information 
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for identification of the physical processes contributing to the trend itself, whereas some of them may be irrevers-
ible, e.g. glacial erosion of regolith which has been suggested as a primary factor for large glaciations1. Further 
understanding and modeling the causes of such long-term changes of the system may shed new light on this task.

Methods
In this section we first describe a specific form of the data-driven model we use. Then we briefly explain the 
representation of model structural parts, an algorithm for model learning and optimization, as well as a data 
preparation procedure. Details of the methods for representation, learning and optimization of the model in the 
form of Eq. 1 can be found in refs12–14,23,24.

Model structure.  The stochastic evolution operator (EO) we reconstruct from data (Eq. 1) explicitly depends 
on time as well as the forcing q. The dependence on time is needed for parameterizing possible deformations 
of the EO due to slow trends in climatic conditions. A response of the system to such trends can be essentially 
state-dependent. Hence, the time variable t should be passed to the input of the model together with the state 
variables X. Obviously, the response of the system to forcing (insolation signal in the present case) can be 
state-dependent as well, and the forcing q should be also involved as a dynamic variable. However, we should 
exclude here odd models which allow the astronomically driven forcing q to respond to the climatic trends or, 
vice versa, permit a direct impact of the stationary forcing on much longer-scale trends. To this end, we split the 
deterministic part f of the model into two terms, each of them being responsible for either trend or insolation 
forcing impact:

= + .− − − − − −  f X X t f X X t f X Xq q( , , , ) ( , , ) ( , , ) (2)n n L n n n n L n n n L n1 1 1 2 1

Model representation.  For the parameterization of a priori unknown functions f1, f2 and g in Eqs 1 and 2 
we use a simple artificial neural network (ANN) in the form of perceptron with one hidden layer and hyperbolic 
tangent activation function, which is known to be a universal approximator25:

∑ϕ α ω γ= ⋅ + .
=

z z( ) tanh( )
(3)i

m

i i
T

i
1

Here m is a number of neurons, (α, ω, γ) are the fitted coefficients (model’s parameters), and z is an input of some 
dimension d. Since we analyze the single LR04 time series, hereinafter we use the scalar variant of the function ϕ: 
Rd → R, so that α ∈ R, ω ∈ Rd, γ ∈ R. While the functions f1 and g take the vector of Takens variables26 z = (Xn−1, … 
Xn−L) as an input (i.e. d = L), the combined vector z = (Xn−1, … Xn−L, qn) is passed to the input of the function f2, 
so d = L + 2 for f2 due to two-dimensional forcing q (see the main text).

The explicit dependence on time t of the deterministic model (Eq. 2) is put in f1 by means of a modified ANN 
structure (Eq. 3) as follows:

z t t z( , ) ( ) tanh( )
(4)i

m

i i i
T

i
1

1 2∑ϕ α α ω γ= + ⋅ ⋅ + .
=

In fact, this is the first-order (linear) expansion of a weak time-dependence of the model caused by slow trends 
in the system. It was shown in refs27,28 that such an approximation is efficient for modeling and prediction of 
low-dimensional nonlinear dynamical system of general type with slowly changing parameters.

Model learning and optimization.  Let us denote the model parameters entering in the functions f1, f2 and 
g by 

f1
μ , μ f2

 and μg respectively (each of these μ consists of corresponding ANN coefficients). To determine the 
parameters, we use a cost-function in a form of the Bayesian posterior probability density function (PDF):

μ μ μ μ μ μ μ μ μ| ∝ | × .P X P X Pq q( , , , ) ( , , , ) ( , , ) (5)f f g f f g pr f f g1 2 1 2 1 2

The first term in the right-hand side is the likelihood function – the PDF of obtaining data X = (X1, … XN) of 
duration length N by the model with parameters ( , , )f f g1 2

μ μ μ  given the forcing time series q = (q1, … qN). This 

function can be inferred directly from Eqs 1 and 2 on the assumption that the random process ζ in Eq. 1 is 
Gaussian and uncorrelated:

∏

∑

µ µ µ π µ

µ µ

µ

| =






…






×











−
− … − …

…











= +
− −

−

= +

− − − −

− −

( )( ) ( )
( )

( )

P X C g x x

x f x x t f x x

g x x

q

q

( , , , ) 2 , ,

exp 1
2

, , , , , ,

, ,
,

(6)

f f g
n L

N

n n L g

n L

N n n n L n f n n L n f

n n L g

1
1

2
1/2

1

1 1 2 1

2

1
2

1 2

1 2

where C is a constant depending on a starting fragment X1, …XL of the time series X (see refs23,24). The second 
term in Eq. 5 is the prior PDF of the model parameters. This function restricts the domain of model learning in 
the space of parameters, thus compensating the degeneration of the ANN’s parameter space and simplifying the 
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numerical analysis. Following refs12–14,23,24,27, we use a Gaussian prior PDF with different variances for different 
groups of ANN coefficients (α, ω, and γ).

A crucial point in data-driven modeling is selecting the model structure of optimal complexity in the sense of 
its correspondence to the data. The Bayesian way for optimal model selection is finding the model that maximizes 
the marginal likelihood function characterizing the probability to produce the data X by the model:

∫ μ μ μ| = | | → .P X P X P d maxH H H( ) ( , ) ( ) (7)i i i
Hi

Here μ are the internal parameters of a particular model Hi, P(μ|Hi) is a prior probability density for them, and 
P(X|μ, Hi) is the likelihood for the ith model’s parameters. The predefined set of models {Hi} should be wide 
enough to incorporate as much as possible physically relevant evolution operators of the system. Using condition 
Eq. 7 as a criterion for best model selection prevents us from obtaining overfitted models that fit well the par-
ticular observations (and hence yield large values of the likelihood in Eq. 7) but are useless for inferring robust 
dynamical laws underlying data.

The structural parameters determining our model complexity are the time lag L defining the model memory 
and the numbers of neurons m f1

, m f2
 and mg in the ANNs representing both the deterministic (f1 and f2) and sto-

chastic (g) parts of the model. Thus an ensemble of models used for the best model selection consists of the mod-
els with different structural parameter sets L m m m( , , , )f f g1 2

. The procedure for the estimation of the integral in 
Eq. 7 we use here is the same as in refs23,24 for every model Hi from an ensemble of L m m m( , , , )f f g1 2

 the following 
function derived by the Laplace integration method is calculated:

P X

P X

H

q H

ln ( ) ( ) 1
2

ln 1
2

( ) ,

( ) ln[ ( , , )],
( , , ) (8)

i
T

i

f f g

0 0

1 2

μ
π

μ

μ μ
μ μ μ μ

− | ≅ Ψ + | ∇∇ Ψ |

Ψ = − |
= .

Here μ0 is model parameters minimizing the function Ψ(μ), i.e. the cost-function Eq. 5, ∇∇TΨ is the matrix 
of the second derivatives (Hessian matrix) of the function Ψ with respect to the parameters μ at the point of its 
minimum μ0. While the value of the first term in the upper row of Eq. 8 indicates how well the model outputs 
fit to the data, the second term penalizes the model for its complexity. Actually, the minimization of -ln P(X|Hi) 
provides a balance between the fit accuracy and the model complexity.

Eventually, to obtain the best model, we have to learn each model from the ensemble, which gives us the values 
of μ0, calculate the optimality (Eq. 8), and select the model that minimizes the optimality.

Data preparation.  The original LR04 stack is sampled with non-constant time step ranging from 1 kyr to 2.5 
kyr for the time period [2.6 Ma, 0 Ma]. Each point of these series represents the average value of δ18O on the cor-
responding time interval. Thus, we can consider the stack as a set of such time intervals. In order to construct the 
model described above, we resampled the LR04 stack with the constant time step 2.5 kyr and applied a smoothing 
window with the size w = 5 kyr simultaneously by the following procedure. For each time instance t of the new 
time series we took all time intervals of the original LR04 stack which intersect with or lie in [t − w/2, t + w/2]; 
the values from these intervals were averaged with the weights proportional to the sizes of the corresponding 
intersections and the resulting average value was taken as the new value at the time t.

The insolation forcing time series was resampled from the time step 1 kyr to the time step 2.5 kyr using the 
classic cubic spline interpolation.

Data Availability
The analyzed LR04 stack is open to the public.
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