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The Escherichia coli endoribonuclease RNase E is central to the processing and degradation of all types of
RNA and as such is a pleotropic regulator of gene expression. It is essential for growth and was one of the
first examples of an endonuclease that can recognise the 5’-monophosphorylated ends of RNA thereby
increasing the efficiency of many cleavages. Homologues of RNase E can be found in many bacterial families
including important pathogens, but no homologues have been identified in humans or animals. RNase E
represents a potential target for the development of new antibiotics to combat the growing number of
bacteria that are resistant to antibiotics in use currently. Potent small molecule inhibitors that bind the
active site of essential enzymes are proving to be a source of potential drugleads and tools to dissect function
through chemical genetics. Here we report the use of virtual high-throughput screening to obtain small
molecules predicted to bind at sites in the N-terminal catalytic half of RNase E. We show that these
compounds are able to bind with specificity and inhibit catalysis of Escherichia coli and Mycobacterium
tuberculosis RNase E and also inhibit the activity of RNase G, a paralogue of RNase E.

example, that translation closely follows programming at the level of transcription. In Escherichia coli, a

valuable model system, it has been found that a single-strand-specific endoribonuclease called RNase E is
required for rapid turnover of mRNA and in addition the processing of many RNAs including those of the
translational machinery®”. E. coli RNase G, a paralogue of RNase E, cooperates with RNase E in the maturation of
16S ribosomal RNA*® and is also involved in the normal degradation of many mRNAs®”. RNase E is a potential
target for developing new antibiotics, which are increasingly needed given the rising tide of resistance emerging in
bacteria of clinical importance. It is essential for the growth of E. coli** and homologues have been found in about
half of the bacteria whose genomes have been sequenced, including important pathogens, such as Salmonella
species, Yersinia pestis, Mycobacterium tuberculosis, and Vibrio cholerae'®™"*. Furthermore, no homologues of
RNase E have been identified in humans or animals.

The N-terminal catalytic half (NTH) of RNase E is a tetramer, which is best described as a dimer of dimers'*'.
Each dimer contributes a pair of equivalent antiparallel channels that include the sites of catalysis. Each channel
binds a single-stranded RNA segment and has an adjacent pocket for binding 5’ termini that are both monopho-
sphorylated and unpaired (Fig. 1a—c)'. Such termini are found on the downstream products of cleavage and may
provide a means of prolonging contact such that additional cleavages can occur’. Each single-stranded RNA-
binding channel'® is formed on one side by a domain that closely resembles the RNA-binding domain of S1'* and
on the other side by one that resembles the catalytic domain of DNase I'°. The latter reveals an unexpected link in
the evolution of RNA and DNA nucleases. Aspartic acid residues at 303 and 346 in the DNase I domain may act as
general bases to activate the hydroxyl group of a water molecule coordinated to the magnesium to attack the
scissile phosphate'®. The scissile phosphodiester bond in the RNA is the point at which cleavage occurs (the bases
3’ to the site of RNA cleavage are defined as + 1, +2..., and those 5’ are —1, —2...). The contacts between RNase E
and bound RNA are described in the legend to Fig. 1a—c. Recent evidence suggests that simultaneous recognition
of two or more unpaired regions may provide a sufficiently stable interaction for efficient cleavage by RNase E to
occur®**?'. However, it is also clear that the efficient cleavage of some substrates requires them to be 5" monopho-
sphorylated'”*>**. A simple explanation for these observations is that because of structural constraints not all
RNAs present a combination of unpaired regions that can cooperate in binding RNase E, but for some of these
RNAs a 5'-monophosphorylated end provides an additional foothold for RNase E that allows binding and
cleavage of a co-accessible unpaired region®*'.

T he rapid turnover of RNA is central to the regulation of gene expression in all forms of life'. It ensures, for
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The study of RNA processing and decay in E. coli has made extens-
ive use of two mutants of RNase E that are temperature sens-
itive*>*** and have amino acid substitutions in the Sl1-like
domain®®. However, the interpretation of whether specific steps
require the endonucleolytic activity of RNase E has been complicated
by reports that residual activity is retained at non-permissive tem-
peratures in vivo’”*® and the observation that for at least one of these
mutants aggregation is associated with thermal inactivation in vitro
(McDowall, K. J. & Stead, J. A., University of Leeds, unpubl. data).
The latter has ramifications because RNase E forms the platform for
the assembly of the degradosome complex, which includes other
components known to play key roles in RNA processing and turn-
over®*. Thus, a method of blocking RNase E activity efficiently
without consequence on the structural integrity of the degradosome
would be of considerable value in assigning cellular functions to
RNase E. Although, for the purpose of studying RNA processing
and turnover, it is desirable to be able to block RNase E activity in
vivo, the ability to do so in cell extracts and preparations of purified
components would itself be of considerable value for biochemical
studies.

Small molecules that bind within the active sites of essential
enzymes have proved to be a source of potent inhibitors and drug
leads®'. In the case of an endoribonuclease, assays can be developed to
screen libraries of small molecule inhibitors, that provide a fluor-
escence output when cleavage of the RNA substrate releases a
quencher’*’. However, when structure(s) of a target protein is avail-
able, such as for RNase E, another option is virtual high-throughput
screening (VHTS)***. VHTS is a computer-based method that pro-
vides a score that reflects the likelihood that individual compounds in
a library will be able to bind a target receptor®®. Herein, we report the
combined use of SPROUT?” and eHiTS**, VHTS computer packages,
to identify small molecules that are predicted to target the NTH of E.
coli RNase E. We also report their activity with regard to binding,
inhibition and specificity.

Results

Selection of small molecules targeting E. coli NTH-RNase E by
VHTS. The site of catalysis and the 5’ monophosphate-binding
pocket (Fig. 1b and c) within the single-stranded RNA-binding
channel were chosen as targets for VHTS. Two high-resolution X-
ray crystal structures of E. coli NTH-RNase E as a trapped inter-
mediate with oligoribonucleotide substrates (2BX2 and 2C0B)*
were first superimposed using SWISS-PDB Viewer®. There were
no significant differences in the position of amino-acid residues
within the chosen targets of the two X-ray structures (data not
shown). Thus, we chose arbitrarily to use the coordinates of the
2COB entry (3.2 A resolution) for the 5" end-binding pocket and
the 2BX2 entry (2.8 A resolution) for the site of catalysis. Within
the CAnGAROO module of SPROUT, the 5" nucleotide of the RNA
was used to define a ‘cavity’ (i.e. the space available for ligand
generation) for the 5' monophosphate-binding pocket, while the
nucleotides immediately 5" and 3’ to the phosphodiester bond that
is normally cleaved were used to define a cavity for the site of cata-
lysis. Next, amino acid residues within an envelope that extends 10 A
in radius from the segments of RNA used to derive the cavities were
chosen to form the actual receptors for VHTS. 58,833 compounds in
the Maybridge database were screened against the ‘5" monophosphate-
binding pocket’ and ‘catalytic site’ receptors using eHiTS. Com-
pounds with an eHiTS score of =—4.0 were then analysed further
using SPROUT. Those with log p, eHiTS and SPROUT values of
=5.0, =—4.0 and =—4.9, respectively, were viewed - using the SDF
file generated by eHiTS - to manually identify those with drug-like
properties. The final selection criterion was that compounds should
be predicted to form at least one hydrogen bond with RNase E. This
was done using the ‘Explore’ function of the HIPPO module in
SPROUT. This produced a list of 23 compounds against the 5’

end-binding pocket (designated ‘P’ compounds) and 10 com-
pounds against the catalytic site (designated ‘M’ compounds). Of
these only 21 and 9 could be supplied commercially to us,
respectively (Supplementary Table S1). The predicted docking of
small molecules, described further below, into the catalytic site and
5" sensor are provided (Fig. 1d and e, respectively). An alignment
indicating the residues from E. coli RNase E that formed the cavities
for docking of small molecules is provided (Supplementary Fig. SI).

Small molecule binding and inhibition of E. coli NTH-RNase E.
The ability of the compounds from VHTS to bind and inhibit a
recombinant polypeptide of RNase E, used in previous structural
and functional studies'*'***!, was assayed using Surface Plasmon
Resonance (SPR) and a discontinuous cleavage assay, respectively.
Eleven compounds were found to bind RNase E and are described
below. Seven compounds (M3, M5, M8, M9, P6, P11, and P16)
produced binding curves consistent with targeting of specific sites,
i.e. binding began to plateau at higher concentrations. Of these seven,
M5, M8, P6, and P11 clearly inhibited catalysis under the conditions
used. Compound M9 also inhibited catalysis but much less
efficiently. Three other compounds inhibited RNase E (P10, P14
and P21); however, P10 appeared to bind at sites other than the
intended target (i.e. binding did not plateau and was seen to be
non-specific), while assaying the binding of P14 and P21 was
precluded due to their low solubility. The final compound, M2, did
not inhibit RNase E under the conditions used and also appeared to
bind but at sites other than the intended target. The SPR and
inhibition assay results for M5 and P11, which showed the best
inhibition of E. coli RNase E and bind with specificity, are shown
along with P10, providing an example of a compound that inhibits
but which appears to bind at sites other than the intended target
(Fig. 2). Apparent dissociation constants estimated from the SPR
experiments, along with nominal ICs, values are included in Table 1.

Binding and inhibition of Mycobacterium tuberculosis RNase E
and E. coli RNase G. A sequence alignment of the catalytic domain of
E. coli RNase E with a homologue from M. tuberculosis and RNase G,
a paralogue of E. coli RNase E, show high conservation of residues
(Supplementary Fig. S1). The value of compounds that inhibit
RNase E, whether as leads for developing new antimicrobials or
investigating RNA processing and degradation, is increased if they
target homologues in other species as well as the E. coli enzyme. Thus,
we assayed the ability of a selection of compounds to bind and inhibit
RNase E from M. tuberculosis, a pathogenic bacterial species of
significant clinical relevance****. As found for E. coli RNase E, P11
and M5 produced SPR binding curves consistent with specific
targeting (data not shown). Compound P11 showed clear inhi-
bition of M. tuberculosis RNase E, while M5 inhibits activity but
appears to be less efficient than with the E. coli enzyme, but most
likely reflects the different concentrations of compound used (Fig. 3a
and Fig. 2a). It may also reflect subtle differences in the structure of
the active site between the M. tuberculosis and E. coli enzymes and the
residues used for docking (Supplementary Fig. S1).

The compounds shown to inhibit catalysis by E. coli RNase E (P6,
P10, P11, M5 and M9) were also found to be able to inhibit the
activity of RNase G with comparable ICs, values (Fig. 3b and
Table 1). The ‘P’ compounds were slightly less effective with RNase
G and, as above, may reflect differences in the 5 -monophosphate
binding pocket between RNase E and G and in the residues used for
docking (Supplementary Fig. S1). The value of the compounds will
be increased further if they can be used in conjunction to target the
two different sites (5’ sensor and catalytic site) simultaneously to
enhance inhibition of RNase E catalysis. When compound M5
(representing targeting of the catalytic site) was incubated with
P11 (targeting of the 5’ sensor) at their ICs, concentrations (expect
to observe 50% inhibition with the single compound), enhanced
inhibition of E. coli RNase E was observed to a level of almost

| 5:8028 | DOI: 10.1038/srep08028

2



RNA

2 ¢ r’, S1 domain
€. .
8 ) ) \ ’
. ' W<
4 - /T "\\"‘" J\
N : YTk

DNase | RNaseH

Figure 1| Structure of the RNase E catalytic domain and compound docking. (a) A top elevation of a principal dimer of the N-terminal catalytic domain
of E. coli RNase E with bound RNA (green). The dimer is shown as a surface representation with the two protomers superimposed as a cartoon diagram.
Red, blue, gold and grey colouring identifies the DNase I, S1, 5" sensor and RNase H domains, respectively. The zinc and magnesium ions are shown as
grey and magenta spheres, respectively. (b) The catalytic site. The DNase I side of each of the two channels presents a magnesium ion that is co-ordinated
by the carboxylates of aspartic acid residues 303 and 346. The base of the nucleotide at the +2 position relative to the site of RNA cleavage is partitioned
into a recess on the surface of the S1 domain. The nucleotide base is held by hydrophobic interactions with a phenylalanine at position 67 and the aliphatic
portion of a lysine at position 112. The exocyclic oxygen of the base of the nucleotide immediately 5’ forms a hydrogen bond with a lysine at position 106,
also in the S1 domain. (c) The pocket for 5'-monophosphorylated ends contacts both the monophosphate group and the base of the terminal nucleotide.
The monophosphate group is hydrogen bonded by the side-chain and peptide amide of a threonine at position 170 and the guanidino group of an
arginine at 169: the latter interaction is supported by a hydrogen bond to the peptide backbone of a glycine at position 124. The aromatic ring of the base of
the terminal nucleotide is contacted via hydrophobic interaction with the side chain of a valine at 128. (d) The site of catalysis, with predicted docking of
compound M5. (e) The 5'-monophosphate binding pocket, with predicted docking of compound P11. The binding of compounds M5 and P11 sterically
hinder binding of the RNA molecule.
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Figure 2 | Small molecule binding and inhibition of E. coli NTH-RNase E. (a) Discontinuous cleavage assays using the substrate pBR13-fl were carried
out as described in Methods. E. coli NTH-RNase E was pre-incubated in the absence (control) or presence of the compounds indicated at the top of the
panel at final concentrations of 5 mM (P10 and P11) and 20 mM (M35). Lanes numbered 1-5 correspond to samples taken at 0, 2, 5, 10 and 15 min
following addition of substrate, respectively. The positions of bands corresponding to substrate (S) and products (P) are indicated on the right. The
nominal ICs, values for each compound are indicated below each gel. (b) Surface plasmon resonance was used to monitor compound binding to
immobilized NTH-RNase E. The concentrations of compound used were 0-2.5 mM for P11, 0-5 mM for M5 and 0-1.5 mM for P10. PBS with 5%
DMSO was used as the running buffer. The binding data for each compound concentration at equilibrium is shown (red data points). The steady state fit
to the data (black line) gives a Kp of ~1.5 mM for P11, ~3 mM for M5 and shows non-specific binding to NTH-RNase E for P10. Compounds P11 and

M5 show evidence of beginning to plateau at higher concentrations indicating specific binding, whilst P10 does not.

100% (Fig. 4). Whether this enhancement of inhibition is additive or
synergistic remains to be determined, but warrants further invest-
igation. To gauge the specificity of inhibition, we found that the
compounds shown to inhibit E. coli RNase E catalysis did not inhibit
the activity of RNase A, an unrelated ribonuclease (Fig. 5).

Discussion

New and effective antimicrobials are needed to combat the growing
number of antibiotic resistant bacteria. The essential enzyme RNase
E represents a potential target for the generation of new antimicro-
bial leads. We have described herein, a method for the selection of
small molecule inhibitors against RNase E, which is possible when
the structure of the target protein is available. The 5" sensor and the
site of catalysis were chosen as targets in the NTH of E. coli RNase E
and compounds that were predicted to bind at these sites were

selected using VHTS with the combined application of eHiTS*
and SPROUT?Y. At least some of the selected compounds were shown
to specifically bind and inhibit catalysis by E. coli RNase E with Kp
and ICsq values in the low millimolar range (Fig. 2 and Table 1).
Furthermore, some of these same compounds can specifically bind
and inhibit a homologue from M. tuberculosis and inhibit catalysis by
E. coli RNase G, a paralogue of RNase E (Fig. 3), demonstrating a
wider application for these compounds. In addition, inhibition of
catalysis is specific for the RNase E family (Fig. 5). Although the
Kp and ICs, values are relatively high, the approach has been vali-
dated and the compounds described here can be used as the starting
material for developing better, higher affinity inhibitors. It may also
be possible to use them in combination (Fig. 4). The best leads from
this study for the development of specific small molecule inhibitors
of RNase E would include M5, P6 and P11 (compound M8 became

Table 1 | Apparent dissociation constants and ICsg values of compounds

Compound Steady State Kp value (mM) Nominal ICso RNase E (mM) Nominal ICso RNase G (mM)
P6 ~1.0 ~4.7 ~8.9

P10 non-specific ~1.9 ~2.4

P11 ~1.5 ~1.8 ~2.5

P16 ~0.6 NI NI

M2 non-specific NI NI

M3 ~0.6 NI NI

M5 ~3.0 ~3.8 ~3.3

M8 ~3.5 ~3.2 ND

M9 ~2.0 ~18.0 ~24.0

Alist of the compounds referred to in the text that showed binding and/or inhibition of RNase E catalysis. The Kp values given are for binding to E. coliRNase E and the ICsq values are for inhibition of the E.
coli enzymes. Kp and ICsq values were calculated as described in the Methods. ND = not defermined. NI = no inhibition (up to 40 mM tested).
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Figure 3 | Inhibition of M. tuberculosis RNase E and E. coli RNase G by small molecules. (a) Denaturing gel analysis of pBR13-1l cleavage by M.
tuberculosis RNase E. Lanes numbered 1-5 correspond to samples taken at time 0, 2.5, 5, 10 and 30 min, respectively, in the absence of compound
(control) and in the presence of 5 mM compound (indicated at the top of the panel). (b) The reaction conditions and labelling for the inhibition of RNase
G are as Fig. 2a. Compounds were included in the reactions, as indicated, at final concentrations of 5 mM (P11), 20 mM (M5) and 2.5 mM (P10).

unavailable from the Maybridge catalogue during the course of this
study).

The hit compounds themselves (Supplementary Table S1),
although essentially used in this study as tool compounds in order
to probe the ability of small molecules to modulate RNase E function,
do indicate the potential ‘druggability’ of this system in terms of
compliance with the Lipinski guidelines for drug likeness.
Specifically, they are either sulfonamido (e.g. P6 and P11) or hetero-
cyclic (e.g. M5), and have molecular weights under 500 (e.g. for P6,
P11 and M5, molecular weight = 423, 394, and 420, respectively)
with acceptable H-bond donor/acceptor patterns within their struc-
tures. The hydrophobic interactions that are usually formed between
RNase E and the RNA are mimicked by the inhibitor molecules. For
compound M5, the 3-chloro-5-trifluoromethyl pyridine ring is pre-
dicted to make hydrophobic interactions with F67 of RNase E and
the pyrimidine-2, 4-dione ring is predicted to make hydrophobic
interactions with the aliphatic part of K112 analogous to the contacts
made to the RNA base immediately 3" to the cleavage site. There is
also the possibility of a hydrogen bond between the ester linkage of
the acetylcarbamate and the side chain of K106 analogous to the
hydrogen bond formed between the exocyclic oxygen of the base
of the nucleotide 5’ to the cleavage site and K106 (Fig. 1d). The
trimethylbenzene ring of compound P11 is predicted to make hydro-
phobic interactions with V128 analogous to the contacts made to the
base of the 5’ end nucleotide. There are no obvious hydrogen bond-
ing interactions between RNase E and the tosyl azanecarboxamide
group of P11 that are analogous to those formed between T170, R169
and the RNA (Fig. 1e). Modifying this molecule to reintroduce these
interactions could improve affinity and inhibition.

In addition to providing leads for new antimicrobials, the inhibi-
tors can be used as part of chemical genetics strategies to dissect the
contribution of members of the RNase E family. Finally, the
approach described can be extended to identify inhibitors of other
families of ribonucleases. For example, it has been recently used in
work that will be reported elsewhere to select antibacterials that
target 3’ to 5" exonucleases.

Methods

Compound-Enzyme inhibition assays. The NTH of E. coli RNase E (residues 1-529)
and RNase G were purified as described previously*"*’. The compounds were
obtained from Maybridge and re-suspended in 100% DMSO. Discontinuous cleavage
assays were done using a 3’ fluorescein-labelled, 5'-monophosphorylated version of
BR13, a well-characterised substrate of RNase E, with the sequence 5'-
GGGACAGU |AUUUG*". E. coli NTH-RNase E was pre-incubated with and without
the compounds at 37°C for 20 min before the addition of substrate in a buffer
containing 25 mM Bis-Tris Propane (pH 8.3), 100 mM NaCl, 15 mM MgCl,, 0.1%
Triton X-100, 1 mM DTT and 20% DMSO. The enzyme monomer and substrate
concentrations at the start of the reaction were 0.5 and 62 nM, respectively. The
inhibition assays with RNase G and RNase A (Sigma) were carried out as above.
Reaction products were analysed by electrophoresis using a denaturing 15%
polyacrylamide, sequencing-type gel. Detection was via a FLA-5100 scanner (Fuji).
Substrate and product were quantified using AIDA software (Raytest
Isotopenmessgerate GmbH). Initial rates of reaction at increasing compound
concentrations were obtained by establishing the slope representing percentage
product generated over time during the initial, linear phase of the reaction. IC5, values
were calculated by plotting the percentage inhibition of initial rate against compound
concentration.

For M. tuberculosis RNase E (a kind gift from Prof. B. Luisi, University of
Cambridge), 1 pM 3’ fluorescently-labelled, 5" monophosphorylated BR13 was
incubated with 50 nM RNase E with and without the compounds in buffer containing
25 mM Tris-HCI (pH 7.5), 100 mM NaCl, 15 mM MgCl,, 1 mM DTT and 5%
DMSO at room temperature. Reactions were analysed by electrophoresis using
denaturing 20% polyacrylamide gels and visualised using a UV transilluminator.

Binding studies by SPR analysis. E. coli and M. tuberculosis RNase E were
immobilized covalently using amine coupling to the surface of a Biacore CM5 sensor
chip (GE Healthcare). Immobilization levels were approximately 1500 RUs.
Assessment of compound binding were conducted by injecting varying compound
concentrations in PBS containing 5% DMSO at flow rates of 30-90 pl/min for ~60 s
over the reference and test flow cells. A Biacore T100 instrument was used and the
data collected was reference and buffer subtracted prior to steady state analysis using
data fitting functions provided in the Biacore T100 Evaluation Software.

eHiTS and SPROUT. The eHiTS program has been described by Zsoldos et al*®.
Briefly, eHiTS takes compounds from a library and calculates the optimal
conformation each of these ligands can adopt in a cavity of a protein target. The eHiTS
approach breaks each ligand into rigid fragments and flexible connecting chains and
docks each rigid fragment into every possible place in the cavity. A score is calculated
for each structure based upon the geometries of the ligand and the complementarity
of surface points on the receptor and ligand: complementary surface points receive a
positive score, while repulsive surface points receive a negative score. Other factors
are also used to calculate the final score including steric clashes, depth of the cavity,
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Figure 4 | Enhanced inhibition of E. coli RNase E by co-incubation with compounds targeted to the 5’ sensor and the catalytic site. (a) The reaction
conditions and labelling are as Fig. 2a. Lanes numbered 1-3 correspond to samples taken at 0, 5 and 15 min following addition of substrate, respectively.
Lane C contains substrate incubated without enzyme for 15 min. Compounds were included in the reactions at their E. coli RNase E ICs, concentration;
1.9 mM P10, 1.8 mM P11 and 3.8 mM M5 and were included in combination at the same concentrations for M5 with P10 and M5 with P11.

(b) Initial rates were obtained as described in Methods. The initial rate was then normalised to a value of 1 for the reaction containing no compound and
represents the product generated in one minute during the initial phase of the reaction. The results are presented as a bar chart.

Compound
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Figure 5 | Incubation of small molecules with RNase A. Cleavage assays
were performed essentially as described in Methods. RNase A was pre-
incubated in the absence (control) or presence of the compounds indicated
at the top of the panel at final concentrations of 5 mM (P10 and P11) and
20 mM (M5). Lanes numbered 1-3 correspond to samples taken at 0, 5
and 15 min following addition of substrate, respectively. Lane C contains
substrate incubated without enzyme for 15 min. The positions of bands
corresponding to substrate (S) and products (P) are indicated on the right.

solvation, intramolecular interactions in the ligand, and conformational strain energy
of the ligand.

SPROUT? is a computer program that generates structures based upon a set of
specified constraints. The approach firstly generates a skeleton based upon a set of
primary constraints that includes definition of the target site and must satisfy steric
and geometric constraints. This is followed by substitution of atoms in the skeleton to
generate molecules with the required properties. The CAnGAROO module within
SPROUT allows for the definition of potential binding pockets by detecting clefts,
defined as a large inward facing area on the surface of the protein. The HIPPO module
locates typical donor and acceptor atoms in the protein, intramolecular hydrogen
bonds, hydrogen bonding atoms near to the surface of the receptor site and hydrogen
bonding regions are computed with tolerances.
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