
royalsocietypublishing.org/journal/rsbl
Research
Cite this article: O’Brien DA, Clements CF.
2021 Early warning signal reliability varies

with COVID-19 waves. Biol. Lett. 17: 20210487.
https://doi.org/10.1098/rsbl.2021.0487
Received: 10 September 2021

Accepted: 15 November 2021
Subject Areas:
health and disease and epidemiology,

ecosystems, ecology, environmental science

Keywords:
bifurcation, coronavirus, critical transition,

forecasting, monitoring, pandemic
Author for correspondence:
Duncan A. O’Brien

e-mail: duncan.a.obrien@gmail.com
© 2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.5724054.
Population ecology

Early warning signal reliability varies with
COVID-19 waves

Duncan A. O’Brien and Christopher F. Clements

School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK

DAO, 0000-0002-3420-5210; CFC, 0000-0001-5677-5401

Early warning signals (EWSs) aim to predict changes in complex systems
from phenomenological signals in time series data. These signals have
recently been shown to precede the emergence of disease outbreaks, offering
hope that policymakers can make predictive rather than reactive manage-
ment decisions. Here, using a novel, sequential analysis in combination
with daily COVID-19 case data across 24 countries, we suggest that compo-
site EWSs consisting of variance, autocorrelation and skewness can predict
nonlinear case increases, but that the predictive ability of these tools varies
between waves based upon the degree of critical slowing down present.
Our work suggests that in highly monitored disease time series such as
COVID-19, EWSs offer the opportunity for policymakers to improve the
accuracy of urgent intervention decisions but best characterize hypothesized
critical transitions.
1. Introduction
As with many natural systems, the emergence of infectious disease is often
sudden and nonlinear, making it difficult for policymakers to identify and
appropriately manage threats [1,2]. Balancing the health risks posed by novel
diseases and the possible economic impact of imposing mitigation strategies
is therefore a complicated process ultimately dependent on the timing of
strategy implementation [3].

The severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), which
causes the coronavirus disease 2019 (COVID-19), exemplifies this challenge.
There has been widespread criticism, in response to the harm the pandemic
has inflicted, of the speed and severity of the national strategies to the virus
threat [4,5]. To date, governments have imposed a spectrum of clinical (e.g.
intensive care unit construction), non-pharmaceutical (e.g. large-scale lock-
downs) and, most recently, vaccination-based strategies, with the timing of
implementation dramatically influencing the case curve between legislative
regions [6]. The optimum moment of action is unclear, however, with sugges-
tions that, due to periods of cryptic transmission [7,8], strong non-
pharmaceutical interventions (NPIs) two weeks earlier than performed may
have halved cumulative deaths [9,10]. Identifying this cryptic window would
therefore improve strategy decisions involving possible NPIs based upon the
relevant COVID-19 situation.

Unfortunately, the causes of disease emergence and re-emergence often
appear idiosyncratic [11], requiring the use of context-specific models [12,13]
or risk assessments limited to initial emergence only [14]. These methods are
powerful tools and have become keystones during the COVID-19 pandemic
response, but are restricted by data availability [15,16] and potential for the
lack of transparency [17]. Due to these difficulties, there have been suggestions
to consider disease emergence as critical transitions [18] where a forcing
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pressure, such as host movement or pathogen evolution,
drives the system towards a threshold. If considered in this
manner, then a suite of alternative methods based upon the
concept of critical slowing down (CSD) becomes applicable
in the identification of transitions in disease and, potentially,
COVID-19 dynamics.

CSD represents the compromised ability of a system to
recover from perturbation as it approaches a threshold at
which a small perturbation in state triggers a positive feed-
back loop and system shift [19]. From this phenomenon,
various mechanism-independent and summary statistic indi-
cators have been identified across a range of simulated [20,21]
and empirical [22,23] studies. In disease systems, CSD was
established as tracking a transcritical transition in the effec-
tive reproductive number, Reff, [24] or number of secondary
infections an infectious individual causes. Below one, second-
ary infection is unlikely whereas above one, transmission is
common and an outbreak occurs. The period where Reff

increases towards one is represented by a region of ‘stutter-
ing’ transmission [25] during which CSD also increases
[24,26]. ‘Early warning signal’ (EWS) summary statistics
based upon CSD will therefore precede the rapid increase
in cases at the beginning of an outbreak [27].

EWSs have been shown to predict the emergence of dis-
eases empirically and in simulations [24,28,29]. Variance
and autocorrelation increased prior to malaria resurgence in
Kenya [28] and before the initial emergence of COVID-19 in
seven of the nine countries assessed [30]. In the latter, the
exponential increase in cases resulted from the inherently
high Reff of the SARS-CoV-2 pathogen (greater than 1) [31]
rather than a transcritical transition. CSD is therefore not con-
ceptually anticipated to be present [32]. However, wider
research has suggested that CSD-based signals may be ident-
ifiable not only before a critical transition, but also prior to
strong nonlinearity [20,33]; even in the absence of a defined
bifurcation, EWSs may detect rapid case increases. This
supposition has since been supported by simulated work
showing EWSs increase during early stages of exponential
and logistic change [34], implying a circumstance exploitable
during disease monitoring to identify both exponential
growth and transcritical transitions. For the successive
COVID-19 re-emergences, however, NPIs restricting Reff [35]
have theoretically introduced a period of stuttering trans-
mission to cause CSD, and EWSs may act as expected.
Thus, COVID-19 represents a unique opportunity to test the
efficacy of EWSs in multiple sequential outbreaks by asses-
sing the wave-like dynamics expressed in most countries [36].

Here, we test whether EWSs can predict sequential
increases in COVID-19 daily cases, developing a novel method-
ology to detect and subset data into successive waves of
infection. Using the suggested framework, we show evidence
that EWSs can be identified prior to nonlinear COVID-19 case
increases with the second wave best pre-empted, matching
the theoretical predictions. Our results provide suggestions on
how to use EWSs in a management scenario, where decisions
must be made as data are collected, rather than post hoc.
2. Methods
(a) Data availability
Daily COVID-19 case data were collected from the World Health
Organization’s dashboard (https://covid19.who.int/info/),
spanning 30 January 2020 to 9 June 2021. We analysed positive,
daily COVID-19 cases rather than cumulative cases as performed
by other studies [30], thus allowing us to attempt the prediction
of sequential COVID-19 outbreaks. Case data can be inaccurate
from incomplete testing and cryptic cases [35], but we wanted to
explore the viability of EWSs using the most universally collected
and interpreted data type. The data were consequently analysed
in its raw form with no detrending performed.

(b) COVID-19 wave identification
To assess the increase and decline of COVID-19 cases and define
nonlinear regions that can be considered ‘waves’, generalized
additive models (GAMs) were iteratively fitted to daily cases in
an ‘add-one-in’ fashion, using the R [37] package ‘mgcv’ [38]
(see electronic supplementary material 1 for further details. The
entire workflow is visualized in the electronic supplementary
material 1, figure S1). The time series’ inflection points, defined
by the significant differing of the GAM smooth’s first derivatives
from zero, as assessed by 95% pointwise confidence intervals
[39], were used to identify nonlinear regions of case increase/
decrease and wave onset/subsidence.

(c) Early warning signal calculation
The presence of EWSs was then calculated using the framework
suggested by [40] and developed in [23,41]. Briefly, this approach
differs from rolling window EWS methodologies [32,42] by
assessing change in an expanding window via a composite
metric consisting of multiple indicators. Here, we focussed on
the two most used EWS indicators, variance (represented by
the standard deviation, s.d.) and autocorrelation at first lag
(acf ) [43], as well as skewness (skew), following the initial
authors [40]. Each indicator was normalized by subtracting its
expanding mean from its calculated value at time t before divid-
ing by its expanding standard deviation [23]. A composite metric
was then constructed by summing all individual indicator values
calculated per t. An EWS was considered present when the
composite metric exceeded its expanding mean by 2σ [40]. The
2σ threshold was chosen based upon its equivalency to a 95%
confidence interval and repeatedly favourable performance
compared to other threshold levels [23,41].

As the expanding mean is the basis of assessment, a previous
wave will often mask the appearance of second (electronic
supplementary material 2, figure S2). Consequently, once a wave
subsided, as assessed by GAM first derivatives, the data were cut
and the EWS assessment-GAM fitting restarted, truncating the
time series from the point of wave end. This resulted in a series
of EWS and GAM assessments, each for a specific wave and inde-
pendent from previous waves. Additionally, the expanding
window approach is initially susceptible to false-positive signals
due to the short time series length and high variability when few
data points are supplied to the algorithm. To mitigate this, a
seven-time step burn-in period was introduced to ‘train’ the signals.

Evidence suggests that a persistent signal for two time steps
is sufficient to reduce the frequency of false positives [44] and so
a ‘warning’ was acknowledged when signals were detected for
two consecutive time steps. From the calculated indicators, we
present both the individual indicator strengths over time as
well as the difference between the time-of-first-detection and
the estimated onset of nonlinearity in the UK and abroad. We
also identify the superior indicator or combination of indicators
for specifically pre-empting COVID-19 case increase.
3. Results
Using the UK as a case study, GAMs predicted three signifi-
cantly increasing regions in daily COVID-19 cases. These
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regions correspond to the onset of Waves 1, 2 and, tentatively,
3 beginning on 9 March 2020, 15 September 2020 and 18 May
2021, respectively. From this prediction, two restarts of the
EWS-GAM analysis were performed on 7 July 2020 and 12
April 2021 following the subsidence of each wave. Only
‘s.d. + skew’ and the composite metric exceeded the 2σ
threshold at least once during each UK wave (figure 1).
Under our definition of a ‘warning’, Wave 1 was un-detected,
whereas Wave 2 was pre-empted by 48 days and indicators
lagged Wave 3 by 10 days.

Similar results were observed in 24 other countries, with
GAMs predicting at least two significantly nonlinear increases
in each country’s daily COVID-19 cases (excluding Portugal).
Nine countries also exhibited a third increase (electronic sup-
plementary material 2, figure S3) and Japan alone exhibited
a fourth increase. When warnings were averaged between
countries, each sequential wave was more weakly pre-
empted, although the first wave had the highest false-negative
rate of all waves across all indicators (electronic supplemen-
tary material 2, table S1, μ ± s.e.: Wave 1 = 0.62 ± 0.02, Wave
2 = 0.27 ± 0.01, Wave 3 = 0.22 ± 0.01). The composite metric
was the most robust indicator of both emergence and re-emer-
gence (electronic supplementary material 2, table S1; figure 2)
with a false negative rate of approximately 0.28 compared to
approximately 0.37 for variance, approximately 0.43 for skew-
ness and approximately 0.53 for autocorrelation. The
composite’s mean detection time did decrease from a 14.6
day pre-emption of COVID-19 emergence to 13.2 days for
first re-emergence (Wave 2) and 5.0 day lag for second re-
emergence (electronic supplementary material 2, table S1).

European countries displayed the earliest mean pre-
emption of the first wave when assessed using the composite
metric (figure 2; +26.0 ± 2.8 days), but with a high false-
negative rate (0.78) compared to Asia (0.2) which displayed
the second earliest mean pre-emption (+19.0 ± 5.7 days).
European countries also pre-empted the second wave earliest
(+27.2 ± 2.1 days, 0.33 false negative) although no region
pre-empted the third wave; other (Africa and the Middle
East) exhibited the shortest lag (−0.5 ± 5.3 days, 0.00 false
negative).
4. Discussion
These results show that EWSs based on the theory of CSD are
sufficient to predict the emergence and re-emergence of
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COVID-19 in multiple countries, but that their ability is con-
text dependent. Indicator ability is improved when time
series are subset into individual waves unbiasedly estimated
using an iterative GAM approach (figure 1; electronic
supplementary material 2, figure S2) but, when EWSs are
detected, they only appear for short periods before disap-
pearing. This weakens the practicality of EWSs as a
predictive tool for policymakers, as only a few warnings
may appear prior to the nonlinear increase. Nevertheless,
the observed degree of pre-emption supports EWSs use for
characterizing both exponential growth at emergence and
later periods of ‘stuttering’ transmission.

Time series variance consistently predicted nonlinear case
increase, implying that the indicator is the most informative
for characterizing disease outbreaks. This is congruent with
previous disease [28,45] and ecological [23,43] findings. The
relative weakness of autocorrelation was unexpected consid-
ering those studies also identified autocorrelation as a reliable
indicator, yet the improvement of the triple composite EWS
regardless highlights the benefit of the composite metric
approach developed by [40] over individual indicators.

Although this study provides evidence for the partial suc-
cess of EWS indicators during COVID-19 re-/emergence,
their application is often hampered by the quality of data
available [46]. Epidemiological data can be particularly pro-
blematic due to the reporting style of practitioners. Clinical
testing effort changes over time [47] and case data can be
aggregated into weekly or monthly counts with the exact
date of infection of an individual unknown and many cases
being cryptic due to a lack of symptoms [35]. While EWSs
based upon disease incidence often display unique behaviour
compared to the same indicators based upon disease preva-
lence [29], this study suggests EWSs can detect changes in
daily data via an expanding window and is supported by
other studies implementing the alternative rolling window
approach [29,48]. COVID-19 case data from Europe does pro-
vide a best-case example for EWS assessment, due to the
frequency of testing and defined periods of stationarity
enforced by NPIs resulting in improved pre-emption com-
pared to other regions (figure 2), but as many governments
alter their approach towards future pandemics [49], the
data quality may become universal.

The variable pre-emption between waves reported here is
particularly important as, statistically, the lag between tran-
sition and disease emergence is not fully understood [27].
In this study, it is likely that second re-emergence is not
pre-empted due to the shrinking stationary period between
it and the previous wave, which in some circumstances
may be only one to two weeks in length (e.g. Argentina,
Colombia, India). This supports Dablander and colleagues’
suggestion [32] that some ‘settling down’ of infection rates
is required for EWSs to be persistent and pre-emptive, further



5

royalsocietypublishing.org/journal/rsbl
Biol.Lett.17:20210487
weakening their generic usage. Similarly, first re-emergence
displaying lowest false-negative EWS rates is consistent
with critical theory; wave 2 is anticipated to be the only tran-
scritical transition observed in the time series and so is the
only wave thought to display CSD. We therefore suggest
that while composite EWSs are not universally detectable
prior to COVID-19 waves, they may supplement routine
trend analysis in the current monitoring toolbox, alongside
other possible early indicators (social media activity—[50],
viral shedding in sewerage—[51]), as indicative of persistent
nonlinear case growth rather than solely critical transitions.

In conclusion, we suggest that composite EWS indicators
may provide useful predictive tools during monitoring,
particularly where cases are maintained at low variability
for extended periods. When waves rapidly follow one
another, CSD-based tools can indicate strong nonlinearity,
but these signals are most reliable when Reff is maintained
sufficiently low that re-emergence results from a transcritical
transition. These results support wider notions that EWSs are
best suited as a ‘preliminary analysis’ indicative of a system at
risk and requiring intervention consideration. Although we
advocate the use of sequential EWS assessment if used for
disease monitoring, it is harder to apply this approach in
multi-dimensional systems where a stationary period is
likely unidentifiable. Ecosystems, for example, are constantly
fluctuating in response to intrinsic or extrinsic drivers [52],
with it unclear the minimum length of time series to defini-
tively identify the system’s trend [53]. Nonetheless, if
periods of stationarity can be identified, we believe sequential
assessment is necessary for EWS usage to prevent bias from
historic transitions.
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