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Abstract

Motivation: Deep sequencing of clinical samples is now an established tool for the detection of in-

fectious pathogens, with direct medical applications. The large amount of data generated produces

an opportunity to detect species even at very low levels, provided that computational tools can ef-

fectively profile the relevant metagenomic communities. Data interpretation is complicated by the

fact that short sequencing reads can match multiple organisms and by the lack of completeness of

existing databases, in particular for viral pathogens. Here we present metaMix, a Bayesian mixture

model framework for resolving complex metagenomic mixtures. We show that the use of parallel

Monte Carlo Markov chains for the exploration of the species space enables the identification of

the set of species most likely to contribute to the mixture.

Results: We demonstrate the greater accuracy of metaMix compared with relevant methods, par-

ticularly for profiling complex communities consisting of several related species. We designed

metaMix specifically for the analysis of deep transcriptome sequencing datasets, with a focus on

viral pathogen detection; however, the principles are generally applicable to all types of metage-

nomic mixtures.

Availability and implementation: metaMix is implemented as a user friendly R package, freely

available on CRAN: http://cran.r-project.org/web/packages/metaMix

Contact: sofia.morfopoulou.10@ucl.ac.uk

Supplementary information: Supplementary data are available at Bionformatics online.

1 Introduction

Metagenomics can be defined as the study of DNA sequences from

environmental or community samples, while metatranscriptomics is

the analysis of RNA sequence data from such samples. The scope of

metagenomics/metatranscriptomics is broad and includes the ana-

lysis of a diverse set of samples such as gut microbiome (Minot

et al., 2011; Qin et al., 2010), environmental (Mizuno et al., 2013)

or clinical (McMullan et al., 2012; Negredo et al., 2011; Willner et

al., 2009) samples. Among these applications, the discovery of viral

pathogens is clearly relevant for clinical practice (Chiu, 2013;

Fancello et al., 2012). The traditional process of characterizing a

virus through potentially difficult and time consuming culture tech-

niques is being revolutionized by advances in high throughput

sequencing. Potential benefits of sequence driven methodologies

include a more rapid turnaround time (Quail et al., 2012), combined

with a largely unbiased approach in species detection, including the

opportunity for unexpected discoveries.

The analysis of shotgun sequencing data from metagenomic mix-

tures raises complex computational challenges. Part of the difficulty

stems from the read length limitation of existing deep DNA-

sequencing technologies, an issue compounded by the extensive level

of homology across viral and bacterial species. Another complica-

tion is the divergence of the microbial DNA sequences from the pub-

licly available references. As a consequence, the assignment of a

sequencing read to a database organism is often unclear. Last, the

number of reads originating from a disease causing pathogen can be

low (Barzon et al., 2013). The pathogen contribution to the mixture

depends on the biological context, the timing of sample extraction
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and the type of pathogen considered. Therefore, highly sensitive

computational approaches are required.

A first analytical problem is read classification that is the assign-

ment of a given sequencing read to a species. Several tools have been

developed and these belong to two broadly defined classes: compos-

ition-based and similarity-based approaches. The read classification

based on sequence composition relies on the intrinsic features of the

reads. Methods include PhyloPythia (McHardy et al., 2007) and

Phymm (Brady and Salzberg, 2009). These tend to focus on major

classes in a dataset and may not perform well on low-abundance

populations (Kunin et al., 2008). Additionally, results are usually re-

liable for longer reads only (Dröge and McHardy, 2012).

Similarity-based methods, using homology search algorithms

such as BLAST (Altschul et al., 1990), are considered the most sensi-

tive methods for read classification (Brady and Salzberg, 2009). One

of the most popular tools using the output of a similarity search al-

gorithm is MEGAN (Huson et al., 2007). MEGAN addresses am-

biguous matches by assigning reads that have multiple possible

assignments to several species, to the taxonomic group containing

all these species, or else their lowest common ancestor (LCA). This

approach is accurate on a higher taxonomic level. However, it is

lacking a formal solution to resolving ambiguous matches.

A weakness of the similarity-based methods is that a long tail of

species, each supported only by few reads can appear in the results.

This results from the classification being decided one read at a time,

in contrast to considering all reads simultaneously. Hybrid methods

combining composition and similarity information such as

PhymmBL (Brady and Salzberg, 2009) and RITA (MacDonald

et al., 2012) also work read by read.

Methods focused on the statistical inference of the set of present

species as well as the estimation of their relative proportions, incorp-

orate knowledge from all reads to assign each individual read to a

species. From a statistical standpoint, this identification and quanti-

fication question can be thought of as an application of mixture

models. These ideas have been applied in the metagenomics context

in frequentist [GRAMMy (Xia et al., 2011)] and Bayesian

[Pathoscope (Francis et al., 2013)] settings. GRAMMy formulates

the problem as a finite mixture model, using the Expectation-

Maximization (EM) algorithm to estimate the relative genome abun-

dances. Pathoscope refines this process by penalizing reads with am-

biguous matches in the presence of reads with unique matches and

enforcing parsimony within a Bayesian context.

Fitting a mixture model is useful for the species relative abun-

dance estimation, as well as the read to species assignment. A related

but distinct question concerns the set of species which should be

included in the mixture model. This question is closely related to the

biological question of asking what species are present in the mixture.

Including all species flagged as potential matches by the read classifi-

cation can introduce a large number of species, often in the low

thousands. Mixture models will then identify a large number of spe-

cies at low levels. This interpretation is appropriate in some applica-

tions. In many other cases, the expectation is that the underlying

species set should be parsimonious and that some divergence with

database species or sequencing errors can explain a large fraction of

the non matching reads.

Hence, a better statistical formulation of the community profil-

ing problem is the exploration of the candidate organisms state-

space. In this context, non nested models can be compared based on

their marginal likelihood. Within this Bayesian framework, readily

interpretable probabilities, such as the posterior probabilities of spe-

cies sets can be used to quantify the support for a species in the mix-

ture. Finally, more complex hypotheses testing for example the

number of viral species or the joint presence of two distinct organ-

isms can be investigated.

The main challenge behind such a formulation is computational.

Even with a relatively small number of species to consider, the num-

ber of subsets of this space that could explain the mixture grows ex-

ponentially. Efficient computational strategies are required to make

this problem tractable. Here we show that this inference can be

achieved for modern scale metagenomics datasets. Our strategy is

based on parallel tempering, a Monte Carlo Markov Chain

(MCMC) technique, using parallel computing to speed up the infer-

ence. We implemented these ideas in a user friendly R package called

metaMix. metaMix produces posterior probabilities for various

models as well as the relative abundances under each model. We

demonstrate its potential using datasets from clinical samples as

well as benchmark metagenomic datasets.

2 Methods

2.1 Bioinformatics preprocessing
Prior to running the mixture model for metagenomic profiling, sev-

eral steps are required to process the short read sequence data. The

pipeline uses publicly available bioinformatics tools for each prepro-

cessing step.

The first step is the removal of clonal reads using an in house

Cþþ script. We then use PRINSEQ (Schmieder and Edwards, 2011)

for read-based quality control, removing low quality and complexity

reads and performing 30end trimming. For metagenomic analysis of

human samples, reads originating from the human host are not rele-

vant for our research question. We therefore remove human host

reads, using a two-step approach to limit computation time: initially

a short read aligner (novoalign, www.novocraft.com), followed by

BLASTn. The next step is only applicable when the focus is on virus

discovery using transcriptome reads. We remove ribosomal RNA se-

quences, using BLASTn against the Silva rRNA database.

The remaining reads are assembled into contigs using the Velvet

short read assembler (Zerbino and Birney, 2008). For each contig

we record the number of reads required for its assembly, using this

information at the stage of species abundance estimation. A Velvet

tuning parameter is the user defined k-mer length that specifies the

extent of overlap required to assemble read pairs. Metagenomic as-

sembly is not a straightforward task, as short k-mers work best with

the low abundance organisms, while long k-mers with the highly

abundance ones. The shorter the k-mer the greater the chance of

spurious overlaps, hence we choose relatively high k-mer length, in

order to avoid chimeric contigs.

For each contig and unassembled read we record the potentially

originating species, using the nucleotide to protein homology match-

ing tool BLASTx. We use BLASTx due to the higher level of conser-

vation expected at the protein level compared with nucleotides. This

choice is guided by our focus in viral pathogens—viruses having

high genetic diversity and divergence (Fancello et al., 2012). If taxo-

nomic information is not included in the BLAST output, we obtain

it by using the NCBI taxonomy files that map proteins to taxons.

For simplicity we subsequently drop the protein information and

only keep a record of mismatches between the read and the species.

If a read matches multiple proteins from the same species, we keep

only the best match. This step generates a sparse similarity matrix

between the read sequences and the protein sequences, with species

as columns, reads and contigs as rows.

The statistical method described in the remainder of this section

considers the competing models that could accommodate our

Bayesian mixture analysis 2931

www.novocraft.com


observed data i.e. the BLASTx results and compares them. The dif-

ferent models represent different sets of species being present in the

sample. The method works on two levels of inference: in the first in-

stance we assume a set of species to be present in the sample and we

estimate this model’s parameters given the data. The other level of

inference is the model comparison so as to assess the more plausible

model. The process is iterated in order to explore the model state

space.

2.2 Model specification assuming a fixed set of species
Assuming a given set of K species from which the reads can origin-

ate, the metagenomic problem can be summarized as a mixture

problem, for which the assignment of the sequencing reads to species

is unknown and must be determined. The data consist of N sequenc-

ing reads X ¼ ðx1; . . . ; xNÞ, and for a given read xi the likelihood is

written as:

pðxijw;KÞ ¼ pðxijwÞ ¼
XK

j¼1
wjfjðxiÞ (1)

where w ¼ ðw1; :::;wKÞ represent the proportion of each of the K

species in the mixture. These mixture weights are constrained such

that 0�wj�1 and
X

j
wj ¼ 1. In practice, we also add a category

(species Kþ1) which we refer to as the ‘unknown’ category, and

captures the fact that some reads cannot be assigned to any species.

Additionally fjðxiÞ¼Pðxijxi from species jÞ¼pij is the probability

of observing the read xi conditional on the assumption that it origi-

nated from species j. We model this probability using the number of

mismatches m between the translated read sequence and the refer-

ence sequence and a Poisson distribution with parameter k for that

number of mismatches pij ¼ Poisðm; kÞ=lg, where lg is the length of

the reference genome, when short reads are matched to a nucleotide

database. For nucleotide matching, lg has a large impact on the

probability computation. However, when matching against protein

databases, the more limited heterogeneity of protein lengths results

in a much smaller impact of the length parameter. In addition, in-

complete annotation can potentially make the inclusion of protein

length problematic for the pij computation. Consequently, for pro-

tein matched sequences, we simply defined our pij as:

pij ¼ Poisðm; kÞ.
Therefore for a given set of K species, the pij probabilities are re-

garded as known and the mixture weights must be estimated.

Combining the above we see that when we know the set of species

K, the mixture distribution gives the probability of observing read

xi:
XK

j¼1
Wjpij, i.e Equation (1).

We therefore write the likelihood of the dataset X as a sum of Kn

terms:

PðX jwÞ ¼
Yn

i¼1
½
XK

j¼1
wjpij� (2)

2.3 Estimation of mixture weights
Assuming a fixed set of species, the posterior probability distribu-

tion of the weights w given the read data X is:

PðwjXÞ ¼ PðXjwÞpðwÞ
PðXÞ ¼ð2Þ

Y
i

½
X

i
wjpij�pðwÞðY

i

½
X

i
wjpij�pðwÞdw

(3)

A practical prior for the mixing parameters w is the Dirichlet distri-

bution owing to its conjugate status to the multinomial distribution.

Despite the use of conjugate priors, the probabilistic assignment of

reads to species involves the expansion of the likelihood into Kn

terms which is computationally infeasible through direct computa-

tion. An efficient estimation can be performed by the introduction

of unobserved latent variables that code for the read assignments. In

this framework, either the Gibbs sampler (Diebolt and Robert,

1994; Marin et al., 2005) a MCM technique, or the EM (Dempster

and Laird, 1977) algorithm can be used to estimate the mixture

weights w. EM returns a point estimate for w while the Gibbs sam-

pler the distribution of w (Supplementary Methods). Both methods

were implemented and provided comparable results.

2.4 Marginal likelihood estimation
Each combination of species corresponds to a finite mixture model

for which the marginal likelihood can be estimated. Marginal likeli-

hood comparison has a central role in comparing different models

fM1; . . . ;Mmg. To compute the marginal likelihood PðXjMkÞ for

the mixture model Mk one has to average over the parameters with

respect to the prior distribution pðhkjMkÞ, where hk are the model

parameters:

PðXjMkÞ ¼
ð

hk

PðXjhk;MkÞpðhkjMkÞdhk (4)

The posterior probability of the model Mk is:

PðMkjXÞ / PðXjMkÞPðMkÞ (5)

where PðMkÞ is the prior belief we hold for each model. The prior

can be specified depending on the context but the basis of our inter-

pretation is that parsimonious models with a limited number of spe-

cies are more likely. Thus, in this Bayesian framework, our default

prior uses a penalty limiting the number of species in the model, i.e

PðMkÞ ¼ penaltyðnumber of species in MkÞ. We approximate this pen-

alty factor based on a user-defined parameter r that represents the

species read support required by the user to believe in the presence of

this species. We compute the logarithimic penalty value as the log-

likelihood difference between two models: model Munknown which is

our starting point when we have no knowledge about which species

are present and therefore all N reads come from the ‘unknown’ cat-

egory (pij ¼ 10�6) and model Mr where r reads have a perfect match

to a species (pij¼1) and the remaining N � r reads belong to the

‘unknown’ category: log penalty ¼ log PðMunknownjXÞ � log PðMrjXÞ.
For DNA sequence analysis, the pij probabilities for the r reads origi-

nating from this unspecified species are approximated by 1/(median

genome length in the reference database). This read support param-

eter reflects, in our probabilistic framework, the number of unique

reads required to support the hypothesis that a species is present.

From now on, when we refer to the marginal likelihood, we

mean the marginal likelihood for a specific model and we forego

conditioning on the model Mk in the notation. Additionally, in our

mixture model pij are always regarded as known, therefore the

model parameters hk are the mixture weights w. Hence (4) becomes:

PðXÞ ¼
ð

w

PðXjwÞpðwÞdw ¼ð2Þ
ð

w

Y
i
½
X

i
wjpij�pðwÞdw (6)

Approximating the marginal likelihood is a task both difficult and

time-consuming. We chose the Defensive Importance Sampling tech-

nique (Hesterberg, 1995) for the relative simple implementation

compared with other approaches (Supplementary Methods for de-

tails of implementation). This is crucial as we perform this approxi-

mation numerous times, for every species combination we consider.

However the goal of this work is to deliver results in a clinical

setting within an actionable time-frame. We wish to speed up the

computation without compromising the accuracy and the sensitivity
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of the results. For that reason, we use a point estimate of the mar-

ginal likelihood by means of the EM algorithm. The different

approaches were used on the benchmark dataset. The resulting

taxonomic assignment as well as the species relative abundance esti-

mates were similar between them, with the EM approach resulting

in a 13-fold speed increase (Supplementary Methods).

2.5 Model comparison: exploring the set of present

species
We use a MCMC to explore the set of present species of size 2S � 1,

where S is the total number of potential species. In practice we ob-

serve that S can be >1000. The MCMC must explore the state-

space in a clinically useful timespan. Therefore we reduce the size of

the state-space, by decreasing the number of S species to the low

hundreds. We achieve this by fitting a mixture model with S catego-

ries, considering all potential species simultaneously. Post fitting, we

retain only the species categories that are not empty, that is catego-

ries that have at least one read assigned to them.

Let us assume that at step t, we deal with a set of species that cor-

responds to the mixture model Mk. At the next step ðt þ 1Þ, we ei-

ther add or remove a species and the new set corresponds to the

mixture model Ml. The step proposing the model Ml is accepted

with probability:

AðMk !MlÞ ¼ min 1;
PðXjMlÞðtþ1ÞPðMlÞ
PðXjMkÞðtÞPðMkÞ

qðMl !MkÞ
qðMk !MlÞ

( )
(7)

where qðMl !MkÞ is the probability of transitioning from model

Ml to model Mk. In other words, this is the probability of adding or

removing the species to the Mk set of species that took us to the Ml

set of species.

If the step is accepted, then the chain moves to the new proposed

state Ml. Otherwise if not accepted, the chain’s current state be-

comes the previous state of the chain, i.e the set of species remains

unchanged.

metaMix outputs log-likelihood traceplots so that the user can

visually inspect the mixing and the convergence of the chain. The de-

fault setting is to discard the first 20% of the iterations as burn-in.

We concentrate on the rest to study the distribution over the model

choices and perform model averaging (Hoeting et al., 1999), incor-

porating model uncertainty. This framework allows to answer a

broad range of questions. For example, what species have probabil-

ity p or greater being included in the set of present species? Finally,

metaMix also outputs Bayes Factors to quantify the evidence in fa-

vour of each species:

log10BF ¼ log 10
PðXjMspecies presentÞ
PðXjMspecies absentÞ

.

2.6 Optimized implementation: parallel tempering

We observed that simple MCMC does not efficiently explore the

complex model state space, as evidenced by the poor mixing of the

chain (Fig. 1). In order to overcome this and take advantage of par-

allel computing, we run multiple chains and allow exchange moves

between them. This method is called parallel tempering MCMC

(Earl and Deem, 2005).

Within the parallel setting, each chain simulates from the poster-

ior distribution PðMkjXÞ¼ gðMkÞ raised to a temperature t 2 ð0; 1�,
where model Mk comes from a collection of models fM1; . . . ;Mmg
and represents a set of species being present. The different tempera-

ture levels result in tempered versions of the posterior distribution

PðMkjXÞt¼1=T . When T¼1 the draws are from the posterior distri-

bution. On the other hand, at higher temperatures the posterior

spreads out its mass and becomes flatter. In practice that means that

distributions at higher temperatures are easily sampled, improving

the mixing. We are interested in studying the original posterior dis-

tribution with T¼1.

We implemented two types of moves. The first is the mutation

step, which simply is the within chain move we described in the pre-

vious section. This is accepted with probability given by (7). The

other is the exchange step, a between chains move. This Metropolis-

Hastings move proposes to swap the value of two chains k and

kþ1, adjacent in terms of T, with respective temperatures 1/T1 and

1/T2 where T1 < T2. Suppose that the values of the two chains are

Mk and Mkþ1, respectively, corresponding to two different sets of

species. The move is accepted with probability (Jasra et al., 2007):

A ¼ min 1;
gkðMkþ1Þ
gkðMkÞ

gkþ1ðMkÞ
gkþ1ðMkþ1Þ

� �
(8)

Because gkðMkÞ¼PðMkjXÞ1=T1 and gkþ1ðMkþ1Þ¼PðMkþ1jXÞ1=T2 , it

follows that when Mkþ1 represents a set of species of higher probability

than the one Mk represents, the exchange will always be accepted

(Supplementary Methods, Fig. 1). This allows moves between separate

modes, ensuring a global exploration of the model state space.

Eventually ‘hot’ and ‘cold’ chains will progress towards a global mode.

3 Results

We first applied metaMix on a popular benchmark dataset, for

which the community composition and the read assignment is

known. We then analyzed RNA-Seq datasets from two clinical sam-

ples that were generated for diagnostic purposes. We compare our

results with the ones produced by MEGAN version 5.3 and
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Fig. 1. a. Log-likelihood trace plot for single chain MCMC and b. for PT chain

at temperature T¼1. c. Schematic of parallel tempering. Exchanges are at-

tempted between chains of neighboring temperatures, where Chain1 at

T1 ¼ 1; T1 < T2 < T3 < T4
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Pathoscope 2.0. Both methods are similarity based. This property

and more specifically their flexibility to work with BLASTx output,

makes them better candidates for viral discovery compared with

composition-based methods. From the mixture model methods, we

have chosen Pathoscope. We were also interested in comparing our

results to the ones by GRAMMy, which was the first similarity-

based method to use the idea of the mixture model. However,

GRAMMy is designed for nucleotide-nucleotide comparisons

(BLASTn), which is suboptimal for viral discovery. GRAMMy also

only considers unassembled reads and requires that these are of the

same fixed length. For these reasons, GRAMMy was not included in

the comparison. Default parameters were used for all methods, un-

less stated otherwise.

For the metaMix output, we reported organisms with a posterior

probability P>0.8 (default). The metaMix read support parameter

r, which essentially sets the sensitivity/specificity of the method, has

an impact on the number of reported species. A large r value can re-

sult in the method merging together strains that are differentiated by

fewer reads than r. On the other hand a low r can have the opposite

effect, whereby the methods splits a strain into two or more strains,

by moving a few reads from one strain to a very similar one with

which they have equally good matches.

The user’s choice for this key parameter r should be informed by

the biological context. As an example, for the typical human clinical

sample where the sample collection might have occurred some time

after the infection has taken place, a low value in order to adopt a

sensitive approach is reasonable. Hence, for viral identification in

human clinical samples, a low and sensitive value (r ¼ 10) is a rea-

sonable choice. In a highly complex environmental metagenomic

community where there is a plethora of species of similar abun-

dances, the choice becomes less straightforward especially in the

case of closely related strains. We set the default value for general

community profiling in environmental samples at r ¼ 30. We also

compare the output of metaMix for different values of this param-

eter as well as for different posterior probability cutoffs.

Supplementary Methods presents a discussion on the metaMix set-

tings as well as practical considerations.

3.1 FAMeS datasets—closely related strains
The FAMeS artificial datasets (http://fames.jgi-psf.org/description.

html), are mock metagenomic community datasets composed of ran-

dom reads from 113 isolate microbial genomes. They are a popular

choice to use as benchmark datasets for various metagenomics

methods. Their suitability stems from the fact that the number of

species that form the metagenomic community is known as well as

their relative abundances. The FAMeS datasets have been designed

to model real metagenomic communities in terms of complexity and

phylogenetic composition.

There are three datasets: simHC, simMC, simLC corresponding

to high, medium and low complexity of the metagenomic commu-

nity, respectively. We first discuss in detail the results of the three

methods for simHC, the highest complexity dataset. simHC consists

of closely related strains with similar abundances and no dominant

species. The lowest abundance is 255 reads out of 118 000 reads.

We then summarize the results for the other two mock communities,

simLC and simMC, providing more detail in the Supplementary

Methods. The bioinformatics processing in this instance consisted of

a BLASTn comparison to all NCBI bacterial genomes

(Supplementary Methods). The number of genomes mapped,

retrieved from the the BLASTn output was �2500.

As discussed below, metaMix outperforms Pathoscope and

MEGAN in the community profiling task and consequently in the

relative abundance estimation (Table 2).

3.1.1 metaMix

To limit the complexity of the fit, we used the two step procedure

described in the Methods and fully implemented in metaMix. We

first fitted the mixture model with the complete set of 2500 species

and a limited run length of 500 iterations. Based on this analysis, we

identified 1312 species supported by at least one read and explored

this state space. To limit the computational time, we also considered

a stronger approximation, including only the 374 potential species

supported by at least 10 sequencing reads. Both approaches gener-

ated similar results, albeit the more complex one with 1312 poten-

tial species required the quadruple of the computation time (12 h

instead of 3 h). metaMix identified 116 species, detecting success-

fully all the members of the metagenomic community. These were

detected on the strain level except in four instances where a different

strain of the same species, or different species within the same genus

was detected. Four species were identified and not in the simulated

dataset, hence can be considered as false positives. In order to assess

the variability of metaMix results, we ran the analysis 25 times

changing the random seed. We report the number of species de-

tected, the sensitivity and specificity as well as relative abundance es-

timate measure errors, at various posterior probability cutoffs

(Table 1). We summarize the resulting community profile based on

one of these runs in Supplementary Table S1.

3.1.2 Pathoscope

Pathoscope identified 47 species. Of these 45 are members of the

metagenomic community. 42 are the exact same strain, while 3 are

either the same species but different strain, or same genus but differ-

ent species. However it fails to detect 68 species that are actually

present in the mixture. Tuning the parameter that enforces the parsi-

monious results (any thetaPrior>10), thereby removing the unique

read penalty, Pathoscope behaves as a standard mixture model and

identifies 165 species (Table 2). With these settings, it identifies all

but one members of the community. The organisms are identified at

the strain level, except in three instances where it identified different

species within the same genus. The major interpretation issue is the

presence of a long tail of species (54 species) that are actually not

present in the mixture (Supplementary Table S1). Pathoscope pro-

duced the results in 1 min.

Table 1. simHC community: number of species detected by

metaMix as well as sensitivity, specificity, AVGRE, RRMSE for

metaMix at various posterior probability cutoffs (default in bold

font)

Cutoff 0.9 0.8 0.7 0.6 0.5

Sensitivity (mean) 99.82 99.96 99.96 100 100

Sensitivity (SD) 0.0036 0.0017 0.0017 0 0

Specificity (mean) 99.86 99.82 99.77 99.73 99.70

Specificity (SD) 0.0004 0.0004 0.0005 0.0003 0.0001

RRMSE 16.69 16.85 16.73 17.50 17.48

AVGRE 8.20 8.31 8.16 8.60 8.56

No. Species–median 115 116 117 118 119

No. Species–SD 1.2 0.9 1.2 0.7 0.3

The results are average values based on 25 runs.

2934 S.Morfopoulou and V.Plagnol

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv317/-/DC1
http://fames.jgi-psf.org/description.html
http://fames.jgi-psf.org/description.html
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv317/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv317/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv317/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv317/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv317/-/DC1


3.1.3 MEGAN

MEGAN identified 232 taxa (Supplementary Table S1). It dis-

covered all original species of the community on the strain level, ex-

cept for nine instances where it identified the LCA. Aside from the

lack of strain or species specificity for 8% of the community mem-

bers, the main issue is the long tail of false positives, i.e low specifi-

city (Table 2). In the species summary provided by MEGAN, there

are 119 taxa (species or higher order) which are not actually present,

but supported by a sufficient number of reads (default value: 50

reads) for MEGAN to include these in the output. Results were pro-

duced in less than a minute. To lower the false positive rate, we also

filtered the BLAST results prior to MEGAN analysis, imposing strin-

gent E-value and similarity cutoffs. An E-value<1 E-10 removed

only 9 entries from the results, requiring similarity>90% removed

only 5, while both filters resulted in 208 taxa in the summary

results.

3.1.4 Relative abundances

The primary aim for metaMix is to be a diagnostic tool and to an-

swer whether a species is present or absent from the mixture we

study. As a secondary aim, we are also interested in estimating ac-

curately the relative abundance of the present organisms. We can as-

sess the abundance estimates produced by the methods by using

error measures such as the relative root mean square error, RRMSE

and the average relative error, AVGRE (Supplementary Methods for

definition). For metaMix, we use the relative abundance estimates

from the 25 runs. For all methods, when the exact strain was not

identified but the correct species or genus was, we used this abun-

dance. metaMix produces the most accurate abundance estimates

and the results are summarized in Table 2.

3.1.5 Importance of read support parameter

We then assessed the importance of the read support parameter r on

the output of metaMix. We ran metaMix on the benchmark simHC

FAMeS dataset with r¼ {10, 20, 30, 50} reads, 25 runs for each

(Table 3. We observe that as r decreases, a few more related strains

from the reference database that are not in the community are re-

tained in the output. As r increases two similar strains are merged

into one.

We compared these results with the output of Pathoscope and

MEGAN. None of these methods have a read support parameter

serving the same purpose as in metaMix, so we tuned the most rele-

vant parameters in these tools. Pathoscope has a thetaPrior param-

eter that enforces a unique read penalty. This parameter represents

the read pseudocounts for the non-unique matches and the default

setting is zero which allows for non informative priors. Using the de-

fault setting Pathoscope identifies 47 taxa. When thetaP’s value is in

(1,7) it identifies 22 taxa, while with thetaP>7 it identifies 165.

With this latter setting which is the one we chose for the compari-

son, Pathoscope behaves as a standard mixture model.

MEGAN has a ‘Min Support’ parameter which sets a threshold

for the number of reads that must be assigned to a taxon so that it

appears in the result. Any read assigned to a taxon not having the

required support is pushed up the taxonomy until a taxon is found

that has sufficient support. We used Min support¼ {10, 20, 30, 50}

reads. The respective number of taxa in the summary files was 250,

243, 236, 232. We then also applied a post-run read count threshold

to both methods’ output summary. We set the threshold for 10, 20,

30, 50 reads, respectively, disregarding taxa that have less than that

number of reads assigned to them. In all instances metaMix pro-

duces a community profile closer to the real one, along with a better

balance of sensitivity and specificity compared with the other two

methods (Table 3). Pathoscope finds �15 more false positives while

MEGAN �40 more compared with metaMix at the same read sup-

port level, except for the lowest r¼10 where metaMix and

Pathoscope achieve the same specificity. We report further results in

the supplementaty discussion, using different posterior probability

cutoffs for the different r settings.

3.1.6 simMC and simLC communities

The FAMeS project includes two additional mock communities that

consist of the same 113 species as simHC, but they differ in their

relative abundances setup: in simLC there is one dominant species

or a few more in simMC. We ran metaMix 25 times for both, chang-

ing the random seed. These two datasets turned out to be more chal-

lenging for all three methods, missing or merging together some

similar related strains. metaMix outperforms Pathoscope and

MEGAN in terms of producing a parsimonious community profile

and having the best sensitivity and specificity trade-off (Table 2).

Table 2. Number of species identified for the FAMeS simLC and

simMC datasets, as well as sensitivity, specificity and abundance

estimates error measures RRMSE and AVGRE

metaMix Pathoscope MEGAN

simHC

Number of species 116 165 232

Sensitivity 99.96 99.1 100

Specificity 99.8 97.7 95.0

RRMSE 16.9 36.6 35.9

AVGRE 8.3 29.7 18

simLC

Number of species 114 147 208

Sensitivity 98.8 97.3 100

Specificity 99.8 98.4 95.9

RRMSE 21.1 185.6 32

AVGRE 8.9 53.3 16.1

simMC

Number of species 115 144 208

Sensitivity 98.5 98.2 100

Specificity 99.8 98.6 95.9

RRMSE 29.6 152.7 31.9

AVGRE 12.9 49.2 19.3

The metaMix results are based on 25 runs.

Table 3. simHC FAMeS dataset

Read Support metaMix Pathoscope MEGAN

50 114 (0.9) 131 147

Sensitivity–Specificity 99.1–99.9 98.2–99.1 100–98.5

30 116 (0.95) 131 156

Sensitivity–Specificity 99.96–99.8 98.2–99.1 100–98.2

20 124 (1.65) 141 166

Sensitivity–Specificity 100–99.5 98.2–98.7 100–98

10 155 (1.9) 155 188

Sensitivity–Specificity 100–98.2 99.1–98.2 100–97.4

Number of species (SD in parenthesis), sensitivity and specificity by

metaMix (25 runs), Pathoscope and MEGAN, as a function of the min. num-

ber of reads required for each species to appear in the output. metaMix:

r¼ {10, 20, 30, 50} reads, Pathoscope: thetaPrior> 7þ post-run thresh-

old¼ {10, 20, 30, 50} reads, MEGAN: ‘Min Support’þ post-run

threshold¼ {10, 20, 30, 50} reads.
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The FAMeS datasets are complex and distinct from typical

human clinical samples, putting aside gut microbiome analysis. The

differences are the large number of organisms, the presence of

closely related strains of similar abundances, as well as the lack of

viruses. Nevertheless, they are essential datasets to use as benchmark

for examining the performance of the methods in a situation of

closely related strains in the sample.

3.2 Human clinical sample—low viral load
3.2.1 Protein reference database

For the analysis of human clinical samples, we use a custom refer-

ence database that combines viral, bacterial, human and mouse

RefSeq proteins (Supplementary Methods). To test metaMix in a

clinical setting with a low viral load, we used a brain biopsy RNA-

Seq dataset from an undiagnosed encephalitis patient (UCL

Hospital, data provided as part of a collaboration with Professor

Breuer, UCL). Total RNA was purified from the biopsy and polyA

RNA was separated for sequencing library preparation. The

Illumina MiSeq instrument generated 20 million paired-end reads.

We processed the raw data using the bioinformatics pipeline

described in Methods section. The processed dataset consisted of

�75 000 non-host reads and contigs. Based on the BLASTx output

there were 1298 potential species.

3.2.2 metaMix

Following the initial processing, we used metaMix for species identi-

fication and abundance estimation. The resulting species profile is

shown in Table 4; the 13 metaMix entries correspond to 10 species.

The most abundant organism was the /X174 bacteriophage, which

is routinely used for deep-sequencing quality control. More interest-

ingly, we identified an astrovirus. Five short assembled contigs

(44 reads) with length ranging between 167 and 471 bp and two

non-assembled reads were assigned to the Astrovirus VA1 with a

probability score of 1 (Fig. 2). metaMix also identified a number of

bacteria supported by a few reads. These are either known labora-

tory reagent contaminants or human skin associated contaminants

(Salter et al., 2014). The analysis completed in 29 min.

The presence of the astrovirus was confirmed with real-time RT-

PCR. Genome sequencing of the astrovirus in the sample and subse-

quent study of the consensus sequence showed that we had in fact

identified a novel virus, closely related to the VA1 strain (Brown

et al., 2014).

3.2.3 Pathoscope

Pathoscope identified 22 taxa, corresponding to 15 species and

some genera or families (Table 4). It also assigned all 46 reads to the

Astrovirus VA1. Almost all the species identified from metaMix

were identified by Pathoscope, with an additional nine taxa sup-

ported by few reads. As the method works only with unassembled

sequence data, an extra BLASTx step was performed for the 91 516

Table 4. Human clinical sample—novel virus

metaMix Pathoscope

Taxon identifier Scientific name Assigned reads Posterior Probability Bayes factor Final best hit read numbers

374840 Enter. phage phiX174 60447 1 140154 65327

NA unknown 10257 1 NA NA

9606 Homo sapiens 214 1 564 554

28090 Acinetobacter lwoffii 94 1 197 126

469 Acinetobacter 71 0.99 216 123

13690 Sphingobium yanoikuyae 61 0.99 216 135

133448 Citrobacter youngae 47 0.91 4 169

645687 Astrovirus VA1 46 1 65 46

199310 Escherichia coli CFT073 30 1 12 35

56946 Afipia broomeae 29 1 29 77

409438 E.coli SE11 19 0.98 14 49

618 Serratia odorifera 16 0.92 5 —

1747 Propionibacterium acnes 13 0.97 14 35

1282 Staphylococcus epidermidis — — — 10

28211 Alphaproteobacteria — — — 10

28037 Streptococcus mitis — — — 8

562 E.coli — — — 8

509173 Acinetobacter baumannii AYE — — — 7

41297 Sphingomonadaceae — — — 6

40214 Acinetobacter johnsonii — — — 6

29391 Gemella morbillorum — — — 5

76122 Alloprevotella tannerae — — — 4

652103 Rhodopseudomonas palustris — — — 2

268747 Prochlorococcus phage — — — 2

Comparison of community profile: metaMix—pathoscope.

1000bp 2000bp 3000bp 4000bp 5000bp 6000bp

Astrovirus VA1
 6,586bp

HAstV−VA1_gp1

HAstV−VA1_gp2 HAstV−VA1_gp3

Fig. 2. Human clinical sample - novel virus. The reads (short lines) assigned

by metaMix to Astrovirus VA1 are aligned to the genome. The longer lines

represent the genes of the virus

2936 S.Morfopoulou and V.Plagnol

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv317/-/DC1


reads that had contributed to the 679 assembled contigs. Pathoscope

produced the results in <1 min.

3.2.4 MEGAN

MEGAN identified 19 taxa and did not detect the astrovirus signal.

We modified the minimum read support parameter from 50 reads to

10 to increase sensitivity. MEGAN then identified 25 taxa, including

the Astrovirus VA1. The remaining 24 were mostly genera, relevant

to the species detected by metaMix and Pathoscope. MEGAN pro-

duced the results in <1 min.

3.3 Human clinical sample—species not in the database
We then compared the three methods in a scenario where sequences

present in the sample are absent from our reference database. We

analyzed 32 million RNA-Seq reads, obtained using the HiSeq in-

strument for a human clinical sample. Following initial processing

using our bionformatics pipeline, the dataset had 1 261 575 non-

host sequences for subsequent analyses. There were 3150 potential

species based on the BLASTx output.

3.3.1 metaMix

The resulting species profile consisted of 7 species (Supplementary

Table S2). The most interesting finding was the identification of

Human coronavirus OC43 (HCOV-OC43) with almost a million reads

assigned to it. Additionally there were 67 K reads assigned to

Human enteric coronavirus strain 4408. The presence of both

viruses in the results indicated that even though the virus in the sam-

ple was mostly similar to HCoV-OC 43, there were sequences sharing

higher similarity to 4408 at some loci. This is highlighting how the

database choice impacts the results: the RefSeq database we used

has only one HCoV-OC43 strain, while in GenBank there are several,

capturing the high mutation rates of this species. We followed up on

the sequences assigned to the ‘unknown category’, looking for nu-

cleotide similarity with NR-NT using BLASTn. Half of the reads origi-

nated from an untranslated region of the Coronavirus genome,

which is not captured by the protein reference database. The remain-

ing reads matched confidently to either zebrafish or chicken se-

quences, two organisms whose proteins are not in the human

microbiome reference we are using. These matches were explained

as barcode leakage resulting from multiplexing on the same flowcell

zebrafish and chicken RNA-Seq libraries. metaMix appropriately as-

signed these reads to the ‘unknown’ category, producing a clean

probabilistic summary (Supplementary Table S2). The method ran

in 4.7 h. The presence of the coronavirus was confirmed using RT-

PCR. In this instance, the metaMix results emphasize the import-

ance of being able to deal with missing reference sequences that do

not have a closely related strain or species in the same database.

3.3.2 Pathoscope

Pathoscope identified 177 species in this sample. We optimized the

value of the unique read penalty parameter and we achieved the best

results with the thetaPrior parameter set within the range 10–100.

With these settings, the method identified 52 species (Supplementary

Table S2). Our assessment is that Pathoscope is confused by the lack

of completeness of databases combined with the absence of an ‘un-

known’ category, which prevents it from dealing with these un-

assigned reads sensibly. Pathoscope ran in 10 min.

3.3.3 MEGAN

MEGAN assigned the reads to 30 taxa. These included some species

and genera but most were families (Supplementary Table S2).

Approximately 250 K reads could not be assigned to any taxonomic

level. MEGAN completed its analysis in 8 min.

4 Discussion

Here, we present metaMix, a sensitive method for metagenomic spe-

cies identification and abundance estimation. It is implemented as

an R package, freely available from CRAN. Using a Bayesian mix-

ture model framework, we account for model uncertainty by per-

forming model averaging and we resolve ambiguous assignments by

considering all reads simultaneously. A key feature of the method is

that it provides probabilities that answer pertinent biological ques-

tions, in particular the posterior probability for the presence of a

species in the mixture. Additionally it accurately quantifies the rela-

tive proportions of the organisms.

This general framework is designed to address interpretation issues

associated with closely related strains in the sample, low abundance

organisms and absence of genomes from the reference database. We

show that metaMix outperforms other methods in the community

profiling task, particularly when complex structures with closely

related strains are studied. As a consequence, it also produces more

accurate relative abundance estimates for the species in the mixture.

The method can deal with either unassembled reads or assembled con-

tigs or both, allowing for flexibility of choice for the bioinformatics

preprocessing. In practice, the choice of bioinformatics processing

prior to the application of our Bayesian mixture analysis must be opti-

mized for each application, and our processing pipeline has been de-

signed with viral sequence identification from transcriptome

sequencing as a main goal. Nevertheless, as demonstrated by our ana-

lysis of the mock bacterial community dataset, the method can be

applied in other contexts.

The sensitivity and general applicability of metaMix comes at an

increased computational cost, requiring access to a multi-core com-

puter to run efficiently. For the datasets presented here, the computa-

tion time remained manageable and did not exceed a few hours, using

12 cores to run 12 parallel chains. Nevertheless, a limitation of

metaMix is the increased processing time for very large datasets.

Speed related improvements can be implemented in scenarios where

the species ambiguity concerns only a small proportion of the read set.

Reads with certain assignments can be flagged prior to the MCMC

exploration of the state-space. Their assignment information can then

be carried forward, thereby reducing the size of the similarity matrix

used as input by the mixture model. Another area of possible improve-

ment is MCMC convergence determination. The current version of

metaMix produces log-likelihood traceplots allowing the user to visu-

ally inspect the MCMC convergence; however, additional diagnostic

criteria can be implemented in future versions. Finally, consideration

of the differences between mismatches, especially on the amino-acid

level could lead to more accurate estimation of the pij probabilities.

Such information is captured by the BLASTx similarity score. This

metric could thus be used for probability estimation, instead of the

number of mismatches.

metaMix is most useful for complex datasets for which the in-

terpretation is challenging. It has been mainly used as a clinical

diagnostic tool, helping with the identification of the infecting

pathogen while providing an accurate profile of the community in

the sample.
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