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Dental caries, a chronic and irreversible disease caused by caries-causing

bacteria, has been listed as one of the three major human diseases to be

prevented and treated. Therefore, it is critical to effectively stop the

development of enamel caries. Remineralization treatment can control the

progression of caries by inhibiting and reversing enamel demineralization at an

early stage. In this process, functional materials guide the deposition ofminerals

on the damaged enamel, and the structure and hardness of the enamel are then

restored. These remineralization materials have great potential for clinical

application. In this review, advanced materials for enamel remineralization

were briefly summarized, furthermore, an outlook on the perspective of

remineralization materials were addressed.
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1 Introduction

The enamel, consisting of 96–97 wt% inorganic hydroxyapatite (HA,

Ca10(PO4)6(OH)2), 3wt% water and 1wt% organic material, is the hardest tissue in

the human body (Bowen et al., 2018; Harper et al., 2021). However, enamel is susceptible

to acid, causing enamel demineralization and even developing cavities (Pitts et al., 2017).

Currently, hundreds of millions of people in the world is under the enamel damage (Peres

et al., 2019). It is difficult to repair enamel on its own due to the lack of sufficient calcium

and phosphate ions in saliva (Lawn et al., 2010; Lacruz et al., 2017). Therefore, artificial

materials such as resin, metal or bioglass are commonly used for clinical repair of cavities

(Dorri et al., 2017). In terms of composition, mechanical properties, and appearance, these

composites differ significantly from enamel. By comparison, enamel remineralization can

be an effective clinical method for restoring the natural properties and structure of enamel

while avoiding the problems associated with filling materials. Remineralization requires

replacing minerals lost during the early stages of demineralization to restore enamel

hardness or structure.

Remineralized materials are essential to enamel repair. Functional materials can

promote and arrange the deposition of calcium and phosphate ions or alter the solubility

of the HA. They can be divided into inorganic materials, organic materials, and polymeric

materials (Figure 1). These functional materials are designed to rebuild remineralized
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tissue on damaged enamel surfaces, thereby preventing disease

progression while also improving aesthetics and mechanical

strength. Therefore, materials for enamel remineralization

have a bright future in clinic. Although several reviews of

remineralized materials have been published (Cochrane et al.,

2010; Ding et al., 2017; Pandya and Diekwisch, 2019), enamel

remineralized materials have been innovated and developed. As a

result, it is critical to review the relevant research progress in time

for the construction and upgrading of the enamel

remineralization system. In this review, the characteristics

and working mechanism of remineralized materials are

briefly summarized. The specific functions of various

functional materials will be clarified by category, with

reference opinions provided for future material design and

synthesis.

2 Functional inorganic materials

Functional inorganic materials can induce the formation

of apatite layers or release ions, which can promote the

remineralization of enamel. When the remineralized layer

forms, calcium phosphates (CaPs) provide exogenous ions

to compensate minerals lost by enamel, while fluoride and

magnesium ions can exchange with calcium ions in HA,

changing the solubility and mechanical properties of ion-

doped HA. Therefore, the ability of inorganic materials to

release ions and the change in enamel properties caused by

their participation in HA are the primary focal point of

researches.

2.1 Calcium phosphates

CaPs can provide ions to reconstruct damaged enamel.

Remineralization solutions containing calcium and

phosphorus ions are usually used in remineralization

experiments, which must be replaced or replenished on a

regular basis. Some stable CaPs materials can provide ions

required for an extended time. Amorphous calcium phosphate

(ACP), tricalcium phosphate (TCP), and nano-hydroxyapatite

(nHA) are common CaPs materials used for remineralization.

The type and size of the CaPs crystals can influence the ion

supply capacity and the depth of ion entry into the lesion.

Therefore, the mineralization effects of these materials are

differrent.

ACP, the precursor phase of biogenic HA of bone and tooth,

is the basic mineralization unit in the biological mineralization

process (Gelli et al., 2019). Aqueous ACP solutions contain

abundant Ca2+ and PO4
3− ions, which form highly hydrated

clusters. The structure and composition of the crystalline phase

change after further aggregation of clusters until the

thermodynamically stable crystalline HA (alkaline conditions)

or carbon brushes (acidic conditions) formed (He et al., 2020).

Usually, such reaction time is fast in the absence of external

interference. Only ACP solutions failed to restore enamel (Shao

et al., 2019). Therefore, enamel remineralization requires

ensuring the stability of ACP in solution and prolonging its

phase transition time. Acidic groups, such as carboxyl and

phosphoric groups, can bind calcium ions in solution,

preventing Ca2+ and PO4
3− from aggregating. Organic

compounds with carboxyl or phosphate groups are the most

common ACP stabilizers. It is a good method to use amino acids

such as aspartate (Asp), glutamate (Glu), citrate (Delgado-López

et al., 2014; Iafisco et al., 2015), and the phosphate stabilizer

triethylamine (Shao et al., 2019) to maintain the size of ACP

particles, ensuring ion supply in the subsequent mineralization

process. In addition, the casein phosphopeptide (CPP) that

containing four to seven phosphate groups can attach to ACP

nanoclusters, forming CPP-ACP. CPP-ACP complexes have

been used as common additives for caries prevention.

Furthermore, CPP-ACP in combination with fluoride show

advantages in remineralization of existing lesions (Bijle et al.,

2018; Tao et al., 2018). However, CPP-containing products

should be used with caution in individuals with lactose

intolerance issues.

TCP can be divided into α-TCP and β-TCP according to the

crystal form. β-TCP is often used in dental materials because of

its great biodegradability and biocompatibility. When exposed to

acid, β-TCP degrades to release ions for enamel restoration. After

surface functionalization by carboxylic acid and surfactants,

FIGURE 1
Schematic diagram of advanced materials promoting
remineralization and repairing enamel.
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functionalized TCP (fTCP) can prevent fluoride from binding

with calcium ions on the enamel surface prematurely to build a

low-dose fluoride release system (Karlinsey and Pfarrer, 2012;

Shen et al., 2018; Viana et al., 2020). After combining with

fumaric acid, fTCP can show significantly higher calcium

bioavailability than β-TCP and better remineralization of

subsurface enamel damage (Karlinsey et al., 2010).

nHA is a bioactive and biocompatible material with a small

particle size of 10–20 nm in diameter and 60–80 nm in length

(Huang et al., 2011). The nanometer size enables nHA to

penetrate deeper lesion layers through large lesion pores and

repair enamel damage (Juntavee et al., 2018; Bossu et al., 2019;

Memarpour et al., 2019). However, high-concentrating nHA

tend to self-aggregate into large-sized nHA, which can affect

the amount and depth of nHA entering the lesion (Huang et al.,

2009). As a carrier, the gel effectively extends the contact time

between the active ingredient and the enamel, allowing nHA to

fill the small holes and depressions. Both silica-based glycerol

hydrogel (Khonina et al., 2020) and carbomer-based gel (Sari

et al., 2021) containing nHA can repair damaged enamel.

2.2 Fluorinated compounds

Fluorinated compounds have been commonly utilized since

the previous century to reverse or prevent enamel defects from

spreading. Consequently, the global incidence rate of dental

caries has decreased dramatically (Jokstad, 2016; Clark et al.,

2020). Fluoride reduces demineralization by altering enamel

solubility (Lynch et al., 2004). Fluoride and calcium ions are

more strongly bound than hydroxyl groups. Therefore fluoride

can replace hydroxyl to form fluorapatite (FAP), which has high

acid resistance and poor solubility (Clark et al., 2020). Fluorides,

on the other hand, can promote remineralization by encouraging

Ca2+ in saliva to attach to the tooth surface. In addition, fluoride

can reduce the adhesion and growth of germs by blocking the

activities of numerous enzymes.

Fluoride is primarily ingested through drinking water (75%).

Fluoridation of home water is a typical measure to prevent dental

caries in many countries, and it can successfully reduce the

incidence of dental caries. Fluoride can also be found in a

variety of oral care treatments and dental materials, including

sodium fluoride (NaF), stannous fluoride, silver diamine fluoride,

acidulated phosphate fluoride, ammonium fluoride, and others

(Barrera-Ortega et al., 2020). Fluoride sustained-release ability

could be altered by combining fluoride ions with different cations

and complexing it with different organic molecules. In toothpaste

and rinses, polyvalent fluorides with tin and titanium as cations

exhibit excellent corrosion resistance (Zanatta et al., 2020). This

is due to the fact that they can not only produce CaF2 on the

enamel surface, but can also generate metallic precipitates on the

enamel surface, which contributes to the reduction of calcium ion

loss when subjected to external erosion.

However, fluorides have caused certain issues when they are

used. Fluoride tends to develop a disordered layered structure of

remineralization layer, which is considerably different from

natural enamel. The mechanical characteristics of the

remineralized layer can be weakened by these disordered

formations. Organic compounds like amelogenin can help

minimize the occurrence of disordered structures in the

reaction system (Yu et al., 2019) (Figure 2). Moreover,

excessive fluoride use can result in hazardous effects like

dental fluorosis and skeletal fluorosis (Philip, 2019). It also

has the possibility to make cariogenic bacteria resistant,

diminishing the effectiveness of follow-up prophylaxis (Liao

et al., 2017). Fluorinated hydroxyapatite is rapidly formed in

the superficial enamel layer of very concentrated F− solutions,

preventing Ca2+ and PO4
3− from penetrating deeper into the

lesion. As a result, subsurface enamel lesions can fail to

mineralize adequately. Therefore, fluoride slow-release systems

made of copolymer acrylic reservoirs and glass ionomer cement

can be great alternatives for promoting enamel mineralization by

extending the trailing effect (Chong et al., 2018).

Fluoride compounds, as traditional enamel remineralization

materials, have a relatively well-studied mineralization

mechanism, which facilitates the development of novel

fluoride-mediated remineralization systems. However, the

functions of fluoride compounds are still need to be

improved, and thus, blends or composites of fluoride

compounds, which can combine multifunction together to

achieve satisfactory clinical results, are greatly needed in the

future.

2.3 Magnesium related materials

Magnesium presents in the hard tissues of the body. In

enamel, the content of Mg2+ is ranging from 0.2 to 0.5 wt%.

Mg2+ is present near the grain boundaries as an intergranular

phase of Mg substituted amorphous calcium phosphate (Mg-

ACP) (La Fontaine et al., 2016). Such amorphous phases have

been proved to make a significant impact on the mechanical

characteristics and wear resistance of enamel (Gordon et al.,

2015). Mg2+ slows crystal growth by competing with calcium ions

at the growth point during mineralization, affecting the

production of apatite (Ren et al., 2010; Abdallah et al., 2016).

As a result, Mg2+ can act as a competitive inhibitor to guide

narrower crystal columns, which promotes a highly ordered

arrangement and increases mineralized tissue hardness. As the

concentration of Mg2+ on the enamel surface increases, the nano-

hardness of the enamel rises dramatically (Kis et al., 2021). Layer

by layer mineralization process is used to create multilayer arrays

of enamel-like FAP/polymer nanocomposites controlled by Mg2+

(FPN-M) at room temperature (Li Y. et al., 2021) (Figure 3). In

the presence of Mg2+, the single nanorods are refined in size and a

highly compact array is formed, eventually, (FPN-M)n exhibits
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excellent mechanical strength and transparency. The present

researches have demonstrated Mg2+ have great importance

during the process of enamel remineralization, therefore, more

and more attention should be paid to Magnesium related

materials. Besides, further understanding of the relationship

between Mg2+ and biomineralization can help develop

strategies to improve the mechanical properties of mineralized

tissues and improve the functions of repaired tooth enamel.

3 Functionalized organic materials

Inorganic matter production and growth require a relatively

constant environment, which organic materials can offer.

Organic molecules are rich in acidic functional groups such as

carboxyl, phosphate, and sulfonic acid. These functional groups

can induce inorganic compound nucleation, inhibit overgrowth,

or interact with hydroxyapatite on the surface of the enamel to

increase adsorption capacity. Understanding the specific role of

these organic compounds can help to clarify the mechanism of

enamel mineralization and provide ideas for future remineralized

material design.

3.1 Amino acids

Amino acid molecules contain different amounts of amino

and carboxyl groups. Depending on the isoelectric point, amino

acids can be classified as acidic, neutral, and basic amino acids.

Among them, acidic amino acids are negatively charged in

weakly acidic solutions, which can influence the nucleation,

crystallization, growth, and crystal transformation of HA. Glu

and Asp can operate as soft templates, connecting two calcium

ions diagonally to generate ordered HA crystals that parallel to

the enamel column while stabilizing calcium ions in the solution.

The crystals on the enamel surface can grow more ordered with

the amino acid concentration rises. Asp and Glu is used to

deposit the CaCO3 layer as a sacrificial template on the

enamel’s surface (Wu et al., 2015). The acidic amino acids

then absorbed phosphate and carbonate ions, depositing HA

into the CaCO3 layer to form the rod crystal. Glycine (Gly), a

highly hydrophilic amino acid, can also be used as a biological

additive to create enamel-like structures (Tao et al., 2007).

According to the molecular dynamics experiment, Gly exhibits

the same adsorption abilities and coverage in all directions of the

crystal surface, which maintains HA’s c-axis propensity (Pan

FIGURE 2
AFM height and deflection images of NPF solution in the presence of (A) 1 ppm F and (B) 1 ppm F and 1 μM AMTN for 300 min. (C) Schematic
representation of nanorod tissue assembly in the presence of F ions and AMTN. Reprinted with permission from [ (Yu et al., 2019) ]. Copyright ©

2019 American Chemical Society.
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et al., 2007). In the carboxymethyl chitosan-stabilized ACP

remineralization system, a rod-shaped crystal layer is

successfully produced in artificial caries when Gly is

introduced to the system, whereas the system without Gly fail

(Wang et al., 2017). Arginine (Arg), a basic amino acid, positively

affects pH homeostasis, bacterial ecology, and pathogenicity. Arg

is metabolized in oral biofilms to produce ammonia mainly

through the internal arginine deiminase system (ADS) of

bacteria (Streptococcus sanguis and Streptococcus). Ammonia

produced under this pathway has a significant pH-raising

effect, while inhibiting tooth demineralization by neutralizing

acids in the peripheral environment (Bijle et al., 2021b). It also

facilitates the formation of arginine-friendly microorganisms

while disrupting the internal homeostasis of caries-causing

bacteria (Nascimento et al., 2019). The combination of Arg

and fluoride can create a pH-responsive fluoride pool that

inhibit acid production and has potential synergistic effects in

maintaining a healthy oral microbial balance (Agnello et al.,

2017; Bijle et al., 2021a). The pool can also significantly improve

the fluoride uptake and surface hardness of damaged enamel

compared to fluoride alone (Zheng et al., 2015; Bijle et al., 2020).

3.2 Enamel matrix proteins and proteases

Enamel matrix proteins (EMPs) and proteases control the

formation of enamel (Jia et al., 2020; Shin et al., 2020). EMPs

govern the parallelism between the glazing columns and organize

them in a dense and slender hexagonal prism structure at the

micro-level by regulating the creation and structure of HA

crystals (Bartlett, 2013; Uskokovic, 2015; Bai et al., 2020).

These highly co-oriented glaze columns give enamel its

remarkable shear strength and make it resistant to everyday

abrasion (Yeom et al., 2017). Over 90% of the EMPs consists of

amelogenin. Amelogenin can be enzymatically processed into

different peptides. These peptides undergo a change in spatial

FIGURE 3
(A) The schematic diagram of the syntheticmultilayer FAP/polymer nanocomposite controlled by Mg2+. (B)—(C)Cross-sectional SEM images of
(FPN-M)2 with corresponding details. (D) Granular interlaminar base layer (indicated by red arrows). (E) Interlayer structure and amorphous-
reinforced architecture schematic diagram. Reprinted with permission from [ (Li Y. et al., 2021) ]. Copyright© 2021 American Chemical Society.
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conformation, manifested by α-helix unraveling and β-sheet and

β-turns formation, at which point amyloid-like aggregation

occur in the proteins (Carneiro et al., 2016; Bai et al., 2020).

Then, they self-assemble into oligomers and nanospheres (Fang

et al., 2011; Engelberth et al., 2018; Bai et al., 2020). These

oligomeric nanospheres further form nanochains that

concentrate Ca2+ and PO4
3− in the peripheral matrix,

generating mineralized precursors during enamel

development, which then serve as templates to guide the

crystal phase transition, eventually generating HA (Gil-Bona

and Bidlack, 2020) (Figure 4). The enamel columns then

elongate in one direction to form a hexagonal prismatic

structure (Jokisaari et al., 2019).

Enzymes are critical requirements for enamel

biomineralization. Enzymes activate the biological function of

amelogenin and degrade organic matter in the matrix until a

sufficiently hard tissue formed (Prajapati et al., 2016). Matrix

metalloproteinase 20 (MMP-20) cleaves amelogenin, and the

product peptide controls the lengthening and growth of crystal

nucleus and induces HA mineralization (Fukae et al., 1998;

Nagano et al., 2009; Gil-Bona and Bidlack, 2020). Addition of

MMP-20 to full-length porcine amelogenin can promote neatly

aligned bundles of enamel-like HA, whereas in the absence of

MMP-20, only ACP particles seen (Kwak et al., 2016). Another

important enzyme is Kallikrein-related peptidase 4 (KLK4).

During enamel maturation, KLK4 degrades the organic matrix

in the mineral (Smith et al., 2017; Sari et al., 2021). The width and

thickness of the microcrystals can increase when proteins are

removed from mature enamel. If the enzyme is deficient, the

enamel will undergo hypoplasia (Simmer et al., 2009; Smith et al.,

2017).

In-depth studies of the enzymatic cleavage products

revealed three major functional domains of the amelogenin

(Mukherjee et al., 2019; Dissanayake et al., 2020). N-terminal:

a hydrophobic tyrosine-rich N-terminal region, known as

tyrosine-rich amelogenin peptide (TRAP), is critical in the

directed assembly of amelogenin (Buchko et al., 2018). The

central region: the central hydrophobic proline-rich region is

mainly composed of X-Y-proline (X and Y are usually

glutamine) repeat motifs, which is rich in β-sheets and β-

turns. The C-terminal: a highly hydrophilic domain contains a

large number of acidic amino acid residues. These residues

could combine with Ca2+ to provide nucleation sites and bind

to the (100) face of octacalcium phosphate (OCP), the

intermediate sub-stable phase in early enamel, thereby

govern the direction in which the enamel column extends

(Wu et al., 2017) (Figure 5). Leucine-rich amelogenin peptide

(LRAP), which contains two self-assembled domains of full-

length amelogenin, is the most common alternative splicing

product of amelogenin (Xia et al., 2016; Green et al., 2019). It is

discovered that depending on the phosphorylated version of

the peptide on serine 16, LRAP can perform distinct activities.

Phosphorylated LRAP (+P) inhibits calcium phosphate

crystallization and stabilizes ACP, whereas LRAP (–P)

directs the production of aligned enamel crystals (Yamazaki

et al., 2017; Le Norcy et al., 2018). In vitro, LARP and PPi are

used to remineralize the eroded enamel, and acicular HA

crystals are successfully regenerated on the surface (Kwak

FIGURE 4
Five successive stages of enamel crystal precipitation and extension. (A) Stage of calcium phosphate particles precipitating and adhering to the
organized enamel protein matrix, (B) Formation of initial crystal needle through single nucleation sites, (C) Extension of enamel crystals by lattice-
guided alignment of individual apatite crystals, (D) Stage of crystal further extension and growing, (E) Enamel prisms (rods) are formed by the cross
arrangement of single enamel crystals. Reprinted with permission from [ (Jokisaari et al., 2019) ]. Copyright © 2019 American Chemical Society.
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et al., 2017). Inspired by these structural domains, amelogenin

analogs are designed and synthesized to induce in vitro bionic

remineralization. After grafting different fragments, these

synthetic functional peptides can be easier to obtain and

show certain functional enhancements, such as adsorption

ability.

Non-amelogenins work in early enamel formation, including

enamelin and tuftelin. Enamelin acts as a transport and

nucleation protein that affects amelogenin to regulate early

enamel development (Bartlett et al., 2006; Lacruz et al., 2017;

Yan et al., 2017). Tuftelin is an acidic protein produced by

ameloblasts during the early stages of enamel formation. It is

concentrated near the dentin-enamel intersection, in which

enamel mineralization begins. The tuftelin-derived peptide

(TDP) is created based on the structure of tuftelin. The group

repaired by TDP demonstrate comparable enamel hardness and

lesion depth healing results after pH cycling to NaF groups (Ding

et al., 2020).

3.3 Functional peptides

Functional peptides inspired by bioproteins can in some ways

replicate the unique functions of these bioproteins, as well as

easier access. Assembly of these peptides with different functions

can produce multifunctional peptides, such as peptides with high

enamel binding and remineralization capacity or peptides with

antibacterial and remineralization activities (Table 1).

3.3.1 Amelogenin analogs
Amelogenin analogs are created by mimicking the functional

domain of amelogenin. These synthetic peptides outperform full-

length amelogenin in synthesis, purification, and retention

(Gungormus et al., 2012; Dogan et al., 2018). The focus of

recreating enamel structure and function in vitro is inducing

columns growth and elongation directly, which is predominantly

regulated by the C-tail. Therefore, peptides with C-terminal can

stimulate remineralization in vitro. Amelogenin inspired

FIGURE 5
Diagram of amelogenin C-terminal peptides self-assembly to guide the extension of OCP crystallization. (A) The monomeric structure of
amelogenin’s C-terminal peptide. The red curve represents the -COOH terminus. (B) Hydrophobic interactions lead to the formation of oligomeric
amelogenin’s C-terminal peptides. (C) Nanorod structures as building blocks are formed by the association of oligomers. (D) Elongated organic-
inorganic complex aggregates formed by the building blocks nanorods and CaP nanoclusters. Reprintedwith permission from [ (Wu et al., 2017)
]. Copyright © 2017 American Chemical Society.
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peptides of 26 and 32 amino acid residues (P26 and P32) with

hydrophilic inner N- and C-terminal are produced to mimic the

“nanosphere” structure in the enamel matrix (Mukherjee et al.,

2018). A firm mineralized layer is successfully produced on the

enamel surface after 7 days of in-situ culturing with polypeptide

solution. C-axis oriented nanorods are generated on the enamel

surface by repeating the peptide application process. P32 can

restore the hardness of etched enamel better because the crystals

created by P26 are smaller than those produced by P32. A

chimeric peptide is created by grafting the C-terminal onto

HA6-1, which can be selectively attached to the enamel

surface (Xiao et al., 2017). The C-terminals of the chimeric

peptide increases the peptide adsorption and facilitates the

formation of a mechanically strong remineralized layer.

QP5 is consisting of five highly conserved Gln-Pro-X repeat

sequence in the center region and a hydrophilic C-tail (Lv et al.,

2015; Chu et al., 2018; Ren et al., 2018; Li et al., 2020). When

compared to amino acids, QP5 has a better remineralization

impact, which effectively restored enamel surface hardness and

reduced surface roughness value (Li et al., 2020; Wang Y. et al.,

2020). Moreover, QP5 can enhance remineralization in a

complicated oral environment, as demonstrated by the rat

caries model (Han et al., 2017). Shortened amelogenin derived

peptide 5 (shADP5) is employed as an active ingredient to

generate a mineralized layer in solution. The enamel surface is

healed after 1 h of mineralization, and the average hardness and

elastic modulus are higher than control samples, with the

hardness of 2.23 ± 0.23 GPa vs. 2.10 ± 0.26 GPa and elastic

modulus of 58.6 ± 4.7 GPa vs. 55.1 ± 4.3 GPa (Dogan et al., 2018).

A phase transfer lysozyme (PTL) membrane can be used to

simulate the N-terminal of amelogenin (Wang D. et al., 2020).

After the occurrence of amyloid aggregation, the internal

structure of lysozyme is changed: the α-helixes unravel and

the β-sheets is formed through hydrophobic interactions,

which is similar to the spatial phase shift of amelogenin self-

assembling. At the liquid/solid interface, those β-sheet-rich

proteins are quickly organized into nanoparticles, forming a

nanofilm that could be adsorbed on the enamel surface and

serve as a scaffold for subsequent remineralization. The

hydrophilic C-tail is then grafted onto PTL to produce PTL/

C-AMG, which can guide HA growing in a direction. A

2.0–2.8 μm thick remineralization layer is produced after

applying 1 mg/ml PTL/C-AMG to demineralized tooth slices

for 7 days. These remineralized layers have similar properties to

natural enamel with a “fish-scale” structure.

3.3.2 Statherin derived peptide
Statherin, a tyrosine-rich peptide with 43 amino acid

residues, is a salivary protein that is found in the oral

acquired membrane. Because of a unique combination of high

negative charged domains on the N-terminal and enamel surface,

statherin can securely cling to the enamel surface (Raj et al., 1992;

Gururaja and Levine, 1996). To replicate the property of high HA

binding, several peptides derived from statherin are created

(Shuturminska et al., 2017; Luo et al., 2019; Carvalho et al.,

2020). Separating the N-terminal of statherin can yield the

peptide SN15 (Dodds et al., 2005; Shimotoyodome et al.,

2006; Luo et al., 2019). Grafting SN15 onto PAMAM can

improve its absorption on enamel surface (Gao et al., 2020).

The statherin stimulated peptide and tannic acid are used to

TABLE 1 Synthetic peptides for biomineralization.

Peptide Sequence Remineralization effect References

Chimeric
peptide

SVSVGMKPSPRP-GGGGS-
LEAWPATDKTKREEVD

Hardness 0.70 ± 0.21 GPa, elastic modulus 66.7 ± 2.4 GPa Xiao et al. (2017)

TDP DRNLGDSLHRQEI %SMHR of TDP increased; a significantly thicker and brighter remineralization
layer with shallower lesions obtained

Ding et al. (2020)

P32 MPLPSYEVLTPLKWPSTDKTKREEVD 1.8-fold increase in elastic modulus and a 1.9-fold increase in hardness compared
to demineralized enamel

Mukherjee et al.
(2018)

QP5 QPYQPVQPHQPMQPQTKREEVD %SMHR: 50.06, similar to NaF (58.48) Wang Y. et al.
(2020)

ADP5 SYENSHSQAINVDRT (AA sequence) Vicker’s microhardness: 141 + 8 HV10; hardness: 2.23 + 0.23 GPa; elastic
modulus: 58.6 + 4.7 GPa

Dogan et al. (2018)

Peptide-7 Asp-Asp-Asp-Glu-Glu-Lys-Cys Ra and Rz: 19.0 ± 4.3 nm and 223.6 ± 23.6 nm; the hardness 497.79 ± 19.63; %
SMHR: 84.13; adhesion force 63.80 ± 4.58 N

Liu et al. (2018)

Sp-H5 phosphoserine-
DSHAKRHHGYKRKFHEKHHSHRGY

2.5-μm-thick crystal layer is regenerated on the enamel surface Zhou et al. (2020)

P-113-DPS AKRHHGYKRKFH-SpSp The thickness of the regenerated crystal layer in 24 h: 8.5 μm Zhou et al. (2021)

LCPS-CP 37SYSGYS42 Elastic modulus of 65.43 ± 15.57 GPa and surface hardness of 1.831 ± 0.5852 GPa
for the LCPS-CP group

Chang et al. (2022)

8DSS (Asp-Ser-Ser)8 lesions became shallower after pH cycling; shows remineralization results similar
to 1 g/L NaF in vitro test

Yang et al. (2014)

Abbreviations: %SMHR, surface microhardness recovery ratio; ADP5, amelogenin derived peptide 5; LCPS-CP: LCPS-CP, low-complexity protein segments containing phosphonate group.
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make SAP-TA (Yang et al., 2017). Polyphenol groups in TA can

grab Ca2+ and trigger HA crystal renewal. Iron ions work in

tandem with SAP-TA to generate a thick layer that boosts

adsorption capacity. Therefore, SAP-TA/Fe (III) can improve

the adhesion and mechanical properties of the remineralization

interface (surface microhardness recovery >80%, binding force

64.85 N). Peptide-7 is designed and synthesized with a significant

number of carboxyl groups on its side chain to help in firmly

interacting with HA and directional elongation of HA crystals

(Liu et al., 2018). Under the guidance of Peptide 7, a dense

mineralized crystal layer with tight adhesion was formed.

3.3.3 Antibacterial peptide inspired bioactive
peptides

Bioactive peptides have antibacterial and remineralization

properties, which can be obtained by grafting units capable of

promoting remineralization onto the active sequences of

antimicrobial peptides. This bioactive peptide can protect

enamel against demineralization while also promoting self-

healing regeneration in a remineralized environment. P-113 is

the smallest antibacterial unit of histatin 5, which is a type of

natural antimicrobial peptide (Zhou et al., 2020). A study

coupled dopamine (DA), SpSp (DPS) domains, and binding

peptide binding peptide SKHKGGKHKGGKHKG on P-113 to

find the most cost-effective peptide (Zhou et al., 2021). The

experiment has discovered that P-113-DPS show similar

antibacterial effect to Sp-H5 and can kill the majority of

Streptococcus mutans (S. mutans) at low concentrations. After

a 24-hour remineralization experiment, an 8.5 μm thick needle-

like remineralization layer is formed on the enamel surface in the

P -113-DPS group, twice as thick as the control group (4 μm)

(Figure 6). The low-complexity protein segments (LCPSs)
37SYSGYS42 in the fused in sarcoma protein is capable of

forming nucleation structures that form reversible amyloid

fibrils (Hughes et al., 2018). LCPSs are highly hydrophilic and

structurally flexible. Due to weak multivalent interactions,

proteins are entangled and subsequently form web-like

structures. LCPSs containing a phosphate or phosphonate

group is named LCPS-OP and LCPS-CP. These acidified

polypeptides can bind calcium ions and acts as soft templates

to induce HA formation. At the same time, the hydrophilic

negatively charged peptide coating can reduce the bacterial

adhesion of caries-causing bacteria by virtue of the negative

electric mutual repulsion (Chang et al., 2022). Given that this

bioactive peptide may more effectively repair damaged enamel

while inhibiting further erosion of dental cariogenic bacteria, it

may be an ideal material for the prevention of dental caries. In

addition, some antimicrobial materials have been added to the

FIGURE 6
(A) Schematic diagram of anti-S. mutans biofilm on the enamel surface and fluorescence images (×20) of S. mutans biofilm in various
concentrations of P-113-DPS and Sp-H5 solutions. (B) Remineralization experiment schematic. (C) 8.5 μm needle-like remineralized layers formed
by P-113- remineralized layers and (D) its FE-SEMmicrographs (×5000, ×50,000, and ×200,000). Reprinted with permission from [ (Zhou et al., 2021)
]. Copyright © 2021 American Chemical Society.
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remineralization system to promote enamel remineralization.

The first type of materials can cover the enamel surface with

an antifouling layer, and the second type can be used to

destroy the bacterial biomass through the positive charges.

Table 2 summarizes these materials that combine

antimicrobial and remineralization functions and Figure 7

shows their modes.

3.3.4 Dentin phosphoprotein derived peptide
Dentin phosphoprotein, made up of a significant amount of

aspartate serine repeat sequences that have a strong affinity for

HA, can act as a nucleation template in the process of dentin

mineralization (He and George, 2004). Therefore, inspired by

dentin phosphoprotein, the peptide 8DSS containing eight DSS

repetitions is synthesized. 8DSS can capture Ca2+ and act as a

diffusion barrier that prevent CaP from dissolving. In the repair

of both surface cavities and deep lesions, 8DSS demonstrated

equal remineralization ability to NaF (Yang et al., 2014; Liang

et al., 2015; Zheng et al., 2019). In addition, 8DSS is able to resist

hydrolase assault and sustain its action in the mouth due to the

short peptide chain length, which is conductive to clinical

application.

3.3.5 Self-assembly peptide 11-4 (P11-4)
Self-assembly peptide P11-4 is a well-studied small molecule

peptide. When activated by external stimuli, P11-4 can self-

assemble through intermolecular hydrogen bonds between

peptide backbones and form three-dimensional scaffolds in

lesions (Alkilzy et al., 2018a). At this time, the negative group

formed by 4 Glu-residues on P11-4 can attract calcium ions and

induce mineralization. According to µCT imaging, the

mineralization of the samples treated by P11-4 increase by

68% in 14 days (Kind et al., 2017). It is worth noting that P11-

4 guided remineralization occurs in the subsurface of lesions,

which can compensate for the shortcomings of fluoride. As a

result, the combination of P11-4 and fluoride varnish can

produce good results in clinical applications. In an

experiment on children over 5 years old with obvious active

early caries, P11-4 + fluoride varnish are superior to fluoride in

terms of vision and safety (Alkilzy et al., 2018b). In some other

TABLE 2 Antibacterial remineralization dual materials.

Materials Antibacterial
mechanism

Bacterial
used

Antibacterial adhesion
results

Antibacterial test
results

References

PASP-PEG The PEG film on the enamel surface is
resistant to bacterial adhesion

S. sanguis/S.
mutans

Almost no bacterial attachment is
detected on the surface

NA Hou et al.
(2020)

ZHA@
ALN-PAA

The released Zn2+ are antibacterial S. mutans
UA159

NA IR: 75.05% Xu et al. (2020)

Sp-H5 The cationic amino acid residues in
H5 bind to cell wall, enhance membrane
permeability and interact with
intracellular DNA of S. mutans to induce
cell death

S. mutans Viability counts at 16× MIC [6.11E+05
(CFU/ml)]

MIC: 2 μmol/ml Zhou et al.
(2020)MBC: 4 μmol/ml

P-113-DPS P-113-DPS crosslink with bacterial
membrane phospholipids, increasing
membrane permeability and forming
perforation, preferentially occupy the
binding site to inhibit the adhesion of S.
mutans

S. mutans Viable counts of S. mutans in P-113-
DPS-coated [2.03E+05 (CFU ml−1)]

MIC:8 μM ml−1 Zhou et al.
(2021)MBC:16 μM ml−1

LCPS-CP Hydrophilic LCPSs eliminate adsorbed
biomolecules by forming an anti-sewage
ensemble; negatively charged phosphate
coatings cause electrostatic repulsion
between the bacterial film and the enamel,
ultimately reducing adhesion

S. mutans relative biomass value of the no peptide
and LCPS-OH are more than eightfold
greater of LCPS-OP and LCPS-CP

NA Chang et al.
(2022)

CMC/ACP CMC neutralizes the negative charge on
the surface of bacteria through a large
number of positive charges to reduce the
early adhesion of bacteria

S. mutans/S.
Gordonii

adherence of S. mutans inhibited by
89.7%; S. gordonii by 86.1%

Biofilm formation decreased by
45.3% (S. mutans) and 44.0%
(S. Gordonii)

He et al. (2019)

CS-QP5 CS captures free hydrogen ions, slows
pH fall, damages the bacterial cell wall, and
causes bacterial death

S. mutans inhibited adhesion up to 95.43% MIC/MBC: 5 mg/ml −1 Ren et al.
(2019)

PAMAM-
NH2

PAMAM-NH2 destroy the bacterial wall
by contacting bacteria for sterilization,
improve the smoothness of remineralized
layer and reduce bacterial adhesion

S. mutans
UA159

Bacterial adhesion forces 3.64 ± 1.52 nN
(control group: 5.52 ± 1.6 nN)

Colony-forming unit counting
5.78 ± 0.27 (control group:
6.13 ± 0.2)

Jia et al. (2020)

Abbreviations: NA, not available; PASP-PEG, poly (aspartic acid)-polyethylene glycol; ZHA@ALN-PAA, zinc-substituted hydroxyapatite/alendronate-grafted polyacrylic acid; IR,

inhibition ratio; MIC, minimal inhibitory concentration; LCPS-CP, low-complexity protein segments containing phosphonate group; MBC, minimal bactericidal concentration.

Frontiers in Bioengineering and Biotechnology frontiersin.org10

Xu et al. 10.3389/fbioe.2022.985881

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.985881


clinical trials, P11-4 successfully treated white spot lesions caused

by enamel demineralization and significantly improved the

appearance (Doberdoli et al., 2020; Jablonski-Momeni et al.,

2020; Sedlakova Kondelova et al., 2020).

3.4 Alendronate

Alendronate (ALN), a powerful bone resorption inhibitor

with a high affinity for HA, is used to treat and prevent

osteoporosis (Chen S. et al., 2020). The phosphate of ALN

exchanges with the phosphate of HA in enamel, forming

coordination chains that tightly bind it to the enamel

surface (Palazzo et al., 2007). Therefore, ALN can act as a

“glue” in the mineralization system to increase the adsorption

of materials. ALN modified poly (amino amine) dendrimers

(Wu et al., 2013) and carboxymethyl chitosan (Wang et al.,

2017) can significantly increase their absorption on the enamel

surface. In addition, after forming a HA layer around the

ALN-modified polyacrylic acid (PAA), the outer layer of HA is

zinc-modified to synthesize ZHA@ALN (Xu et al., 2020). Once

ZHA@ALN dissolved by acid, a substantial number of

calcium, phosphorus, and zinc ions can be released for

remineralization and sterilizing. The inner layer of ALN-

PAA adheres quickly to the enamel surface due to the ALN.

Then, PAA serves as an antifouling layer with 75.05%

bacteriostatic efficiency.

4 Polymer materials

Polymer materials have complex side groups and

spatial structures, which enable them to mimic the enamel

matrix and induce mineralization. Some are used to keep

ions stable, and some can be made into gel carriers to

transport functional peptides while forming a

protective layer on the enamel surface. Due to their

high biocompatibility and adaptability, polymer

materials can be an ideal choice for promoting enamel

remineralization.

4.1 Non-collagenous protein analogs

Non-collagenous proteins (NCPs) stabilize crystal

precursors during dentin and bone collagen mineralization.

NCP analogs, such as polyaspartic acid (pAsp), polyglutamic

acid (PGA), and biocompatible polymers polyacrylic acid

(PAA), contain a large number of carboxyl groups. These

polymers can be used to create induced liquid precursors by

stabilizing calcium ions. PGA and pAsp can also bind to

calcium ions on the enamel surface, strengthening adhesion

and providing nucleation sites (Ustriyana et al., 2020a;

Ustriyana et al., 2020b). It has been discovered that the α-

helical of pAsp or PGA can promote HA crystal nucleation by

templating Ca2+ distribution. The HPO and -COO- can work

FIGURE 7
(A) In vitro peptide-induced bionic remineralization process. a) Organic matter stabilized calcium and phosphorus solution provides sufficient
amount of ions b) Self-assembly of peptides into nanospheres, nano-chain structures orderly guide the deposition of calcium and phosphorus ions
and extension of ordered orientation c) Organic matter modifies the substrate surface to form nucleation sites. (B) Mechanism of action of
antibacterial anti-caries materials. d) Enamel surface coating reduces microbial adhesion; e) Positively charged peptides direct killing of caries-
causing bacteria.

Frontiers in Bioengineering and Biotechnology frontiersin.org11

Xu et al. 10.3389/fbioe.2022.985881

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.985881


together to attract Ca2+ and form stable Ca2+ triangles, which

can develop into the nucleation core of ACP (Zeng et al.,

2021). PAA can also chelate with Ca2+ while maintaining

liquid phase stability and transporting ions continuously for

subsequent biomineralization (Chen R. et al., 2020; Xu et al.,

2020; Li N. et al., 2021). Furthermore, PAA can direct the

transformation of ACP to form acicular microcrystals (Wang

et al., 2018).

4.2 Poly (amino amine) (PAMAM)

Poly (amino amine) (PAMAM) is a kind of synthetic

protein with a dendritic structure. PAMAM can self-

assemble into nanospheres, nanochains, and nanoribbons

(Yang et al., 2015). Grafting different groups such as -NH2,

-COOH and -OH onto PAMAM can improve its ability to

bind Ca2+or promote its adsorption on the enamel surface. The

mineralization effects decrease in the order of -NH2 >
-COOH > -OH (Fan et al., 2020). This is because positive

charged PAMAM-NH2 can be more adsorbed on the

negatively charged enamel surface. In addition, the

adherence of S. mutans is also evaluated. Both PAMAM-

COOH and PAMAM-NH2 are shown to be effective in

forming a smooth remineralized layer and minimizing S.

mutans adherence (Jia et al., 2020). Grafted with SN15,

SN15-PAMAM can increase adsorption on the enamel

surface and achieve 90% higher mineralization effect than

the control group. (Gao et al., 2020).

4.3 Polydopamine

Polydopamine (PDA), the polymer of dopamine that rich

in amino and phenolic groups, shows great hydrophilicity. It

has been used as a functional agent to increase the wettability

and biocompatibility of substrate (Barclay et al., 2017;

Ghorbani et al., 2019). After being immersed in PDA

solution, a dense film can be formed on the surface of the

material in a short time (Kaushik et al., 2020). The film

contains a large number of charged groups, to which

calcium and phosphorus ions will be attracted and form a

stable bond (Ryu et al., 2010; Murari et al., 2020). It is also

observed that the HA crystals on the PDA modified

enamel surface accumulated more closely, suggesting

that PDA might help in inducing uniform crystal

nucleation (Zhou et al., 2012). This may be because

PDA can increase surface hydrophilicity, decrease the

interfacial energy, and accelerate crystallization speed of

HA (Qu et al., 2020). Based on the super adhesion of PDA,

HA layer can be synthesized on the subsurface of different

materials after being modified (Chen et al., 2019; Wong et al.,

2022).

4.4 Biopolymers

Biopolymers, including proteins and polysaccharides, have

been used for the bionic formation of HA. Most of these

polymers are mostly used in mineralized systems in the form

of gels. All of these biopolymers show excellent non-immune and

biocompatible properties, meanwhile with the advantages of easy

storage and clinic application.

Chitosan (CS), a cationic polysaccharide, can rarely produce

allergic or inflammatory reactions in humans (Younes and

Rinaudo, 2015). Therefore, CS has been used to construct

organic templates and scaffolds, which can ensure the

bioactivity of peptides for mineralization guidance (Ruan

et al., 2016; Ren et al., 2018). Furthermore, CS is also able to

prevent bacteria from adhering and reproducing. The adherence

of S. mutansmay be decreased by 94.91% by employing CS alone

(Ren et al., 2019). This is because chitosan is positively charged.

When CS comes into touch with the negatively charged bacterial

wall, the structure of the bacterial wall would be disrupted.

Simultaneously, positive charged CS can adhere to the

negatively charged enamel surface, preventing acid erosion

(He et al., 2019; Boda et al., 2020). In addition, the

antibacterial function can be enhanced when CS paired with

fluoride (Wassel and Khattab, 2017; Ren et al., 2019).

Carboxymethyl chitosan (CMC), formed by CS carboxylation,

also has excellent ACP stabilization and can promote the

formation of enamel remineralization layers. (Chen et al.,

2015; Xiao et al., 2017). The mineralization system using

chitosan as a gel carrier is summarized in Table 3.

Agarose is a natural polysaccharide with -OH groups that can

form a thermally reversible gel. Agarose aqueous gel is widely

used in medical systems such as mineral regeneration and drug

delivery (Zarrintaj et al., 2018). The abundant hydroxyl groups in

agarose molecules have a strong mutual attraction with Ca2+,

allowing agarose to control the formation of nano ACP

precursors and act as an ion reservoir to transport mineral

precursors to the enamel surface for mineral mesomorphic

transformation. The average elastic modulus and nano

hardness of enamel increased significantly to 89.46 ±

11.82 and 3.04 ± 0.75 GPA after 6 days of the interaction of

agarose gel with 500 ppm F (Cao et al., 2014a). When chitosan is

added to the agarose aqueous gel, the groups between the two gels

are cross-linked with each other, forming a fiber structure

together with calcium ions, which can further simulate the

protein matrix for enamel repair. The regeneration layer is

7.5–8.5 μm thick and regained 77.4% of the natural enamel’s

microhardness (Musat et al., 2021). Agarose can also be

combined with amelogenin to form oriented hexagonal prism

enamel columns on the enamel surface (Cao et al., 2014b).

Gelatin is a peptide molecular polymer. Gel peptides in

gelatin can form salt bonds with phosphate groups on the

surface of apatite, causing enamel-like minerals to regenerate.

The limited directional diffusion of ions in the gel environment

Frontiers in Bioengineering and Biotechnology frontiersin.org12

Xu et al. 10.3389/fbioe.2022.985881

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.985881


promotes heterogeneous nucleation, resulting in a crystal with a

clear structure (Zhang et al., 2010). Using the bionic double-layer

gel system assisted by anodic aluminum oxide, it is possible to

successfully prepare HA crystals with good orientation (Chen

et al., 2019).

Silk fibroin (SF) governs the synthesis of calcium carbonate

in mollusks and the creation of animal shells. SF contains a large

number of β-sheets, which are rich in acid aspartic acid and have

a high affinity for calcium ions. In the rotary thermal evaporation

approach, SF serves as a template to guide heterogeneous

nucleation of HA and mineral layers with natural enamel-like

shape, organization, and mechanical characteristics swiftly

formed (Wang S. et al., 2020).

Abalone water-soluble matrix (AWSM) plays an important

role in the formation abalone shells. The proportion of organic

matter and inorganic minerals in abalone shells is very similar to

enamel (95% calcium carbonate and less than 5% organic

matter). Therefore, AWSM can promote the formation of

crystals. High AWSM concentration can increase the content

of calcium and phosphate in the mineralized layer and promote

to form a parallel, dense and highly ordered structure (Wen et al.,

2016).

4.5 Other polymers

Carboxy betaine (CB) polymers are amphoteric polymers

with functional carboxyl and quaternary ammonium groups. The

carboxyl groups can serve as Ca2+ and PO4
3− deposition sites,

whereas the positive quaternary amino group has bactericidal

properties (Xu et al., 2018). Furthermore, CB can resist bacterial

adhesion via electrostatically induced hydration. ACP can be

stabilized by amphoteric ionic poly (carboxy betaine acrylamide)

(PCBAA). PCBAA/ACP nanocomposites contribute to the

growth of HAP in the damaged sublayer of enamel by

blocking spontaneous ion conversion on the enamel surface

while releasing sufficient ions (He et al., 2022). Thus, PCBAA/

ACP nanocomposites performed admirably in both

remineralization (10.08 μm thick remineralized layer in mice

intraoral for 14 days) and antimicrobial experiments (almost no

bacterial adherence). ACP and poly (vinylpyrrolidone)

nanofibers are mixed, and making electrospun mats. The mats

can be hydrated to form a gel in the savila containing fluoride.

Then, calcium and phosphorus ions crystallize under the

guidance of fluorine ions to form HA (Fletcher et al., 2011).

5 Conclusion and perspective

Enamel caries have been common problem in our daily life,

great efforts have been paid to design new materials and realize

the remineralization of enamel. However, it is still a great

challenge to repair the defect enamel and restore its functions,

as for the emerging materials for enamel remineralization, there

is still a long way to go to satisfy the clinic applications. Firstly,

most of the current materials used for the remineralization still

need a long time, from several days to more than 10 days,

secondly, the stability and mechanical properties are not

satisfying enough, in addition, most of the remineralization

systems depends a lot on the solution or concentration of

mineralization medium. Therefore, it is critical important to

design advanced materials that can be used in enamel

remineralization and solve the clinic problems.

In the next decades, materials, both inorganic materials or

polymers that can promote the mineralization speed, especially

which could tune the alignment of mineralized apatite along the

TABLE 3 Summary of chitosan basing remineralization systems.

Materials Approach Remineralization effect Reference

CS-AMEL 15 min CS-AMEL 2 times per day; 8 h modified
remineralization solution, 16 h remineralization solution

The depth of caries decreased from ~100 to ~30 μm Ruan et al.
(2016)

CMC-ALN/ACP
+ GLY

10 min CMC-ALN/ACP + Gly, remineralization solution per
day for 7 d

%SMHR: 49.4; Modulus recovered by 68.6% Wang et al.
(2017)

MMP-20–CS-
AMEL

MMP-20–CS-AMEL hydrogel 15 min; AS with 1 ppm at
37°C, 5 d

Obtained a 2.4-fold increase in hardness and 2.6-fold increase in
modulus

Prajapati et al.
(2018)

CS-QP5 2.5 mg/ml CS-QP5 for 5 min, 4 times daily; remineralization
and demineralization solution alternated for 12 d at 37°C, low-
speed magnetic stirring (100 rpm)

%SMHR: 50.6; Modulus recovered by 68.6% Ren et al. (2019)

CMC/LYZ-ACP CMC/LYZ-ACP nanogels 10 min; 0.15 M 30 s; Tris−HCl
buffer at pH 8 for 30 min

The hardness is 3.8 ± 0.3 Gpa, Modulus 80.3 ± 5 GP; compared to
the nature enamel group hardness of 4.3 ± 0.5 Gpa; modulus 89.5 ±
5.1 Gpa

Song et al.
(2021)

CS-A hydrogels 1 M CaCl2 15 min, CS-A hydrogel 2 h, AS at 37°C, 7 d A layer of 7.5–8.5 µm thick for 7d; the hardness 2.26 Gpa, and %
SMHR reached 77.4

Musat et al.
(2021)

Abbreviations: %SMHR, surface microhardness recovery ratio; CS-AMEL, chitosan-amelogenin; CMC-ALN/ACP + Gly, carboxymethyl chitosan-alendronate/amorphous calcium

phosphate; MMP-20–CS-AMEL, matrix metalloproteinase-20- chitosan-amelogenin; CMC/LYZ-ACP, carboxymethyl chitosan/lysozyme-amorphous calcium phosphate; CS-A hydrogels,

chitosan (CS) and agarose (A) hydrogels.
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native mineral structure or composition, should be a charming

field, besides, on considering the complicated oral environment,

bacterial infections also threaten the treatment of dental health,

therefore, materials with multifunction should also be designed

and may pave the way of enamel remineralization. In addition,

further researches in the remineralization mechanisms are also

much important, which may be helpful to direct the design of

new materials and their final applications.
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