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Abstract: The electrode based on cerium oxide (CeO2) nanorods embedded in nickel hydroxide
(Ni(OH)2) matrix were prepared and used for detecting glucose non-enzymatically. The materials
were characterized by X-ray diffraction, transmission electron microscopy (TEM), and so on.
The results indicate that the response of CeO2/Ni(OH)2 nanocomposite are significantly improved
due to the synergetic effect between CeO2 and Ni(OH)2. The optimum CeO2/Ni(OH)2 nanocomposite
electrode exhibits a detection range from 2 µM to 6.62 mM, a sensitivity of 594 µA mM−1 cm−2,
an estimated detection limit of 1.13 µM, and a response time less than 5 s. In addition, this biosensor
also shows good selectivity, long term stability, and accurate measurement in juice on sale.
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1. Introduction

Glucose biosensors have received considerable attention because of their promising applications
in clinical diagnosis, the food industry, and environmental monitoring [1–4]. Generally, glucose sensors
can be classified as either enzymatic glucose sensors or non-enzymatic glucose sensors. Although
enzymatic glucose sensors are sensitive and selective, they are limited by the instability of the enzyme,
which may be affected by various factors such as temperature, pH, and humidity [5–8]. Non-enzymatic
glucose sensors can overcome the disadvantages of enzymatic glucose sensors. Nevertheless,
enzyme-free biosensors usually require suitable sensing materials that can simultaneously catalyze the
redox reaction of glucose and rapidly transfer the charges.

Metal oxides (e.g., NiO, CuO) and metal hydroxides (e.g., Ni(OH)2, Cu(OH)2) possess unique
electrocatalytic properties and have been extensively explored for non-enzymatic glucose biosensors
in the past ten years. However, the poor intrinsic charge transfer abilities of these oxides or hydroxides
impede their application in the electrochemical biosensor, which generally requires a high sensitivity,
fast response, and good selectivity [9,10]. An effective way to overcome this limitation is combining
these metal oxides or hydroxides with high charge-transporting materials, and the corresponding
synergetic effect originating from the combination of components can provide a new interface through
which charge and energy transport are significantly enhanced [11].

The high charge-transporting components usually are noble metals [12,13], carbon nanotubes [14–16],
and graphene [17]. However, only a few studies have been carried out to investigate semiconducting
oxides with fast electron-transfer abilities as modification materials (e.g., TiO2, ZnO) [18–22]. For
example, Gao et al. combined semi-metallic TiO2 nanotubes arrays and Ni(OH)2 nanoparticles to form
a hybrid that could detect glucose with a high sensitivity of 240 µA mM−1 cm−2, a detection limit of
5.0 µM (S/N = 3), and a quick response time of less than 5 s [9]. Zhou et al. used the electrospinning
method to fabricate a CuO/ZnO hierarchical nanocomposite that exhibited an ultrahigh sensitivity
of 3066.4 µA mM−1 cm−2, a linear range of up to 1.6 mM, and a low practical detection limit of
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0.21 µM [23]. Given that metal oxides have the advantages of cost effectiveness and simple synthesis,
pure metal oxide nanocomposites for application in non-enzymatic biosensor should still be a subject
undergoing intense study.

Recently, nanostructured CeO2 has been of great interest in electrochemical biosensors because
of its unique properties, such as high mechanical strength, high isoelectric point, biocompatibility,
and fast electron-transfer ability [24]. However, pristine CeO2 is seldom used in non-enzymatic glucose
biosensors because it fails to catalyze a surface redox reaction [25,26]. CeO2 may be a good modification
material for common electrocatalytic materials (e.g., NiO, Ni(OH)2) because it has good electronic
conductivity, particularly with regard to enhancing their electron-transfer abilities. Using this as an
inspiration, the nanorod (NR) structure of CeO2 was combined with Ni(OH)2 to form a nanocomposite
which was used for the first time as a non-enzymatic glucose biosensor.

2. Results and Discussion

Transmission electron microscopy (TEM) images of CeO2 NRs and CeO2/Ni(OH)2

nanocomposites are shown in Figure 1. The length of CeO2 NRs is approximately 100 nm to 200 nm,
whereas the diameters of NRs are approximately 10 nm to 20 nm (Figure 1a). Figure 1b clearly
shows that CeO2 NRs are embedded in the Ni(OH)2 matrix. We also investigated the TEM image
(Figure 1c) of the nanocomposite with a high Ce:Ni ratio (0.5:1), in which the sample exhibited similar
structure to the nanocomposite with a small Ce:Ni ratio (0.05:1). The circles in the selected area
electron diffraction (SAED) pattern are attributed to the diffraction planes of Ni(OH)2 (102), CeO2 (111),
and CeO2 (220) (inset of Figure 1b), which indicates the polycrystalline structure of the nanocomposites.
High-resolution TEM (HRTEM) image of CeO2/Ni(OH)2 nanocomposite is shown in Figure 1d. The
lattice distances are in good agreement with the typical parameters of Ni(OH)2 (JCPDS 14-0117) and
CeO2 (JCPDS 34-0394).
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Figure 1. Transmission electron microscopy (TEM) images of (a) CeO2; (b) CeO2/Ni(OH)2

nanocomposite (Ce:Ni = 0.05:1); and (c) CeO2/Ni(OH)2 nanocomposite (Ce:Ni = 0.5:1);
(d) High-resolution TEM (HRTEM) image of CeO2/Ni(OH)2 nanocomposite (Ce:Ni = 0.05:1). Inset is
the SAED pattern.
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The X-ray diffraction pattern (XRD) of CeO2/Ni(OH)2 nanocomposite (Ce:Ni = 0.05:1) is shown
in Figure 2. The diffraction peaks at 19.26◦, 33.06◦, 38.54◦, 52.10◦, 59.05◦, 62.73◦, 72.74◦, 73.13◦ and
82.61◦ correspond to the (001), (100), (101), (102), (110), (111), (201), (112) and (202) planes of Ni(OH)2,
respectively. The appearance of these peaks implies a hexagonal structure of Ni(OH)2 (JCPDC 14-0117).
The peaks that appeared at 28.55◦, 33.08◦, 47.48◦, 56.33◦, 76.70◦, 79.07◦ and 88.41◦ are related to the
(111), (200), (220), (311), (331), (420) and (422) planes of CeO2 and indicate a cubic fluorite structure of
CeO2 (JCPDS 34-0394).
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Figure 2. XRD patterns of CeO2/Ni(OH)2 nanocomposite (Ce:Ni = 0.05:1).

The cyclic voltammogram (CV) obtained by continuously cycling the electrode potential between
0 and 0.8 V against Ag/AgCl reference electrode was used to investigate the electrocatalytic activities
of the electrodes. CV scanning was repeated until a stationary state was obtained because nickel-based
electrodes usually suffer from fouling under repeated cyclic sweeping in CV measurements, which
can be attributed to the change in crystal structure [15]. Such a process is shown in Figure 3a, which
demonstrates a pair of well-defined anodic and cathodic peaks corresponding to the redox reaction
of Ni(II)/Ni(III) [1,12,27,28]. A stationary state was obtained after 40 scan cycles, which indicates
that the crystal structures had stabilized. The relation between peak charges integrated from the
CVs and scanning cycles is shown in Figure 3b. The charges gradually increased with an increase of
cycle number, which indicates that electrocatalytic reactions mainly occurred on or near the surface of
Ni(OH)2 [1,29].
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Figure 4 shows the electrocatalytic activities of three different electrodes to glucose. Ni(OH)2/CPE
(carbon paste electrode) exhibited a slight change in peak current after adding 1 mM glucose, in which
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the magnitude of such change actually increased with an increase of glucose concentration (not shown).
By contrast, a clear non-enzymatic response to 1 mM glucose was observed from CeO2/Ni(OH)2/CPE.
The enhanced response of CeO2/Ni(OH)2/CPE is a reflection of the synergetic effect obtained from the
combination of CeO2 and Ni(OH)2. Pure CeO2 component had no electrocatalytic activity; however,
it influenced the interfacial electron transfer process which was investigated by electrochemical
impedance spectroscopy (Figure 5a). The Randles circuit (inset of Figure 5a), which contains electrolyte
resistance (Rs), charge transfer resistance (Rct), double layer capacitance (Cdl), and Warburg element
(W), was used to model these impedance plots. Based on the study of Patil et al. [24], lower Rct values
were attributed to an accelerated electron transfer between the modified electrodes and electrolytes.
Using ZSimpWin (v3.60) software, the Rct values that best fit the experimental impedance plots were
approximately 11,078 and 178 Ω for Ni(OH)2/CPE and CeO2/Ni(OH)2/CPE, respectively, which
indicates that CeO2/Ni(OH)2/CPE has a higher charge transfer ability than Ni(OH)2/CPE. Such an
enhancement is related to the CeO2 NRs, which randomly contact each other in the Ni(OH)2 matrix
(Figure 5b) and consequently form conductive paths for electron transfer.
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Figure 5. (a) Nyquist impedance plots for Ni(OH)2/CPE and CeO2/Ni(OH)2/CPE recorded in
0.1 M KCl solution containing 1 mM Fe[(CN)6]3−/4− (1:1); (b) Schematic diagram of sensing mechanism
of CeO2/Ni(OH)2 nanocomposite.

The Ni(OH)2 component dominated the redox reaction of glucose by means of the Ni(II) /Ni(III)
redox couple. The reaction in the blank NaOH solution can be expressed as Equation (1) [9]. After
adding glucose, the Ni(III) ion could obtain an electron from the oxidation of glucose and deliver this
electron to the electrode, thereby leading to an increase of peak current. The reaction is depicted in
Equation (2).

Ni(OH)2 + OH− → NiO(OH) + e− + H2O (1)



Nanomaterials 2017, 7, 205 5 of 10

NiO(OH) + glucose→Ni(OH)2 + glucolactone (2)

Figure 6 is the effect of the molar ratio of cerium to nickel on the sensing response to glucose. The
results show that an optimum response can be obtained when the molar ratio is equal to 0.05:1. The
influence of the scan rate on the current response is shown in Figure 7a. The magnitude of the peak
current increased with the increasing scan rate. The peak current was quite linear to the square root
of the scan rate (Figure 7b). Such linearity further confirmed the diffusion-controlled kinetics at the
electrode surface.
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The amperometric response of CeO2/Ni(OH)2/CPE was further investigated. Finding a suitably
applied potential that can obtain maximum catalytic current is necessary because the applied potential
intensely influences the amperometric response [4]. Hydrodynamic voltammetry measurement to
1 mM glucose was conducted in 0.1 M NaOH solution to find an optimum applied potential. As shown
in Figure 8, CeO2/Ni(OH)2/CPE demonstrated the highest response current at 0.55 V. The current
density drastically declined over this potential. Based on Dung et al. [15], such decrease is possibly
attributed to the oxidation of water interfering with the oxidation of glucose or the products of glucose
oxidation poisoning the electrode. Therefore, the amperometric response was investigated at 0.55 V
based on the results of hydrodynamic voltammetry.

Figure 9 shows the amperometric response of the CeO2/Ni(OH)2/CPE with the successive
addition of glucose in 0.1 M NaOH solution at 0.55 V. The current increased with the glucose addition
because of the good catalytic properties of the CeO2/Ni(OH)2/CPE. The response time which means
that the current reaches 95% of the steady state value was less than 5 s. A calibration curve was
constructed from this amperometric response curve (inset of Figure 9). CeO2/Ni(OH)2/CPE exhibited
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a good linearity with glucose concentration, ranging from 2 µM to 6.62 mM with a correlation
coefficient of 0.998. A high sensitivity of 594 µA mM−1 cm−2 was obtained from the slope of
the calibration curve. Moreover, the limit of detection was 1.13 µM at a signal to noise ratio of 3.
A comparison among several typical glucose biosensors reported in the last five years is shown in
Table 1. The CeO2/Ni(OH)2/CPE exhibits superiority, especially with regard to sensitivity, linear
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Table 1. Comparison of performance obtained from different glucose biosensors.

Electrode Sensitivity
(µA mM−1 cm−2)

Linearity
(mM)

LOD c

(µM)
Potential

(V) References

CeO2 NRs a 0.165 2~26 100 0.80 [24]
CeO2/Pd a - 0.1~10 10 −0.20 [30]
CeO2 NPs a - 0.007~0.13 0.003 - [31]

Ni(OH)2/SiMCP b 250 0~8 3.5 0.50 [32]
Ni(OH)2-HS b 223.39 0.0009~7.781 0.1 0.45 [33]

Ni(OH)2/TiO2
b 192 0.03~14 8 0.50 [1]

Au/Ni(OH)2
b - ~2 - 0.50 [2]

Ni(OH)2/TiOxCy b 240 0.02~1.7 5.0 0.70 [9]
Ni(OH)2/Au b 371.2 0.005~2.2 0.92 0.55 [12]

CeO2/Ni(OH)2
b 594 0.002~6.6 1.13 0.55 This work

a enzymatic biosensor; b non-enzymatic biosensor; c limit of detection (LOD).
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Selectivity is an essential feature of glucose biosensors for practical applications, especially
for physiological test. Generally, the concentrations of interfering species such as ascorbic acid
(AA), uric acid (UA), 4-acetamidophenol (AP), fructose, and lactose are no more than 0.1 mM in the
physiological fluid, whereas the normal level of glucose is approximately 3–8 mM [1,6]. Therefore,
the amperometric experiment regarding the selectivity of the sensor was conducted with 5 mM of
glucose and 0.1 mM of various interfering species. Figure 10 shows that all these interfering species
had negligible responses compared with glucose, which indicates that the CeO2/Ni(OH)2/CPE
fabricated in this work has sufficient selectivity for practical application. The long-term stability of
CeO2/Ni(OH)2/CPE was investigated by determining its current response (I) to 1 mM glucose every
five days under ambient conditions for seven weeks, during which the sensor preserved 80.36% of its
original value (I0), thereby reflecting a good stability of biosensor (Figure 11).
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Figure 11. Stability of CeO2/Ni(OH)2/CPE electrode at ambient conditions for seven weeks using
1 mM glucose in 0.1 M NaOH solution at 0.55 V.

A kind of juice on sale was chosen as the test-target to investigate the practical application of
CeO2/Ni(OH)2/CPE because one potential application of glucose biosensor is food inspection. Similar
to the process in the reference [4,34,35], diluted juice samples with various standard additions of
glucose were added into 0.1 M NaOH, and the corresponding amperometric responses were recorded
at 0.55 V. Table 2 shows the obtained results. The biggest relative standard deviation is 3.0%, which
illustrates the good reproducibility of the method [36]. The recoveries ranging from 95.2% to 100%
indicate that the sensor is sufficient for analyzing glucose in food inspection application [34].
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Table 2. Determination of glucose in a juice on sale.

Spiked (µM) Found (µM) Recovery (%) RSD (%)

0 40.3 - -
25 64.1 95.2 2.9
50 90.3 100 2.6
75 112.7 96.5 1.9

100 135.3 95.0 3.0

3. Materials and Methods

Nickel nitrate hexahydrate, cerium nitrate hexahydrate, glucose, AA, UA, AP, dopamine
hydrochloride, fructose, sucrose, and lactose were purchased from Sigma–Aldrich (St. Louis, MO,
USA) and used without further purification. Graphite, paraffin oil, sodium hydroxide, and ammonium
hydroxide were purchased from Aladdin Chemicals (Shanghai, China).

CeO2 NRs were synthesized through a non-isothermal precipitation based on the study of
Patil et al. [24]. In detail, ammonia was added (0.5 mL/min) into 100 mL 0.20 M cerium nitrate
aqueous solution at 70 ◦C, in which a yellow precipitate was immediately formed. After 5 min, the
reaction mixture was transferred into a 0 ◦C water bath in which the reaction continued for 24 h.
Finally, the precipitate was filtered and washed with ethanol and de-ionized water and then dried at
60 ◦C in a vacuum. The precipitate was performed by calcination at 350 ◦C for 2 h under air resulting
in the final CeO2 NRs.

CeO2/Ni(OH)2 nanocomposites were prepared via the wet impregnation method. Briefly, CeO2

NRs were dispersed in 50 mL nickel nitrate solution by magnetic stirring at 70 ◦C for 1 h. Thereafter,
5 mL ammonia was added (0.5 mL/min) to this solution, and a turquoise-colored precipitate was
formed. Finally, this precipitate was filtered, washed three times with de-ionized water, and then dried
at 60 ◦C in a vacuum. The amount of nickel nitrate was set as constant (10 mmol), whereas the molar
ratio of cerium to nickel (Ce:Ni) was varied as 0.05:1, 0.1:1, and 0.5:1 for comparison purposes.

XRD analysis was performed with a Y2000 diffractometer (HAOYUAN, Dandong, China) with
Cu Kα radiation (λ = 1.5418 Å). TEM was conducted with a JEM2010 instrument (JEOL, Tokyo, Japan).

The electrochemical measurements were conducted on a model CHI630D electrochemical analyzer
(CHENHUA, Shanghai, China). All of the experiments were performed in 0.1 M NaOH solution at
room temperature with a three-electrode electrochemical cell by using modified CPE as working
electrodes, a platinum wire as a counter electrode, and an Ag/AgCl electrode as a reference electrode.

The modified CPE working electrodes were prepared according to reference [4]. In detail,
the synthesized materials, graphite powder, and paraffin oil with a mass ratio of 2:5:1 were mixed by
hand in a mortar until a uniformly wetted paste was obtained. Then, this paste was filled firmly into
a Teflon tube with an inner diameter of 3 mm. The electrical contact was established by pushing a
copper wire down the tube into the back of paste.

4. Conclusions

A non-enzymatic glucose biosensor based on CeO2/Ni(OH)2 nanocomposite modified CPE was
successfully developed. The enhanced sensing performance of nanocomposite was related to the
synergetic effects of the two components. Specifically, Ni(OH)2 dominated the redox reaction of
glucose by using the Ni(II)/Ni(III) redox couple, whereas the entangled CeO2 NRs formed conductive
paths to accelerate the electron transfer to the electrode. The nanocomposite biosensor had a high
sensitivity of 594 µA mM−1 cm−2, a linear range of 0.002–6.62 mM, a fast response time of less than 5 s,
and an estimated detection limit of 1.13 µM (S/N = 3). The biosensor also exhibited good selectivity
and stability. In addition, the results of this work clearly demonstrate that pristine CeO2 can be a
good candidate for enhancing the performance of conventional non-enzymatic sensing materials,
although it has no electrocatalytic activity and is not suitable as a non-enzymatic sensing material
(e.g., CuO, NiO, Ni(OH)2, Cu(OH)2). Apart from exploring other compositions (e.g., CeO2/Cu(OH)2,
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CeO2/Co3O4) for non-enzymatic biosensor, future work should focus on optimizing the structure of
these nanocomposites (for example, CeO2/Ni(OH)2 coaxial tubular nanostructure or CeO2/Ni(OH)2

hierarchical nanostructure).
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