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Distance and similarity measures 
for normal wiggly dual hesitant 
fuzzy sets and their application 
in medical diagnosis
Jawad Ali1 & Muhammad Naeem2*

The normal wiggly dual hesitant fuzzy set (NWDHFS) is a modern mathematical tool that can be 
used to express the deep ideas of membership and non-membership information hidden in the 
thought-level of decision-makers (DMs). To enhance and expand the applicability of NWDHFSs, this 
study originates several types of distance and similarity measures between two NWDHFSs. The 
present paper first revises the basic operational laws of normal wiggly dual hesitant fuzzy elements 
(NWDHFEs) and then generalizes the rule of length extension for normal wiggly dual hesitant fuzzy 
setting. Meanwhile, we introduce a variety of distance and similarity measures under the background 
of NWDHFSs. After that, a family of weighted distance and similarity measures based on NWDHFS 
is presented and analyzed for discrete and continuous cases. The stated measures are the extension 
of several existing measures and have the capability to handle uncertain and vague information 
with a wider range of information. DMs can select the most suitable alternative based on these 
measures by determining the gap between each alternative and the ideal one. Finally, a practical 
example concerning disease detection is addressed to demonstrate the applicability and merits of the 
developed theory and depict the differences between the presented distance and similarity measures.

Decision theory is an interdisciplinary approach that is used mainly in human activities. Since real decision-
making problems are always created from a complicated context, the evaluation information is always vague. 
On that account, it is necessary to introduce some assistance tools in order to help DMs in making decisions. To 
do so, Zadeh1 coined the idea of fuzzy set (FS) as an extension of the classical notion of sets. Since its original 
definition, various extensions have been done for FSs, including type-2 fuzzy set2, intuitionistic fuzzy set (IFS)3, 
Pythagorean fuzzy set (PFS)4,5 and hesitant fuzzy set (HFS)6. The elements in IFS take into account membership 
as well as non-membership information. Owing to the consideration of non-membership information, the IFS 
is more efficient for practical implementations. Elaborate works on IFS have been conducted; see7,8 for detail. 
In many situations, due to limited knowledge or complexity of the world, DMs feel difficulty assigning only a 
single value during evaluation. HFS is quite helpful in avoiding such issues, which permits DMs to describe their 
description in terms of several possible values between 0 and 1. To date, lot of research work on aggregation 
operators9–11, distance and similarity measures12–14, correlation measures15,16 and decision making methods17–19 
with hesitant fuzzy information have been done. Owing to its successful applications and some weaknesses, HFS 
has been explored in numerous formations such as picture hesitant fuzzy set20, necessary and possible hesitant 
fuzzy sets21, interval neutrosophic hesitant fuzzy set22, probabilistic hesitant fuzzy set23, expanded, and much 
more24–26. Recently, Ren et al.27 provided the theory of normal wiggly hesitant fuzzy set (NWHFS) in order to dig 
the deeper uncertain information in the hesitant fuzzy data. They studied the basic theory related to the proposed 
representation tool, including two preliminary aggregation operators, and applied them to the environmental 
pollution problem. Liu et al.28 developed normal wiggly hesitant fuzzy power Muirhead mean operators and 
utilized them to address decision-making problems. Further, Liu and Wang29 proposed the concept of normal 
wiggly hesitant fuzzy power generalized Maclaurin symmetric mean operators. Based on novel distance measures 
and operational laws of NWHFSs, Liu and Zhang30 put forward the correlation coefficient standard deviation 
(CCSD) method to determine the criteria weights objectively. They also connected the multi attributive border 
approximation area comparison (MABAC) method with prospect theory to cope with the MCDM problems 
under normal wiggly hesitant fuzzy setting. Yang et al.31 focused on solving the MCGDM issues with incomplete 
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weight information by utilizing novel distance measures under the normal wiggly hesitant fuzzy environment. 
Besides, the authors of Ref.32 provided a decision-making framework for evaluating the best reinforcement of 
agro-waste while taking technical, environmental, and economic factors into account. In recent years, Ramya 
et al.33 employed normal wiggly hesitant fuzzy elimination and choice expressing reality (ELECTRE) method 
for the best versatile e-waste disposal technique selection. Due to the increasing complexity of the fundamental 
issues, NWHFS has been extended by many scholars, some of its extensions and their description is provided 
in Table 1.

Sometimes the accurate membership grades of evaluation information are cumbersome to be determined, 
which is the major shortcoming of HFS and its extensions. To tackle this issue, Zhu et al.38 explored the defini-
tion and related theory of dual hesitant fuzzy set (DHFS). Until now, several researchers have done a lot of work 
to further investigate the theory of DHFS, for instance, the distance and similarity measures39–41, the correlation 
measures42,43, the entropy measures44–46, and so on. Hsu et al.47 reviewed and examined the applications of DHFS 
in a probabilistic manner. Alcantud et al.48 put forward the superior concept of dual extended hesitant fuzzy set 
and discussed a comparison law for the prioritization of elements described in the proposed tool. Karaaslan and 
Özlü49 introduced dual type-2 hesitant fuzzy set and detailed its correlation coefficient formulas. Inspired by 
the idea of NWHFS, Narayanamoorthy et al.34 presented the notion of NWDHFS and discussed its application 
to site selection. NWDHFS takes DHFS as the original information, from which it digs the potential uncertain 
information of the DMs in order to get the complete evaluation information.

Distance and similarity measures are key concepts in decision-making, especially machine learning, pat-
tern recognition, image processing, medical diagnosis, scheme selection, etc. So far, numerous researches have 
been conducted on this topic12–14. Originally, Wang50 initiated the concept of FSs’ similarity measure with a 
mathematical formula. The most popular and widely used distance measures for two FSs A1 and A2 on X are 
the following51–53:

•	 Hamming distance: dh(A1,A2) =
∑n

j=1

∣∣µA1(xj)− µA2(xj)
∣∣;

•	 Euclidean distance: de(A1,A2) =

(∑n
j=1

∣∣µA1(x )− µA2(xj)
∣∣2
)1/2

;

•	 Hausdorff metric: max
∣∣µA1(xj)− µA2(xj)

∣∣,

where µA1(xj) and µA2(xj) are the membership grades of A1 and A2 , respectively, meet the condition that 
0 ≤ µA1(xj),µA2(xj) ≤ 1 , for xj ∈ X, j = 1, 2, ..., n.

Later, numerous scholars paid attention to this topic and expanded further. Several distance and similarity 
measures have been developed for FS, IFS, HFS, DHFS, etc. Szmidt and Kacprzyk54 proposed a novel distance 
between two IFS. Xia and Xu55 studied the distance and similarity measure based on HFS and studied their 
application in decision-making problems. Peng et al.56 gave various distance, similarity, entropy, and inclusion 
measures for Pythagorean fuzzy set and their relationships between them. Khan and his coworkers57 studied set-
theoretic distance and similarity measures for spherical fuzzy sets (SFS) and showed their application in selecting 
mega projects problem. Liu et al.58 illustrated some distance measures for DHFS based on connection numbers 
and discussed several identities and relationships between them. Zhang et al.59 investigated some improved 
distance measures for HFSs and DHFSs to avoid the issue of extension process in the previous distance meas-
ures. They also provide various entropy measures for DHFSs, which describe the fuzziness of DHFSs. Recently, 
Wang et al.60 proposed novel distance measures in terms of mean and variance for dual hesitant fuzzy setting 
and utilized them in practical problems.

Keeping in mind the importance of distance and similarity measures and application in decision-making, 
medical diagnosis, and pattern recognition, numerous authors, have done much work on this topic until now. 
However, there is no research on distance and similarity measures based on NWDHFS. To study the MCGDM 
techniques viz. TOPSIS, GLDS, TODIM, VIKOR, and ELECTRE for NWHFSs, there is an urgent need to design 
normal wiggly hesitant fuzzy distance and similarity measures. Therefore, this study aims to generalize traditional 
distance and similarity measures and their weighted forms for both discrete and continuous cases with respect 
to normal wiggly dual hesitant fuzzy context.

The rest of the paper is organized in the following manner: section “Preliminaries” recalls some preliminary 
knowledge related to DHFSs and NWDHFSs, including the revised operational laws of NWDHFEs. Section 

Table 1.   NWHFS extensions.

References Title of the extension Characteristic of the elements

34 Normal wiggly dual hesitant fuzzy set
Two sets of values from [0, 1] with possible membership and non-membership grades along deeper 
uncertain information such that the sum of the upper bounds of subintervals in membership and 
non-membership grades is less than or equal to 1

35 Normal wiggly pythagorean hesitant fuzzy set
Two sets of values from [0, 1] with possible membership and non-membership grades along deeper 
uncertain information such that the sum of values in membership and non-membership grades is less 
than or equal to 1

36 Normal wiggly probabilistic hesitant fuzzy set A set of values from [0, 1] with possible probabilistic membership grades along deeper uncertain 
information

37 Normal wiggly interval-valued hesitant pythagorean fuzzy set
Two sets of subintervals from [0, 1] with possible membership and non-membership grades along 
deeper uncertain information such that the square sum of the upper bounds of subintervals in mem-
bership and non-membership grades is less than or equal to 1
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“Distance and similarity measures between two NWDHFSs” first generalizes the rule of length extension and 
then gives the definitions of distance and similarity measures for NWDHFSs, based on which various distance 
and similarity measures for two NWDHFSs are developed. In section “Weighted distance and similarity measures 
between two NWDHFSs”, we propose a variety of weighted distance and similarity measures under the normal 
wiggly dual hesitant fuzzy environment for both discrete and continuous cases, respectively. Section “Applica-
tion of the proposed distance (similarity) measures” illustrates a real-world example to show the practicality and 
performance of our measures. Lastly, section “Concluding remarks and suggestions” concludes the paper with 
some remarks and presents future challenges.

Preliminaries
This section presents some basic concepts related to DHFS and NWDHFS, including the revised operational 
laws of NWDHFSs.

Definition 1  38 Let X be a reference set, then a DHFS Ds on X is given by:

where hs(x) and gs(x) are two sets of numbers from [0, 1], representing the possible membership degrees 
and non-membership degrees of the element x ∈ X to the set Ds respectively, with the condition that 
0 ≤ max (hs(x))+max

(
gs(x)

)
≤ 1 . For convince, the element ds(x) =

(
hs(x), gs(x)

)
 is called the dual hesitant 

fuzzy element (DHFE), which can be simply marked as ds =
(
hs , gs

)
.

Definition 2  61 Let ds =
(
hs , gs

)
 ; hs =

{
α1,α2, ...,α#hs

}
 and gs =

{
β1,β2, ...,β#gs

}
 be a DHFE. Then, the mean 

and the standard deviation of hs and gs are given as:

and

respectively. The functions f̃ : hs −→
[
0, σhs

]
 and f̃ : gs −→

[
0, σgs

]
 satisfying f̃ (αı ) = σhs e

−
(
αı−hs

)2

2σ 2
hs

 and 

f̃ (βı ) = σgs e
− (βı−gs)

2

2σ 2
gs

 are nominated as the normal wiggly range (NWR) of αı and βı , respectively.

Definition 3  61 Let ds =
(
hs , gs

)
 ; hs =

{
α1,α2, ...,α#hs

}
 and gs =

{
β1,β2, ...,β#gs

}
 be a DHFE. Further, let 

d̃s =
(
h̃s , g̃s

)
 ; h̃s =

{
α̃ = αı/

∑#hs
ı=1 αı |αı ∈ hs

}
 and g̃s =

{
β̃ = βı/

∑#gs
ı=1 βı |βı ∈ gs

}
 be a normalized DHFE. 

Then, the real preference degrees (rpd) of h̃s and g̃s are given by

which are measured based on the orness measure, originally proposed by Yager62.

Definition 4  34 Let Hs = {x, hs(x)|x ∈ X} be a DHFS on the reference set X . Then, the NWDHFS on X can be 
described as:

(1)Ds =
{〈

x, hs(x), gs(x)
〉
|x ∈ X

}
,

(2)hs =

#hs∑

ı=1

αı/#hs ,

(3)gs =

#gs∑

ı=1

βı/#gs ,

(4)σhs =

√√√√
#hs∑

ı=1

(
αı − hs

)2
/#hs ,

(5)σgs =

√√√√
#gs∑

ı=1

(
βı − gs

)2
/#gs ,

rpd
�
�hs
�
=





�#�hs
ı=1 �αı

�
#�hs−ı

�hs−1

�
, if hs < 0.5

1−
�#�hs

ı=1 �αı
�
#�hs−ı

�hs−1

�
, if hs > 0.5

0.5, if hs = 0.5.

rpd
�
�gs
�
=





�#�gs
ı=1

�βı
�
#�gs−ı

�gs−1

�
, if gs < 0.5

1−
�#�gs

ı=1
�βı
�
#�gs−ı

�gs−1

�
, if gs > 0.5

0.5, if gs = 0.5.

(6)Ns =
{〈

x, hs(x), gs(x),ϕ(hs(x)),ϕ
(
gs(x)

)〉
|x ∈ X

}
,
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where ϕ(hs(x)) =
{
⌢
α1,

⌢
α2, ...,

⌢
α#hs(x)

}
 , 
⌢
α
ı =

{
aL
ı
, aM

ı
, aU

ı

}
=

{
max

(
αı − f̃ (αı ), 0

)
,(

2rpd
(
h̃s(x)

)
− 1

)
f̃ (αı )+ αı , min

(
αı + f̃ (αı ), 1

)}
, αı is one of the value of hs(x) .  Similarly, 

ϕ
(
gs(x)

)
=

{
⌢

β 1,
⌢

β 2, ...,
⌢

β #hs(x)

}
 , 
⌢

β
ı
=

{
bL
ı
, bM

ı
, bU

ı

}
=

{
max

(
βı − f̃ (βı ), 0

)
,

(
2rpd

(
g̃s(x)

)
− 1

)
f̃ (αı )+ αı , min

(
βı + f̃ (βı ), 1

)}
, βı is one of the value of gs(x).

Also, f̃ (αı ) and f̃ (βı ) are the wiggly parameters of αı , βı and rpd
(
h̃s(x)

)
 and rpd

(
g̃s(x)

)
 are the real preference 

degree of hs(x), gs(x). Moreover, ϕ(hs(x)) and ϕ
(
gs(x)

)
 are called normal wiggly elements (NWEs) and the pairs 

〈hs(x),ϕ(hs(x))〉 
〈
gs(x),ϕ

(
gs(x)

)〉
 are called normal wiggly dual hesitant fuzzy elements (NWDHFEs), simply 

marked as 
〈
hs , gs ,ϕ(hs),ϕ(hs)

〉
.

It should be pointed out that the original operational laws of NWDHFEs presented by34, is missing and 
insensible. Anyhow, the refined form of that operational laws is provided below.

Definition 5  Let 
〈
h1s , g

1
s ,ϕ

(
h1s
)
,ϕ

(
g1s
)〉

 and 
〈
h2s , g

2
s ,ϕ

(
h2s
)
,ϕ

(
g2s
)〉

 be any two NWDHFEs, and � > 0 , then 

1.

2.

3.

4.

With regards to distinguish the NWDHFEs, Narayanamoorthy et al.34 provided the following score function:

Definition 6  Let 
〈
hs , gs ,ϕ(hs),ϕ

(
gs
)〉

 be a NWDHFE. Then, the score function of 
〈
hs , gs ,ϕ(hs),ϕ

(
gs
)〉

 is 
expressed as

where ⌢
αı =

aL
ı
+aM

ı
+aU

ı

3  ,  
⌢

βı =
bL
ı
+bM

ı
+bU

ı

3  and σ⌢
αı

=

√(
aL
ı

)2
+

(
aM
ı

)2
+

(
aU
ı

)2
− aL

ı
aM
ı

− aL
ı
aU
ı
− aM

ı
aU
ı

 , 

σ⌢
βı

=

√(
bL
ı

)2
+

(
bM
ı

)2
+

(
bU
ı

)2
− bL

ı
bM
ı

− bL
ı
bU
ı
− bM

ı
bU
ı

 . Further, δ, ζ ∈ (0, 1) can be deemed as the confi-

dence level of DMs and DMs can declare the value of δ themself freely.

〈
h1s , g

1
s ,ϕ

(
h1s
)
,ϕ

(
g1s
)〉

⊕
〈
h2s , g

2
s ,ϕ

(
h2s
)
,ϕ

(
g2s
)〉

=

〈
⋃

α1∈h1s ,α2∈h
2
s

α1 + α2 − α1α2,
⋃

β1∈g1s ,β2∈g
2
s

β1β2,

⋃
⌢
α1∈ϕ(h1s ),

⌢
α2∈ϕ(h2s )

⌢
α1 ⊕

⌢
α2

⋃
⌢
β 1∈ϕ(g1s ),

⌢
β 2∈ϕ(g2s )

⌢

β 1 ⊕
⌢

β 2

〉
;

〈
h1s , g

1
s ,ϕ

(
h1s
)
,ϕ

(
g1s
)〉

⊗
〈
h2s , g

2
s ,ϕ

(
h2s
)
,ϕ

(
g2s
)〉

=

〈
⋃

α1∈h1s ,α2∈h
2
s

α1α2,
⋃

β1∈g1s ,β2∈g
2
s
β1 + β2 − β1β2,

⋃
⌢
α1∈ϕ(h1s ),

⌢
α2∈ϕ(h2s )

⌢
α1 ⊗

⌢
α2

⋃
⌢
β 1∈ϕ(g1s ),

⌢
β 2∈ϕ(g2s )

⌢

β 1 ⊗
⌢

β 2

〉
;

〈
h1s , g

1
s ,ϕ

(
h1s
)
,ϕ

(
g1s
)〉�

=

〈
⋃

α1∈h1s

α�
1 ,

⋃

β1∈g1s

1− (1− β1)
�,

⋃

⌢
α1∈ϕ(h1s )

⌢
α
�

1,
⋃

⌢
β 1∈ϕ(g1s )

⌢

β
�

1

〉
;

�
〈
h1s ,ϕ

(
h1s
)〉

=

〈
⋃

α1∈h1s

1− (1− α1)
�,

⋃

β1∈g1s

β�
1 ,

⋃

⌢
α1∈ϕ(h1s )

�
⌢
α1,

⋃

⌢
β 1∈ϕ(g1s )

�
⌢

β 1

〉
.

(7)

SNs

��
hs , gs ,ϕ(hs),ϕ

�
gs
���

=


δ

�
hs − σhs

�
+ (1− δ)

�
1

#hs

#hs�

ı=1

⌢
αı − σ⌢

αı

�
, ζ
�
gs − σgs

�
+ (1− ζ )


 1

#gs

#gs�

ı=1

⌢

βı − σ⌢
βı




,
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According to Definition 6, the comparison rule for two NWDHFEs is summarized below.

Definition 7  Given any two NWDHFEs ∂1 =
〈
h1s , g

1
s ,ϕ

(
h1s
)
,ϕ

(
g1s
)〉

 and ∂2 =
〈
h2s , g

2
s ,ϕ

(
h2s
)
,ϕ

(
g2s
)〉

 , and let 
SNs (∂1) and SNs (∂2) be the score function of ∂1 and ∂2 , respectively. Then: 

1.	 If SNs (∂1) ≥ SNs (∂2) , then ∂1 > ∂2.
2.	 If SNs (∂1) ≤ SNs (∂2) , then ∂1 < ∂2.
3.	 If SNs (∂1) = SNs (∂2) , then ∂1 ∼ ∂2.

Here, the symbol “ ∼ ” means ∂1 and ∂2 are indistinguishable.

Distance and similarity measures between two NWDHFSs
Until now, there is no research on the distance and similarity measures for NWDHFSs. So, we will first propose 
the axioms for distance and similarity measures under dual hesitant fuzzy environment. After that, some well-
known distance measures such as Hamming distance, Euclidean distance, Hausdorff distance and hybrid distance 
will be adopted for the definition of NWDHFSs distances.

Practically, in most of the cases, the values of number of elements in membership grade and nonmembership 
grade may not be equal, i.e., #h1s (xj)  = #h2s (xj) and #g1s (xj)  = #g2s (xj) for each xj ∈ X . To find the distance and 
similarity measure between NWDHFSs, one should extend the shorter one until the membership grades and 
nonmembership grades of both NWDHFSs have the same length. Following the rule detailed by Xu and Zhang63, 
we can generalize it for NWDHFS setting as follows:

where h+(xj)(g+(xj)) and h−(xj)(g−(xj)) represent the largest and smallest values in each h(xj)(g(xj)) , 
respectively.

To extend the shorter one, we can add any value to the shorter one according to the parameters � and ג . 
The selection of these parameters mainly depends on the DM’s risk preferences. Optimists anticipate desirable 
outcomes and may add the largest value of the membership grade and the smallest value of the non-membership 
grade, while pessimists expect unfavorable outcomes and may add the smallest of the membership grade and 
the largest value of the non-membership grade.

Note: In the current study we shall take � = � = 1/2.
In what follows, we state the axioms of distance and similarity measures for NWDHFSs.

Definition 8  Let N1 and N2 be two NWDHFSs on X = {x1, x2, ..., xn} , then the distance measure between N1 
and N2 is defined as d(N1,N2) which satisfies the following properties: 

1.	 0 ≤ d(N1,N2) ≤ 1 ;
2.	 d(N1,N2) = 0 if and only if N1 = N2;
3.	 d(N1,N2) = d(N2,N1).

Definition 9  Let N1 and N2 be two NWDHFSs on X = {x1, x2, ..., xn} , then the similarity measure between N1 
and N2 is defined as ρ(N1,N2) which satisfies the following properties: 

1.	 0 ≤ ρ(N1,N2) ≤ 1 ;
2.	 ρ(N1,N2) = 1 if and only if N1 = N2;
3.	 ρ(N1,N2) = ρ(N2,N1).

The above-stated axioms are analogous to the axioms of distance and similarity measures for DHFSs given 
by64. These axioms are simple to comprehend, and each of them is mandatory for the definition of the measures.

Like the other FSs, the relationship between ρ(N1,N2)  and d(N1,N2) also obeys the formulas that 
ρ(N1,N2) = 1− d(N1,N2) . So we will mainly discuss the distances for NWDHFSs, then the similarity meas-
ures can be easily gotten.

On the basis of Definition 8, we give a normal wiggly dual hesitant normalized Hamming distance between 
N1 =

{〈
x, h1s (x), g

1
s (x),ϕ

(
h1s (x)

)
,ϕ

(
g1s (x)

)〉
|x ∈ X

}
  and N2 =

{〈
x, h2s (x), g

2
s (x),ϕ

(
h2s (x)

)
,ϕ
(
g2s (x)

)〉
|x ∈ X

}
   as:

(8)h(xj) = �h+(xj)+ (1− �)h−(xj),

(9)g(xj) = +g+(xj)ג (1− ,g−(xj)(ג
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where α1
σ(ı)  and α2

σ(ı) are the ı th largest values in h1s and h2s  whose corresponding normal wiggly elements 
(
a1
ı

L
, a1

ı

M
, a1

ı

U
)
 and 

(
a2
ı

L
, a2

ı

M
, a2

ı

U
)
 respectively, while β1

σ(ı) and β2
σ(ı) are the ı th largest values in g1s  and g2s  whose 

corresponding normal wiggly elements 
(
b1
ı

L
, b1

ı

M
, b1

ı

U
)
 and 

(
b2
ı

L
, b2

ı

M
, b2

ı

U
)
 , respectively.

Similarly, a dual hesitant normalized Euclidean distance can be defined as follows:

With the generalization of the two distances Eqs. (10) and (11), a generalized normal wiggly dual hesitant nor-
malized distance can be obtained:

Analogously, the Hausdorff distance measure can be proposed for NWHFSs, for two NWHFSs N1 and N2 , the 
generalized normal wiggly dual hesitant normalized Hausdorff distance measure can be defined as:

In particular, if � = 1 , then the above generalized normal wiggly dual hesitant normalized Hausdorff distance 
reduces to normal wiggly dual hesitant normalized Hamming-Hausdorff distance:
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If � = 2 , then the above generalized normal wiggly dual hesitant normalized Hausdorff distance becomes the 
normal wiggly dual hesitant normalized Euclidean-Hausdorff distance:

Further, we can deduce a class of hybrid distance measures by combining the above distance measures, such as: 

1.	 The hybrid normal wiggly dual hesitant normalized Hamming distance between N1 and N2 : 

2.	 The hybrid normal wiggly dual hesitant normalized Euclidean distance between N1 and N2 : 

3.	 The generalized hybrid normal wiggly dual hesitant normalized distance between N1 and N2 : 

(14)

d(N1,N2)

=




1

n

n�

j=1

max




max
ı




���α1
σ(ı)(xj)− α2

σ(ı)(xj)
���+

�
1
3

����a1
ı

L
(xj)− a2

ı

L
(xj)

���
+

���a1
ı

M
(xj)− a2

ı

M
(xj)

���+
���a1

ı

U
(xj)− a2

ı

U
(xj)

���
��


,

max
k




���β1
σ(k)(xj)− β2

σ(k)(xj)
���+

�
1
3

����b1k
L
(xj)− b2k

L
(xj)

���
+

���b1k
M
(xj)− b2k

M
(xj)

���+
���b1k

U
(xj)− b2k

U
(xj)

���
��









.

(15)

d(N1,N2)

=




1

n

n�

j=1

max




max
ı




���α1
σ(ı)(xj)− α2

σ(ı)(xj)
���
2
+

�
1
3

����a1
ı

L
(xj)− a2

ı

L
(xj)

���
2

+

���a1
ı

M
(xj)− a2

ı

M
(xj)

���
2
+

���a1
ı

U
(xj)− a2

ı

U
(xj)

���
2
��


,

max
k




���β1
σ(k)(xj)− β2

σ(k)(xj)
���
2
+

�
1
3

����b1k
L
(xj)− b2k

L
(xj)

���
2

+

���b1k
M
(xj)− b2k

M
(xj)

���
2
+

���b1k
U
(xj)− b2k

U
(xj)

���
2
��










1/2

.

(16)

d(N1,N2)

=
1

2n

n�

j=1







1
2#hs(xj)




#hs(xj)�
ı

���α1
σ(ı)(xj)− α2

σ(ı)(xj)
���+

#ϕ(hs)(xj)�
ı

�
1
3

����a1
ı

L
(xj)− a2

ı

L
(xj)

���

+

���a1
ı

M
(xj)− a2

ı

M
(xj)

���+
���a1

ı

U
(xj)− a2

ı

U
(xj)

���
��




+ 1
2#gs(xj)




#gs(xj)�
ı

���β1
σ(ı)(xj)− β2

σ(ı)(xj)
���+

#ϕ(hs)(xj)�
ı

�
1
3

����a1
ı

L
(xj)− a2

ı

L
(xj)

���

+

���b1
ı

M
(xj)− b2

ı

M
(xj)

���+
���b1

ı

U
(xj)− b2

ı

U
(xj)

���
��







+max




max
ı




���α1
σ(ı)(xj)− α2

σ(ı)(xj)
���+

�
1
3

����a1
ı

L
(xj)− a2

ı

L
(xj)

���
+

���a1
ı

M
(xj)− a2

ı

M
(xj)

���+
���a1

ı

U
(xj)− a2

ı

U
(xj)

���
��


,

max
k




���β1
σ(k)(xj)− β2

σ(k)(xj)
���+

�
1
3

����b1k
L
(xj)− b2k

L
(xj)

���
+

���b1k
M
(xj)− b2k

M
(xj)

���+
���b1k

U
(xj)− b2k

U
(xj)

���
��










.

(17)

d(N1,N2)

=





1

2n

n�

j=1







1
2#hs(xj)




#hs(xj)�
ı

���α1
σ(ı)(xj)− α2

σ(ı)(xj)
���
2
+

#ϕ(hs)(xj)�
ı

�
1
3

����a1
ı

L
(xj)− a2

ı

L
(xj)

���
2

+

���a1
ı

M
(xj)− a2

ı

M
(xj)

���
2
+

���a1
ı

U
(xj)− a2

ı

U
(xj)

���
2
��




+ 1
2#gs(xj)




#gs(xj)�
ı

���β1
σ(ı)(xj)− β2

σ(ı)(xj)
���
2
+

#ϕ(hs)(xj)�
ı

�
1
3

����a1
ı

L
(xj)− a2

ı

L
(xj)

���
2

+

���b1
ı

M
(xj)− b2

ı

M
(xj)

���
2
+

���b1
ı

U
(xj)− b2

ı

U
(xj)

���
2
��







+max




max
ı




���α1
σ(ı)(xj)− α2

σ(ı)(xj)
���
2
+

�
1
3

����a1
ı

L
(xj)− a2

ı

L
(xj)

���
2

+

���a1
ı

M
(xj)− a2

ı

M
(xj)

���
2
+

���a1
ı

U
(xj)− a2

ı

U
(xj)

���
2
��


,

max
k




���β1
σ(k)(xj)− β2

σ(k)(xj)
���
2
+

�
1
3

����b1k
L
(xj)− b2k

L
(xj)

���
2

+

���b1k
M
(xj)− b2k

M
(xj)

���
2
+

���b1k
U
(xj)− b2k

U
(xj)

���
2
��














1/2

.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13784  | https://doi.org/10.1038/s41598-022-16078-6

www.nature.com/scientificreports/

Weighted distance and similarity measures between two NWDHFSs
In practice, because each x plays a different role in set X , it should be weighted variously. Therefore, in this part, 
we are going to propose some weighted versions of the aforementioned distance measures.

Weighted distance and similarity measures between two NWDHFSs in discrete case.  Suppose 
that the weights of the elements x ( = 1, 2, . . . , n) are w ( = 1, 2, . . . , n) , with w ∈ [0, 1] and 

∑n
ı=1 w = 1 . 

First of all, the normalized hamming distances, the normalized Euclidean distances and the normalized Haus-
dorff distances can be rewritten as the weighted distances, such as generalized normal wiggly dual hesitant 
weighted distance between N1 and N2 is defined as:

Generalized normal wiggly dual hesitant weighted Hausdorff distance between N1 and N2 is defined as:

where � > 0.
In particular, if � = 1 , then we get the normal wiggly dual hesitant weighted Hamming distance between N1 

and N2:
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The normal wiggly dual hesitant weighted Hamming-Hausdorff distance between N1 and N2:

If � = 2 , then we get the normal wiggly dual hesitant weighted Euclidean distance between N1 and N2:

The normal wiggly dual hesitant weighted Euclidean-Hausdorff distance:

Certainly, we can construct several hybrid weighted distance measures via joining the above distance measures, 
such as: 

1.	 The hybrid normal wiggly dual hesitant weighted Hamming distance between N1 and N2 : 
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2.	 The hybrid normal wiggly dual hesitant weighted Euclidean distance between N1 and N2 : 

3.	 The generalized hybrid normal wiggly dual hesitant weighted distance between N1 and N2 : 

Weighted distance and similarity measures between two NWDHFSs in continuous case.  In 
the last subsection, all the considered distance measures are based on discrete input data. However, sometimes 
the universe of discourse and the weights of elements are continuous. This subsection focuses on this case.

Let x ∈ [a, b] , and the weights of x be w(x) , where w(x) ∈ [0, 1] and 
∫ b
a w(x)dx = 1 . Then, the continuous 

normal wiggly dual hesitant weighted Hamming distance, the continuous normal wiggly dual hesitant weighted 
Euclidean distance and the generalized continuous normal wiggly dual hesitant weighted distance between N1 
and N2 are derived as follows:
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�

+

�
1
3

����a1
ı

L
(xj)− a2

ı

L
(xj)

���
�

+

���a1
ı

M
(xj)− a2

ı

M
(xj)

���
�

+

���a1
ı

U
(xj)− a2

ı

U
(xj)

���
�
��


,

max
k




���β1
σ(k)(xj)− β2

σ(k)(xj)
���
�

+

�
1
3

����b1k
L
(xj)− b2k

L
(xj)

���
�

+

���b1k
M
(xj)− b2k

M
(xj)

���
�

+

���b1k
U
(xj)− b2k

U
(xj)

���
�
��














1/�

.
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where � > 0.
If w(x) = 1/b− a ∀ x ∈ [a, b] , then Eqs. (28)–(30) reduce to the continuous normal wiggly dual hesitant 

normalized Hamming distance, the continuous normal wiggly dual hesitant normalized Euclidean distance 
and the generalized continuous normal wiggly dual hesitant normalized distance between N1 and N2 , which 
are shown as follows:

(28)

d(N1,N2)

=

b�

a

w(x)




1
2#hs(xj)




#hs(xj)�
ı

���α1
σ(ı)(xj)− α2

σ(ı)(xj)
���+

#ϕ(hs)(xj)�
ı

�
1
3

����a1
ı

L
(xj)− a2

ı

L
(xj)

���

+

���a1
ı

M
(xj)− a2

ı

M
(xj)

���+
���a1

ı

U
(xj)− a2

ı

U
(xj)

���
��




+ 1
2#gs(xj)




#gs(xj)�
ı

���β1
σ(ı)(xj)− β2

σ(ı)(xj)
���+

#ϕ(gs(xj))�
ı

�
1
3

����b1
ı

L
(xj)− b2

ı

L
(xj)

���

+

���b1
ı

M
(xj)− b2

ı

M
(xj)

���+
���b1

ı

U
(xj)− b2

ı

U
(xj)

���
��







dx,

(29)

d(N1,N2)

=




b�
a
w(x)




1
2#hs(xj)




#hs(xj)�
ı

���α1
σ(ı)(xj)− α2

σ(ı)(xj)
���
2
+

#ϕ(hs)(xj)�
ı

�
1
3

����a1
ı

L
(xj)− a2

ı

L
(xj)

���
2

+

���a1
ı

M
(xj)− a2

ı

M
(xj)

���
2
+

���a1
ı

U
(xj)− a2

ı

U
(xj)

���
2
��




+ 1
2#gs(xj)




#gs(xj)�
ı

���β1
σ(ı)(xj)− β2

σ(ı)(xj)
���
2
+

#ϕ(gs(xj))�
ı

�
1
3

����b1
ı

L
(xj)− b2

ı

L
(xj)

���
2

+

���b1
ı

M
(xj)− b2

ı

M
(xj)

���
2
+

���b1
ı

U
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ı

U
(xj)

���
2
��







dx




1/2

,

(30)

d(N1,N2)

=




b�
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

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
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ı
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�
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ı
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3
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ı

L
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ı

L
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�

+
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ı

M
(xj)− a2

ı

M
(xj)

���
�

+
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ı

U
(xj)− a2

ı

U
(xj)

���
�
��



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2#gs(xj)




#gs(xj)�
ı
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σ(ı)(xj)− β2
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���
�
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ı
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3
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ı
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(xj)− b2

ı

L
(xj)

���
�

+

���b1
ı

M
(xj)− b2

ı

M
(xj)

���
�

+

���b1
ı

U
(xj)− b2

ı

U
(xj)

���
�
��







dx




1/�

,

(31)

d(N1,N2)

=
1

b− a

b�

a




1
2#hs(xj)




#hs(xj)�
ı

���α1
σ(ı)(xj)− α2
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���+
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ı
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ı
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(xj)

���

+
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ı

M
(xj)− a2

ı
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(xj)

���+
���a1

ı
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ı

U
(xj)

���
��



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ı
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ı

�
1
3
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ı
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ı

L
(xj)

���

+
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ı

M
(xj)− b2

ı

M
(xj)

���+
���b1

ı

U
(xj)− b2

ı

U
(xj)

���
��







dx,

(32)

d(N1,N2)

=




1

b− a

b�
a



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2#hs(xj)




#hs(xj)�
ı

���α1
σ(ı)(xj)− α2

σ(ı)(xj)
���
2
+

#ϕ(hs)(xj)�
ı

�
1
3

����a1
ı

L
(xj)− a2

ı

L
(xj)

���
2

+

���a1
ı

M
(xj)− a2

ı

M
(xj)

���
2
+

���a1
ı

U
(xj)− a2

ı

U
(xj)

���
2
��




+ 1
2#gs(xj)




#gs(xj)�
ı

���β1
σ(ı)(xj)− β2

σ(ı)(xj)
���
2
+

#ϕ(gs(xj))�
ı

�
1
3

����b1
ı

L
(xj)− b2

ı

L
(xj)

���
2

+

���b1
ı

M
(xj)− b2

ı

M
(xj)

���
2
+

���b1
ı

U
(xj)− b2

ı

U
(xj)

���
2
��







dx




1/2

,
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where � > 0.
Now we consider the Hausdorff metric. Similar to the above, the generalized continuous normal wiggly dual 

hesitant weighted distance measure, the continuous normal wiggly weighted Hamming-Hausdorff distance and 
the continuous normal wiggly dual hesitant weighted Euclidean-Hausdorff distance between N1 and N2 can 
obtained as follows:

If w(x) = 1/b− a ∀ x ∈ [a, b] , then Eqs. (34)–(36) reduce to

(33)

d(N1,N2)

=




1

b− a

b�
a




1
2#hs(xj)




#hs(xj)�
ı

���α1
σ(ı)(xj)− α2

σ(ı)(xj)
���
�

+

#ϕ(hs)(xj)�
ı

�
1
3

����a1
ı

L
(xj)− a2

ı

L
(xj)

���
�

+

���a1
ı

M
(xj)− a2

ı

M
(xj)

���
�

+

���a1
ı

U
(xj)− a2

ı

U
(xj)

���
�
��




+ 1
2#gs(xj)




#gs(xj)�
ı

���β1
σ(ı)(xj)− β2

σ(ı)(xj)
���
�

+

#ϕ(gs(xj))�
ı

�
1
3

����b1
ı

L
(xj)− b2

ı

L
(xj)

���
�

+

���b1
ı

M
(xj)− b2

ı

M
(xj)

���
�

+

���b1
ı

U
(xj)− b2

ı

U
(xj)

���
�
��







dx




1/�

,

(34)

d(N1,N2)

=

b�

a

w(x)max




maxı




���α1
σ(ı)(xj)− α2

σ(ı)(xj)
���+

�
1
3

����a1
ı

L
(xj)− a2

ı

L
(xj)

���
+

���a1
ı

M
(xj)− a2

ı

M
(xj)

���+
���a1

ı

U
(xj)− a2

ı

U
(xj)

���
��


,

maxk




���β1
σ(k)(xj)− β2

σ(k)(xj)
���+

�
1
3

����b1k
L
(xj)− b2k

L
(xj)

���
+

���b1k
M
(xj)− b2k

M
(xj)

���+
���b1k

U
(xj)− b2k

U
(xj)

���
��






dx,

(35)

d(N1,N2)

=




b�

a

w(x)max



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

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σ(ı)(xj)
���
2
+

�
1
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(xj)− a2

ı

L
(xj)

���
2

+

���a1
ı

M
(xj)− a2

ı

M
(xj)

���
2
+

���a1
ı

U
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ı

U
(xj)
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2
��


,
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

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σ(k)(xj)
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�
1
3
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(xj)− b2k

L
(xj)

���
2

+
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(xj)

���
2
+
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U
(xj)− b2k

U
(xj)

���
2
��







dx




1/2

,

(36)

d(N1,N2)

=




b�

a

w(x)max



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���
�

+

�
1
3
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ı
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(xj)

���
�

+

���a1
ı

M
(xj)− a2

ı

M
(xj)

���
�

+
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ı

U
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ı

U
(xj)

���
�
��


,

maxk



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σ(k)(xj)
���
�

+

�
1
3
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(xj)

���
�

+

���b1k
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(xj)− b2k

M
(xj)

���
�

+

���b1k
U
(xj)− b2k

U
(xj)

���
�
��







dx




1/�

.

(37)

d(N1,N2)

=
1

b− a
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���
��






dx,
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Naturally, we can obtain various hybrid continuous weighted distance measures, such as the hybrid continu-
ous normal wiggly dual hesitant weighted hamming distance, the hybrid continuous normal wiggly dual hesi-
tant weighted Euclidean distance measure and the generalized hybrid continuous normal wiggly dual hesitant 
weighted distance between N1 and N2 as follows:

(38)

d(N1,N2)

=
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
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
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1/2

,
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=
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
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1/�

.
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=

b�

a

w(x)







1
4#hs(xj)




#hs(xj)�
ı

���α1
σ(ı)(xj)− α2

σ(ı)(xj)
���+

#ϕ(hs)�
ı

(xj)
�
1
3

����a1
ı

L
(xj)− a2

ı

L
(xj)

���

+

���a1
ı

M
(xj)− a2

ı

M
(xj)

���+
���a1

ı

U
(xj)− a2

ı

U
(xj)

���
��




+ 1
4#gs(xj)




#gs(xj)�
ı

���β1
σ(ı)(xj)− β2

σ(ı)(xj)
���+

#ϕ(gs(xj))�
ı

�
1
3

����b1
ı

L
(xj)− b2

ı

L
(xj)

���

+

���b1
ı

M
(xj)− b2

ı

M
(xj)

���+
���b1

ı

U
(xj)− b2

ı

U
(xj)

���
��







+ 1
2 max




maxı




���α1
σ(ı)(xj)− α2

σ(ı)(xj)
���+

�
1
3

����a1
ı

L
(xj)− a2

ı

L
(xj)

���
+

���a1
ı

M
(xj)− a2

ı

M
(xj)

���+
���a1

ı

U
(xj)− a2

ı

U
(xj)

���
��


,

maxk




���β1
σ(k)(xj)− β2

σ(k)(xj)
���+

�
1
3

����b1k
L
(xj)− b2k

L
(xj)

���
+

���b1k
M
(xj)− b2k

M
(xj)

���+
���b1k

U
(xj)− b2k

U
(xj)

���
��










dx,

(41)

d(N1,N2)

=





b�
a
w(x)







1
4#hs(xj)




#hs(xj)�
ı

���α1
σ(ı)(xj)− α2

σ(ı)(xj)
���
2
+

#ϕ(hs)�
ı

(xj)

�
1
3

����a1
ı

L
(xj)− a2

ı

L
(xj)

���
2

+

���a1
ı

M
(xj)− a2

ı

M
(xj)

���
2
+

���a1
ı

U
(xj)− a2

ı

U
(xj)

���
2
��




+ 1
4#gs(xj)




#gs(xj)�
ı

���β1
σ(ı)(xj)− β2

σ(ı)(xj)
���
2
+

#ϕ(gs(xj))�
ı

�
1
3

����b1
ı

L
(xj)− b2

ı

L
(xj)

���
2

+

���b1
ı

M
(xj)− b2

ı

M
(xj)

���
2
+

���b1
ı

U
(xj)− b2

ı

U
(xj)

���
2
��







+ 1
2 max




maxı




���α1
σ(ı)(xj)− α2

σ(ı)(xj)
���
2
+

�
1
3

����a1
ı

L
(xj)− a2

ı

L
(xj)

���
2

+

���a1
ı

M
(xj)− a2

ı

M
(xj)

���
2
+

���a1
ı

U
(xj)− a2

ı

U
(xj)

���
2
��


,

maxk




���β1
σ(k)(xj)− β2

σ(k)(xj)
���
2
+

�
1
3

����b1k
L
(xj)− b2k

L
(xj)

���
2

+

���b1k
M
(xj)− b2k

M
(xj)

���
2
+

���b1k
U
(xj)− b2k

U
(xj)

���
2
��










dx





1/2

,



14

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13784  | https://doi.org/10.1038/s41598-022-16078-6

www.nature.com/scientificreports/

Let w(x) = 1/b− a ∀ x ∈ [a, b] , then Eqs. (40)–(42) reduce to
(42)

d(N1,N2)

=



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Table 2.   Symptoms of three patients described with DHFSs.

s1

p1 �{0.3}, {0.6, 0.5}�

p2 �{0.5, 0.4}, {0.4, 0.3}�

p3 �{0.7, 0.6}, {0.2}�

s2

p1 �{0.7, 0.6, 0.5}, {0.2, 0.1}�

p2 �{0.3, 0.2}, {0.6, 0.5}�

p3 �{0.3, 0.2}, {0.5}�

s3

p1 �{0.6, 0.5}, {0.1}�

p2 �{0.5}, {0.4, 0.3}�

p3 �{0.6, 0.4}, {0.4, 0.3}�

s4

p1 �{0.3, 0.2}, {0.6}�

p2 �{0.4}, {0.3}�

p3 �{0.7}, {0.3, 0.1}�

Table 3.   Symptoms of diseases described with DHFSs.

D1

s1 �{0.5, 0.4, 0.3}, {0.3, 0.2}�

s2 �{0.7, 0.5}, {0.2, }�

s3 �{0.3, 0.2}, {0.5}�

s4 �{0.7}, {0.3, 0.2}�

D1

s1 �{0.4, 0.3}, {0.5, 0.3}�

s2 �{0.6, 0.4, 0.3}, {0.4}�

s3 �{0.4, 0.3}, {0.6, 0.5}�

s4 �{0.4, 0.3}, {0.5}�

D1

s1 �{0.4, 0.2}, {0.5, 0.3, 0.2}�

s2 �{0.4}, {0.5, 0.4}�

s3 �{0.6, 0.4}, {0.3}�

s4 �{0.2, 0.1}, {0.7}�
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Application of the proposed distance (similarity) measures
In what follows, we illustrate the practicality and superiority of the proposed distance measures by addressing a 
practical example of the medical diagnosis.

Practical example.  To illustrate the proposed distance measures, we present a practical example concern-
ing the medical diagnosis in this section.

Most diseases have a close resemblance with each other such as Bronchitis, influenza, Dyspnea, and pollen, 
because their symptoms are almost the same. Therefore, the experts should be more careful during testing. The 
best way is that experts should describe the symptoms grades by means of FSs rather than a crisp set. Among 
FSs, the NWDHFS is very suitable for describing the uncertain grades of an element to a given set and can be 
adapted to different sensitive evaluation problems. As discussed previously in section “Introduction”, the NWD-
HFS is not only a form of information representation but also an information mining tool. It takes DHFS as 
the original information, from which it digs the potential uncertain information of the DMs in order to get the 
complete evaluation information. This improves the accuracy of evaluation results and thus helps the experts 
to check the suspected cases more carefully and accurately. In this section, we use NWDHFSs to address the 
considered problem.

Table 4.   Symptoms of three patients described with NWDHFSs.

s1

p1

�{0.3, 0.3, 0.3}, {0.6, 0.55, 0.5}

{(0.3, 0.3, 0.3), (0.3, 0.3, 0.3), (0.3, 0.3, 0.3)}

{(0.5604, 0.5976, 0.6396), (0.4923, 0.5465, 0.6077), (0.4604, 0.4976, 0.5396)}�

p2

�{0.5, 0.45, 0.4}, {0.4, 0.35, 0.3}

{(0.4604, 0.5029, 0.5396), (0.3923, 0.4543, 0.5077), (0.3604, 0.4038, 0.4396)},

{(0.3604, 0.4038, 0.4396), (0.2923, 0.3555, 0.4077), (0.2604, 0.3038, 0.3396)}�

p3

�{0.7, 0.65, 0.6}, {0.2, 0.2, 0.2}

{(0.6604, 0.6979, 0.7396), (0.5923, 0.6470, 0.7077), (0.5604, 0.5979, 0.6396)},

{(0.2, 0.2, 0.2), (0.2, 0.2, 0.2), (0.2, 0.2, 0.2)}�

s2

p1

�{0.7, 0.6, 0.5}, {0.2, 0.1}

{(0.6206, 0.6912, 0.7794), (0.4845, 0.5872, 0.7155), (0.4206, 0.4912, 0.5794)},

{(0.1697, 0.2101, 0.2303), (0.0697, 0.1101, 0.1303)}�

p2

�{0.3, 0.25, 0.2}, {0.6, 0.5}

{(0.2604, 0.3053, 0.3396), (0.1923, 0.2577, 0.3077), (0.1604, 0.2053, 0.2396)}

{(0.5697, 0.5972, 0.6303), (0.4697, 0.4972, 0.5303)}�

p3

�{0.3, 0.25, 0.2}, {0.5, 0.5}

{(0.2604, 0.3053, 0.3396), (0.1923, 0.2577, 0.3077), (0.1604, 0.2053, 0.2396)},

{(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)}�

s3

p1

�{0.6, 0.5}, {0.1, 0.1}

{(0.5697, 0.5972, 0.6303), (0.4697, 0.4972, 0.5303)}

{(0.1, 0.1, 0.1), (0.1, 0.1, 0.1)}�

p2

�{0.5, 0.5}, {0.4, 0.3}

{(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)},

{(0.3697, 0.4043, 0.4303), (0.2697, 0.3043, 0.3303)}�

p3

�{0.6, 0.4}, {0.4, 0.3}

{(0.5393, 0.6, 0.6607), (0.3393, 0.4, 0.4607)},

{(0.3697, 0.4043, 0.4303), (0.2697, 0.3043, 0.3303)}�

s4

p1

�{0.3, 0.2}, {0.6, 0.6}

{(0.2697, 0.3060, 0.3303), (0.1697, 0.2060, 0.2303)}

, {(0.6, 0.6, 0.6), (0.6, 0.6, 0.6)}�

p2

�{0.4, 0.4}, {0.3, 0.3}

{(0.4, 0.4, 0.4), (0.4, 0.4, 0.4)},

{(0.3, 0.3, 0.3), (0.3, 0.3, 0.3)}�

p3

�{0.7, 0.7}, {0.3, 0.1}

{(0.7, 0.7, 0.7), (0.7, 0.7, 0.7)},

{(0.2393, 0.3304, 0.3607), (0.0393, 0.1304, 0.1607)}�
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Assume that there are three suspected patients say P1 , P2 and P3 with the symptoms S1(fever), S2(cough), S3
(shortness of breath) and S4(sore throat). The values of these symptoms are listed in Tables 2, respectively. The 
weight vector of these four symptoms is w = (0.3, 0.3, 0.2, 0.2)T . The ideal symptoms of the diseases D1(bronchitis 
influenza), D2(dyspnea) and D3(pollen) are described in Table 3 in the form of DHFSs. The corresponding normal 
wiggly dual hesitant forms of the data presented in Tables 2 and 3 are derived in Tables 4 and 5, respectively, which 

Table 5.   Symptoms of diseases described with NWDHFSs.

D1

s1

�{0.5, 0.4, 0.3}, {0.3, 0.25, 0.2}

{(0.4615, 0.5064, 0.5385), (0.3184, 0.4136, 0.4816), (0.2615, 0.3064, 0.3385)}

{(0.2807, 0.3026, 0.3193), (0.0408, 0.2554, 0.2908), (0.1807, 0.2026, 0.2193)}�

s2

�{0.7, 0.6, 0.5}, {0.2, 0.2}

{(0.6615, 0.6957, 0.7385), (0.5184, 0.5909, 0.6816), (0.4615, 0.4957, 0.5385)}

{(0.2, 0.2, 0.2), (0.2, 0.2, 0.2)}�

s3

�{0.3, 0.2}, {0.5, 0.5}

{(0.2697, 0.3060, 0.3303), (0.1697, 0.2060, 0.2303)},

{(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)}�

s4

�{0.7, 0.7}, {0.3, 0.2}

{(0.7, 0.7, 0.7), (0.7, 0.7, 0.7)}

{(0.2697, 0.3060, 0.3303), (0.1697, 0.2060, 0.2303)}�

D2

s1

�{0.4, 0.35, 0.3}, {0.5, 0.4, 0.3}

{(0.3807, 0.4018, 0.4193), (0.3092, 0.3539, 0.3908), (0.2807, 0.3018, 0.3193)},

{(0.4615, 0.5064, 0.5385), (0.3184, 0.4136, 0.4816), (0.2615, 0.3064, 0.3385)}�

s2

�{0.6, 0.4, 0.3}, {0.4, 0.4}

{(0.549, 0.6118, 0.651), (0.2797, 0.4278, 0.5203), (0.2296, 0.3162, 0.3704)},

{(0.4, 0.4, 0.4), (0.4, 0.4, 0.4)}�

s3

�{0.4, 0.3}, {0.6, 0.5}

{(0.3697, 0.4043, 0.4303), (0.2697, 0.3043, 0.3303)},

{(0.5697, 0.5972, 0.6303), (0.4697, 0.4972, 0.5303)}�

s4

�{0.4, 0.3}, {0.5, 0.5}

{(0.3697, 0.4043, 0.4303), (0.2697, 0.3043, 0.3303)},

{(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)}�

D3

s1

�{0.4, 0.3, 0.2}, {0.5, 0.3, 0.2}

{(0.3615, 0.4085, 0.4385), (0.2184, 0.3181, 0.3816), (0.1615, 0.2085, 0.2385)}

{(0.449, 0.5153, 0.551), (0.1797, 0.3360, 0.4203), (0.1296, 0.2211, 0.2704)}�

s2

�{0.4, 0.4, 0.4}, {0.5, 0.4}

{(0.4, 0.4, 0.4), (0.4, 0.4, 0.4), (0.4, 0.4, 0.4)}

{(0.4697, 0.5034, 0.5303), (0.3697, 0.4034, 0.4303)}�

s3

�{0.6, 0.4}, {0.3, 0.3}

{(0.5393, 0.6, 0.6607), (0.3393, 0.4, 0.4607)}

{(0.3, 0.3, 0.3), (0.3, 0.3, 0.3)}�

s4

�{0.2, 0.1}, {0.7, 0.7}

{(0.1697, 0.2101, 0.2303), (0.0697, 0.1101, 0.1303)}

{(0.7, 0.7, 0.7), (0.7, 0.7, 0.7)}�

Table 6.   The generalized normal wiggly dual hesitant weighted distances among patients and diseases. 
Significant values are in bold.

� = 1 � = 2 � = 4 � = 6

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

D1 0.4193 0.3977 0.3629 0.1689 0.1125 0.0996 0.02044 0.0123 0.0093 0.0076 0.0009 0.0010

D2 0.3519 0.2664 0.4295 0.0889 0.0453 0.1145 0.0112 0.0020 0.0108 0.0020 0.0001 0.0013

D3 0.3306 0.3046 0.4343 0.0738 0.0681 0.1698 0.0052 0.0067 0.0404 0.0004 0.0009 0.0120
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will be utilized to seek diagnoses for suspected patients based mainly on the closest distance between diseases and 
each patient. Three kinds of distances (i.e., the generalized weighted normal wiggly dual hesitant fuzzy distance, 
the generalized weighted Hausdorff normal wiggly dual hesitant fuzzy distance, and the generalized weighted 
hybrid normal wiggly dual hesitant fuzzy distance) with different values of � are adopted. First of all, the gener-
alized weighted normal wiggly dual hesitant fuzzy distances among patients and diseases are shown in Table 6.

Generally, the distances between each disease and patient decrease along with the value of � . However, it is 
not difficult to conclude that no matter what the value of � is P1 suffers from lethal disease D3 , P2 is troubled with 
D2 and P3 is attacked by D1 , for the reason that the distance measure of P1 , P2 and P3 with nominated diseases 
is smallest.

Secondly, we take the generalized weighted Hausdorff normal wiggly dual hesitant fuzzy distance into account. 
By employing the distance Formulae (20), the distance measures between each disease and patient are derived in 
Table 7. It can be noticed from Table 7 that the main problems for P1 , P2 and P3 are D3 , D2 and D1 , respectively. 
Further, in all cases(� = 1, 2, 4, 6 ), the results are stable.

Finally, if we employ the generalized weighted hybrid normal wiggly dual hesitant fuzzy distance to derive 
diagnosis for suspected patients. The obtained results are shown in Table 8. Though the formulas (19), (20) and 
(27) for three distance measures are different, but one can observe from Tables 6, 7, and 8 that the conclusions 
drawn by these formulas are same. Further, one can also observe that the computed distance measures between 
the patients and the diseases for � = 1, 2, 4, 6 (but not limited to) reveal that the diagnosis remains unaltered. 
This finding is presented by the graphs in Figs.  1, 2 and 3, where the curves from up to down respectively in 
correspondence with each other. This guarantee that the proposed distance measures stability and rationality.

Table 7.   The generalized normal wiggly dual hesitant weighted Hausdorff distances among patients and 
diseases. Significant values are in bold.

� = 1 � = 2 � = 4 � = 6

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

D1 0.6145 0.5562 0.5365 0.2356 0.1795 0.1726 0.0436 0.0240 0.0209 0.0091 0.0028 0.0025

D2 0.5325 0.4007 0.6007 0.1794 0.0925 0.1890 0.0269 0.0063 0.0216 0.0068 0.0005 0.0026

D3 0.4770 0.4393 0.6380 0.1276 0.1164 0.2668 0.0109 0.0114 0.0676 0.0006 0.002 0.0212

Table 8.   The generalized hybrid normal wiggly dual hesitant weighted distances among patients and diseases. 
Significant values are in bold.

� = 1 � = 2 � = 4 � = 6

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

D1 0.5169 0.4769 0.4497 0.2023 0.1460 0.1360 0.0221 0 .0182 0.0154 0.0084 0.0018 0.0012

D2 0.4422 0.3327 0.5175 0.1342 0.0689 0.1473 0.0190 0.0042 0.0159 0.0005 0.0003 0.0018

D3 0.4038 0.3719 0.5338 0.1007 0.0923 0.2183 0.0080 0.0090 0.0540 0.0003 0.0012 0.0166

Figure 1.   Graphical illustration of the generalized normal wiggly dual hesitant weighted distance measure.
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Graphical illustration and discussion.  In this part, we present the numerical results derived in above 
example graphically in order to verify the effectiveness and essential differences among them.

Figures 1, 2 and 3 also indicate various significant results. When employing different distance measures, 
one can notice that the calculated values are increasing or decreasing as the value of � fluctuates. For instance, 
if we employ the generalized weighted distance measure to determine the distances (shown as Fig. 1), the cal-
culated values are monotonically decreasing as the parameter � increases and vice versa. Analogous results can 
be obtained from Figs. 2, and 3 also. Therefore, from this aspect, the parameter � can be deemed as a DM’s risk 

Figure 2.   Graphical illustration of the generalized normal wiggly dual hesitant weighted Hausdorff distance 
measure.

Figure 3.   Graphical illustration of the generalized hybrid normal wiggly dual hesitant weighted distance 
measure.

Table 9.   The generalized dual hesitant distances among patients and diseases. Significant values are in bold.

� = 1 � = 2 � = 4 � = 6

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

D1 0.2074 0.1524 0.1072 0.2648 0.2073 0.1567 0.3099 0.2659 0.2078 0.3318 0.3012 0.2349

D2 0.1632 0.1312 0.1536 0.2160 0.1742 0.2088 0.2613 0.2199 0.2605 0.2815 0.2453 0.2864

D3 0.1311 0.1754 0.2354 0.1893 0.2187 0.2932 0.2396 0.2563 0.3508 0.2627 0.2750 0.3864
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attitude. Thus, the presented distance measures give the DMs more choices as they can choose the value of � 
according to their preferences.

It is mandatory for us to compare all the distance and similarity measures studied in this article for ease of 
implementation. All the measures proposed in section “Distance and similarity measures between two NWD-
HFSs” are basically about the distance and similarity measures between two NWHFSs. The measures discussed 
in section “Weighted distance and similarity measures between two NWDHFSs” have a weighted form as there 
are different types of NWDHFEs in each set Nr(r = 1, 2) , and the NWDHFEs within the set may have various 
importance grades. The normal wiggly dual hesitant Hamming distance and the normal wiggly dual hesitant 
Euclidean distance are the specific cases of the generalized normal wiggly dual hesitant distance measure, using 
� = 1 and � = 2 , respectively. The normal wiggly dual hesitant Hamming Hausdorff distance and the normal wig-
gly dual hesitant Euclidean Hausdorff distance are also the particular cases of the generalized normal wiggly dual 
hesitant Hausdorff distance measure in the sense that taking � = 1 and � = 2 , respectively. In the same manner, 
the hybrid normal wiggly dual hesitant Hamming distance and the hybrid normal wiggly dual hesitant Hausdorff 
distance are also specific cases of the generalized hybrid normal wiggly dual hesitant distance measure with � = 1 
and � = 2 , respectively. The Hausdorff distance is known as the largest distance. If we pay attention to the values 
in the three Tables 6, 7 and 8, it is easy to figure out that the generalized normal wiggly dual hesitant Hausdorff 
weighted distances are much bigger than the corresponding generalized normal wiggly dual hesitant weighted 
and generalized Hybrid normal wiggly dual hesitant weighted distances. The distance measures introduced in 

Table 10.   The generalized dual hesitant distances with preference among patients and diseases. Significant 
values are in bold.

� = 1 � = 2 � = 4 � = 6

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

D1 0.1037 0.0762 0.0536 0.1872 0.1466 0.1108 0.2606 0.2236 0.1747 0.2956 0.2683 0.2093

D2 0.0816 0.0656 0.0768 0.1527 0.1232 0.1477 0.2197 0.1849 0.2191 0.2508 0.2185 0.2552

D3 0.0655 0.0877 0.1177 0.1339 0.1546 0.2073 0.2015 0.2155 0.2949 0.2341 0.2450 0.3443

Table 11.   The weighted generalized dual hesitant distances with preference among patients and diseases. 
Significant values are in bold.

� = 1 � = 2 � = 4 � = 6

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

D1 0.0244 0.0192 0.0147 0.0899 0.0728 0.0591 0.1795 0.1553 0.1286 0.2296 0.2086 0.1710

D2 0.0201 0.0158 0.0178 0.0761 0.0598 0.0697 0.1561 0.1285 0.1493 0.2003 0.1714 0.1972

D3 0.0172 0.0877 0.0288 0.0691 0.0752 0.1009 0.1454 0.1496 0.2027 0.1887 0.1917 0.2659

Table 12.   The generalized normal wiggly hesitant distances with preference among patients and diseases. 
Significant values are in bold.

� = 1 � = 2 � = 4 � = 6

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

D1 0.2889 0.3155 0.2817 0.3225 0.3065 0.2892 0.3640 0.3135 0.3030 0.4080 0.3215 0.3148

D2 0.1710 0.1633 0.3277 0.1658 0.1659 0.3064 0.1735 0.1921 0.3134 0.1800 0.2151 0.3243

D3 0.1431 0.2209 0.3483 0.1547 0.2101 0.3876 0.1940 0.2249 0.4398 0.2260 0.2404 0.4722

Table 13.   The weighted generalized normal wiggly hesitant distances with preference among patients and 
diseases. Significant values are in bold.

� = 1 � = 2 � = 4 � = 6

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

D1 0.1853 0.2291 0.2286 0.2535 0.2628 0.2623 0.3209 0.2932 0.2882 0.3748 0.3095 0.3045

D2 0.1240 0.1265 0.2451 0.1407 0.1475 0.2636 0.1596 0.1834 0.2903 0.1702 0.2099 0.3069

D3 0.1134 0.1640 0.2587 0.1415 0.1794 0.3238 0.1883 0.2059 0.3941 0.2221 0.2258 0.4360
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section “Weighted distance and similarity measures between two NWDHFSs in continuous case” also have the 
same properties, i.e., the generalized normal wiggly dual hesitant weighted distance, generalized normal wiggly 
dual hesitant weighted Hausdorff distance, and the generalized hybrid normal wiggly dual hesitant weighted 
distance are the fundamental types of the weighted distance measure between NWDHFSs, and the rest are their 
particular cases. When the weights are provided in discrete form, one can employ the measures presented in 
chapter 4.1, while if the weights are given in the continuous form, then the continuous distance measure studied 
in section “Weighted distance and similarity measures between two NWDHFSs in continuous case” can be used.

Comparison.  In order to analyze the ranking results thoroughly and illustrate the advantages of the pro-
posed distance measures, this part compares the above decision-making results with the results produced by the 
classical distance measures60,65.

We first employ the Wang et al.60, distance measures to solve the problem given in section “Practical example”. 
The decision matrices Tables 2 and 3, and the weight vector w = (0.3, 0.3, 0.2, 0.2)T are used to derive diagnosis 
for suspected patients. The generalized dual hesitant distance, generalized dual hesitant distances with preference 
and weighted generalized dual hesitant distances with preference (α = β = 1/2)60 are used to seek diagnoses 
for the three patients according to various values of � . The obtained results are depicted in Tables 9, 10, and 11.

It is easy to see from Tables 9, 10 and 11 that the results derived by Wang et al.’s measures are totally the same 
as normal wiggly dual hesitant fuzzy measures. This discloses that the proposed distance measures are appropri-
ate and practicable. Likewise, the proposed measures, Wang et al.’s measures are also stable with a variation in 
� , as can be seen from Tables 9, 10, and 11. Though the results are exactly the same, the discrimination of Wang 
et al.’s measures is evidently weaker than our designed measures. The cause of this is that Wang et al.’s measures 
are based only on dual hesitant fuzzy information, while the proposed measures are constructed for normal 
wiggly dual hesitant fuzzy data. Thus, in this case, DMs’ deeper uncertain information coupled with DHFSs is 
necessary to achieve more rational outcomes. The normal wiggly dual hesitant fuzzy information covers the 
dual hesitant fuzzy information and consists of uncertain information, which is revealed using rational methods 
from the original dual hesitant fuzzy information. The distance measures60 used in Table 10 and 11 have an extra 
advantage of the preference coefficients, which can be decided accordant with DMs’ psychological preference, 
but these coefficients are users defined values, and the results are also sensitive to these values (can be seen in60). 
Thereby, DMs need some training before using these measures because the authors have not provided specific 
guidelines to the users about selecting these coefficients in the manuscript.

To further compare the performance of the proposed measures, we utilize the distance measures outlined 
by65 to address the provided problem.

Since Yang et al.65 measures consider only the membership parts of NWDHFSs, therefore, we take advantage 
of only normal wiggly hesitant fuzzy data of Tables 4 and 5 while deriving the desired results. Further, the weights 
of criteria are taken as that considered in the proposed distance measures.

The obtained results are depicted in Tables 12 and 13. Evidently, the results derived by Yang et al. ’s measures 
are roughly the same as derived by the proposed measures, which validates the efficiency of devised measures. 
However, from Table 12, we find that the patient p1 suffers from disease D2 instead of disease D1 by taking the 
parameter values � = 4, 6 . Apart from this, similar situation occurs in Table 13 also for � = 2, 4, 6 . Thus, by vary-
ing the values of � , the results derived by65 measures are unstable. This is because these measures only consider the 
membership part and its corresponding deeper uncertain information but ignore the non-membership aspect, 
which loss the original information to a certain degree. On the other hand, the proposed measures are based on 
normal wiggly dual hesitant fuzzy setting, which reserves all the dual hesitant fuzzy information. However, as 
discussed before, the existing measures60,65 have an extra advantage of the DMs’ psychological preferences factor, 
which plays a key role while making decisions.

From the above comparative study, the designed measures have the following advantages: 

1.	 Potential information: The proposed measures context not only allows DMs to assign assessment values like 
DHFS but also reflects the potential information hidden behind the original data, which facilitates them to 
obtain a more accurate result.

2.	 Stability: According to Tables 6, 7, and 8 the computed distance measures between the patients and the 
diseases decreases with the increasing value of � , but the diagnosis remains unaltered. This phenomenon 
demonstrates the stability and rationality of the designed measures.

3.	 Rapidity: The presented measures take less time in the data-processing technique and better model emer-
gency decision-making problems.

The provided measures also suffer from certain disadvantages as listed below: 

1.	 Artificial values: In the proposed measures, shorter DHFEs are extended to the same length by including 
some artificial values. The inclusion of these artificial values increases the evaluation process’s subjectivity 
and may yield irrational results.

2.	 DMs’ psychological preferences: The presented mathematical formulations ignore the DMs’ psychological 
preferences factor60,65, which plays a key role while making decisions.
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Concluding remarks and suggestions
NWDHFS, as an extension of DHFS, can not only retains the original dual hesitant fuzzy information but also 
obtains valuable uncertain information, which can help DMs to express the evaluation information more com-
pletely. The present work introduced several distance and similarity measures under the background of NWD-
HFS. After elaborating the refined operational laws, we first generalized the extension rule of length for normal 
wiggly dual hesitant fuzzy setting and then studied a series of distance measures for NWDHFSs based on the 
ideas of the well-known Hamming distance, the Euclidean distance, the Hausdorff metric, the hybrid distance, 
and their extensions. Subsequently, we proposed a family of weighted version distance measures for both discrete 
and continuous cases and discussed their special cases in depth. It should be noted that we have concentrated 
our attention on distance measures in this study, while the corresponding similarity measures for NWDHFSs 
can be obtained through the relationship between the distance measures and similarity measures. In the end, a 
practical example of medical diagnosis is addressed to show the validity and practicality of the developed distance 
and similarity measures with a detailed discussion of the parameter influence. From the numerical results, we 
observed that the parameter � can be considered as a DM’s risk attitude. Consequently, the proposed distance 
measures offer more choices to DMs as the parameter regarding DM’s risk preferences is provided.

The following lines may be the directions for future research. 

1.	 Because of the importance of hesitance degree66, one can introduce the concept of hesitance degree of NWD-
HFS and can propose several novel distance and similarity measures between NWDHFSs by including the 
hesitance degree.

2.	 Likewise the hesitance degree, researchers can also investigate distance and similarity measures in terms of 
preference coefficients to tackle the situation where DMs have different preferences between the hesitant 
part and wiggly part28.

3.	 By extending the matching function67 to NWDHFS context, experts can also study the similarity measure 
for NWDHFSs based on the matching function. Further, the research on the theory of credibility degree68 
is also inevitable.

4.	 The construction of ordered weighted distance and similarity measures69 under the background of NWDHFS 
is an open problem.

5.	 The method and principle of finding the DM’s weights, including the numerical effects of the weights and 
how to assign appropriate weights for different DMs, may also be the direction for future research.

Data availability
All data generated or analyzed during this study are included in this published article.
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