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Hypothalamus (HT), this small structure often perceived through the prism of

neuroimaging as morphologically and functionally homogeneous, plays a key role in the

primitive act of feeding. The current paper aims at reviewing the contribution of magnetic

resonance imaging (MRI) in the study of the role of the HT in food intake regulation. It

focuses on the different MRI techniques that have been used to describe structurally and

functionally the Human HT. The latest advances in HT parcellation as well as perspectives

in this field are presented. The value of MRI in the study of eating disorders such as

anorexia nervosa (AN) and obesity are also highlighted.
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INTRODUCTION

Energy expenditure appears as a continuous process, while energy refilling through food intake
is by nature discontinuous. In order to keep the body fat mass stable, a mechanism guaranteeing
an efficient balance between energy expenditure and energy intake is therefore needed (1). Modern
ways of life in developed countries tend to disturb such energetic balance. Indeed, this phenomenon
is leading to drastic increases in the prevalence of eating disorders such as obesity, often referred as
“globesity” (2) or AN, which holds the highest mortality rate of any mental illness (3). Although it
is true that eating behavior is influenced by our lifestyle, it is the result of the complex association
of genetic, metabolic and neurological alterations that have not been completely elucidated to date.

One key structure in the control of the energetic balance is the hypothalamus (HT), a small and
complex deep brain structure. HT is composed of four sub-regions: the pre-optic, anterior, tuberal
and mammillary regions. These regions project to the autonomous system, and the primary and
associative systems. They each host multiple nuclei which bear different physiological-anatomical
characteristics. Along the rostral-caudal axis, HT is composed by, (i) at the anterior level: the
preoptic nuclei (lateral and medial), the anterior hypothalamic nuclei, the paraventricular nuclei
(PVN), the anteroventral periventricular nuclei, the supraoptic nuclei and the suprachiasmatic
nuclei; (ii) at the medial level: the dorsomedial nuclei, the ventromedial nuclei, and the arcuate
nuclei; (iii) laterally: the lateral nucleus and (iv) and at the posterior level: the posterior nucleus
and the mammillary bodies (Figure 1). Each of these nuclei has specific roles in homeostatic
regulation of energy, food intake, thirst but also temperature, sexual dimorphism, sleep and
circadian rhythm (6).
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Most of the knowledge regarding the functional role of HT
nuclei in food intake processes have been derived from animal
studies (7–9). Figure 2 is an attempt to summarize the current
knowledge on such networks. Pioneer works in rats showed
that bilateral lesions of the ventromedial HT (VMH) induced
hyperphagia while bilateral lesions of the lateral hypothalamic
area (LHA) provoked hypophagia (11). These early lesion
approaches led to the definition of VMH as the “center of satiety”,
responsible for the food intake inhibition, and LHA as the “center
of hunger”, whose role is to stimulate food intake (11). The PVN
sends information to the endocrine system while the LHA carries
input to the cortex and limbic systems (12).

Advances in deciphering such mechanisms were also
possible through the characterization of a network called the
‘hypothalamic lipostat’, which refers to the neuronal pathways
involved in the integration of information related to food intake
(13). HT ensures energy balance in the long term by integrating
factors circulating by humoral or vagal pathways such as satiety
signals and adipokines [see (10) for review]. More recently,
the “gut-brain axis” was also associated to the regulation of
food intake. Indeed, serotonin-secreting cells found in the gut
communicate with the brain through the vagus nerve (14, 15).
Visceral signals from the gut activate neurons in the nucleus
of the solitary tract (NTS), which stimulates regions known to
mediate feeding behavior, such as the lateral parabrachial nucleus
(PBN) localized in the pons (16). The gut-brain axis is also
involved in food reward (17) and sugar preference (18).

Five hypothalamic nuclei have been associated to food intake
regulation: the lateral, ventromedial, dorsomedial, PVN and

FIGURE 1 | Structural organization of HT and its nuclei. (A) Coronal slice of the hypothalamus, (B) Sagittal slice of the hypothalamus. Ant, anterior hypothalamus; Arc,

arcuate nucleus, DHA, dorsal hypothalamic area; DMH, dorsomedial hypothalamus; LHA, lateral hypothalamic area; MB, mammillary body; Pe, periventricular

nucleus; Post, posterior hypothalamic nucleus; PreO, preoptic nucleus; PVN, paraventricular nucleus; SCN, suprachiasmatic nucleus; SON, supraoptic nucleus; VMH,

ventromedial hypothalamus; 3V, third ventricle. Based on (4, 5).

arcuate nuclei (19). The arcuate nuclei hosts first order neurons,
which impose antagonistic effects on food intake. On one hand,
neurons expressing the neuropeptide Y (NPY) and neuropeptide
agouti-gene related peptide (AgRP) project to second order
neurons localized in the PVN to stimulate appetite (12). On the
other hand, neurons expressing proopiomelanocortin (POMC)
and the neuropeptide cocain and amphetamine related transcript
(CART) project to second order neurons contained in the LHA
in order to inhibit food intake (12), although POMC neurons’
role seems more contrasted than previously described [see (20)
for review]. Depending on energetic state, different types of
signals activate or inhibit these neurons. Indeed, when lipid
reserves are high, plasmatic leptin concentration increases (21).
Leptin is an anorexigenic hormone, which acts on food intake
in the long term. It reduces appetite by increasing the activity
of POMC/CART neurons and inhibiting NPY/ AgRP neurons
(22). The regulation of food intake is ensured in the short and
medium term by insulin as well. After a meal, insulin secretion
rises and exercises an anorexigenic effect (22). Intestinal peptides
also modulate appetite. For example, cholecystokinin (CCK),
PYY 3–36 and glucagon-like peptide-1 (GLP-1) stimulate satiety
whereas ghrelin promotes food intake (22). New hypothalamic
regions have recently been shown to be involved in food intake
mechanisms. For example, the tuberal lateral nucleus seems to
promote an orexigenic effect on food intake by inhibiting the
PVN through somatostatin (SST) interneuron signaling (23).

In addition, food intake is subjected to a non-homeostatic
control influenced by the palatability of food as well as
the environment and emotional state (24). Second order
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FIGURE 2 | Schematic pathway of the lipostat and its peptidergic circuitry. According to hunger state, hormones are released by the intestine, pancreas and fat mass.

Those signals directly influence neuronal activity in the hypothalamus through their action on antagonistic neurons located in the arcuate nucleus (Arc): orexinergic

neurons expressing neuropeptide Y (NPY)/ agouti-related peptide (AgRP) and anorexinergic neurons expressing pro-opio-melanocortine (POMC)/ cocaine- and

amphetamine- regulated transcript (CART). Gut hormones such as cholecystokinin (CCK), peptide YY (PYY), glucagon-like peptide 1 (GLP-1) inhibit NPY/AgRP

neurons while ghrelin stimulates NPY/AgRP neurons. The pancreas secretes insulin while leptin is secreted by fat mass cells. Both hormones trigger the inhibition of

NPY/AgRP neurons but the stimulation of POMC/CART neurons. Red arrows represent inhibitory connections, green arrows represent stimulatory connections, gray

connections represent indirect pathways. The paraventricular nucleus (PVN) hosts neurons expressing oxytocin, thyrotropin-releasing hormone (TRH) and

corticotropin-releasing hormone (CRH), while the lateral hypothalamic area (LHA) contains neurons expressing orexin and melanin-concentrating hormone (MCH). The

’+’ sign means the nucleus has an orexinergic effect on food intake when activated, whereas the ’−’ sign indicates that the nucleus has an anorexinergic effect on

food intake when activated. Indeed, when activated, the dorsomedial hypothalamus (DMH) and lateral hypothalamic area (LHA) have an orexinergic action while the

ventromedial hypothalamus (VMH) and paraventricular nucleus (PVN) have an anorexinergic action on food intake. Finally, the PVN sends information to the endocrine

system while the LHA carries input to the cortex and limbic systems (24). 3V, third ventricle.
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hypothalamic neurons constitute intermediate relays to some
regions of the limbic system such as the amygdala, the
hippocampus, the insula, the striatum and the orbitofrontal
cortex (OFC). These structures, already known to be involved
in emotions, memory or addictions, seem to have an important
role in modulating eating behavior (22). Furthermore, the limbic
system undergoes an inhibitory control from the prefrontal
cortex which promotes meal termination (25).

HT dysfunction has long been implicated in eating disorders
such as obesity (26) and anorexia nervosa (AN). With 650
million people affected worldwide in 2016, obesity is defined
by a body mass index (BMI) over 30, resulting from an
abnormal fat accumulation, which presents a risk to health
(WHO). Rat studies showed that obesity induced by high
fat diet led to a chronic low-grade HT inflammation with
insulin and leptin resistance which promoted weight gain (27,
28). Besides, obese individuals showed T2 hyperintensity in
the mediobasal HT, reflecting gliosis (29). More generally,
HT appears to be an open window for some saturated fatty
acids (SFAs) such as palmitate passing through the partially
incomplete blood brain barrier in the arcuate nuclei and the
median eminence (30–32). Furthermore, it was shown that
the presence of SFAs in the HT induces neuronal responses
leading to stimulated inflammatory cytokine expression, reactive
oxygen species (ROS) production, endoplasmic reticulum stress
and microglia recruitment [see (33) for review]. These findings
collectively support the hypothalamic inflammatory hypothesis.
Malfunction of the reward system has also been associated
to a decreased availability of dopamine D2 receptor (D2R)
proportionally to the BMI of patients (34).

Concurrently, AN affects approximately 4% of females
and 0.3% males during their lifetime (35). This pathology
is characterized by an important self-inflicted restriction of
food intake leading to a BMI below 17.5, intense fear of
gaining weight, as well as altered body perception influencing
self-esteem and causing denial of the severity of current
thinness (Diagnostic and Statistical Manual of Mental Disorders
5th Ed. (DSM-5) criteria http://www.dsm5.org/meetus/pages/
eatingdisorders.aspx). In comparison to obesity, the cellular
mechanisms and physiological substrates of AN have not been
as thoroughly characterized (36). However, the administration
of D2/3 receptors (D2/3R) antagonists to a rodent model
of AN, the “activity-based anorexia” (ABA) model, was
found to reduce weight loss and hypophagia, and increase
survival (37). Furthermore, D2/3R density or affinity seem to
increase in AN patients (38). As it is the case for obesity,
this result support the existence of a dysfunction of the
dopaminergic system in AN. Therefore D2/3R appear to be
interesting therapeutic targets for AN. Furthermore, serotonin
levels have been associated to almost all the behavioral
changes observed in AN patients, such as extreme dieting
weight loss, hyperactivity, depression/anxiety, self-control, and
behavioral impulsivity (39). However, one of the most interesting
hypothesis on the pathophysiology of AN is that chronic food
restriction alters the ghrelin signaling pathway and leads to the
development of abnormal behaviors such as addiction to food
starvation (40).

Overall, translation of the cellular mechanisms observed in
animal models to Human is not easy and straightforward. In
that context, neuroimaging has appeared as a game changer to
explore food intake and the consequences of its deregulation
from an anatomical, functional or even metabolic point of view
(41, 42). However, in order to define the precise function of each
hypothalamic nucleus in human, it is necessary to clarify their
location and their respective roles within the different functional
brain networks. Given the small size of the HT, its location and
the large number of hypothalamic nuclei, fine characterization of
HT is still ongoing. This paper gives an overview of the different
neuroimaging studies which have attempted to characterize the
HT, as well as the different ways to progress in the field. We will
also highlight the undeniable value of MRI in the study of eating
disorders such as AN and obesity.

ANATOMICAL MRI CHARACTERIZATION,
PARCELLATION AND MORPHOMETRY OF
HT

HT is generally poorly defined or individualized in the numerous
subcortical brain atlases proposed in the literature (43–48).
Despite the fact that brain MRI stands out as the most suitable
tool in the study of the central nervous system, the poor
contrasts between hypothalamic nuclei has led to consider the
HT as a single homogeneous structure, which prevents the
precise morphological characterization of each nuclei. Moreover,
hypothalamic MRI is subject to artifacts as a consequence of the
vicinity of the HT with sinuses and bones (41). Nevertheless,
standardized guidelines have been proposed for manual HT
delineation as a single structure (49). Recently, a few MRI
studies aimed at characterizing hypothalamic sub-regions based
on anatomical references. The first neuroimaging atlas of the HT
was based on 3D-MRI acquired at 1.5T in twenty healthy subjects
(50). Thus, by combining anatomical, histological and magnetic
resonance images, the human HT was parcellated into PVN,
VMH, arcuate nuclei, and the posterior hypothalamic area (50).

One year later, combination of in vivo 1.5T MRI and ex vivo
7T MRI data allowed Makris and co-workers to individualize
five hypothalamic sub-regions: the lower anterior HT, the upper
anterior HT, the lower tuberical HT, the upper tuberical HT and
the posterior HT (51). This approach was sufficiently robust to
perform quantitative morphometry of HT sub-parts, showing an
overall larger HT in men relative to women after correction for
brain size. Indeed, significant differences in sizes were reported
bilaterally in the five HT subregions, especially in the tuberal
region which includes the LHA, infundibular, PVN, VMH, and
supraoptic nucleus (51).

A more detailed parcellation was proposed by Lemaire and
collaborators, based on a 1.5T MRI database (52). Using precise
anatomical landmarks, especially the white matter (WM) bundles
neighboring the HT, most internal hypothalamic structures were
located: posterior nucleus, dorsomedial nucleus, infundibular
nucleus, lateral nucleus, mammillary body, PVN, preoptic nuclei,
suprachiasmatic nucleus, supraoptic nucleus, tuberomamillaris
nucleus and VMH (52).
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FIGURE 3 | Projection of the Neudorfer hypothalamic atlas into a homemade 7T MP2RAGE Uni-Den template. Ac, anterior commissure; AHA, anterior hypothalamic

area; AN, arcuate nucleus; BNST, bed nucleus of stria terminalis; dB, diagonal band of Broca; DM, dorsomedial hypothalamic nucleus; DPEH, dorsal periventricular

hypothalamus; FX, fornix; LH, lateral hypothalamus; MM, mammillary bodies; MPO, medial preoptic nucleus of the hypothalamus; MT, mammillothalamic tract; NBM,

nucleus basalis of Meynert; Pa, paraventricular nucleus; Pe, periventricular nucleus; PH, posterior hypothalamus; RN, red nucleus; SC, suprachiasmatic nucleus; SN,

substantia nigra; SO, supraoptic nucleus; STN, subthalamic nucleus, TM, tuberomammillary nucleus; VM, ventromedial nucleus; ZI, zona incerta.

More recently, the first digital human brain atlas to
gather neuroimaging, high-resolution histology, and chemo-
architecture was created (53). This atlas has the particularity
to be based on 7T MRI and 3T diffusion-weighted imaging
(DWI) scans, as well as 1,356 large-format cellular resolution
(1 µm/pixel) Nissl and immunohistochemistry anatomical
plates from a complete adult female brain. Using this strategy
enabled the description of every hypothalamic nuclei, including
the most challenging structures to describe such as the
suprachiasmatic nucleus.

However, a step forward was reached recently by Neudorfer
and colleagues (4) who proposed a template based on a
large set of 3T data composed by 990 3D-MPRAGE T1-
weighted MRI (isotropic voxel size 1 mm3) of healthy
controls from the Human Connectome Project database
(https://www.humanconnectome.org/study/hcp-young-adult/
document/1200-subjects-data-release). Using state-of-the-art
multiscale template-building methods including non-linear
registration procedures [ANTS, http://stnava.github.io/ANTs
(54)], the authors proposed the first complete high-resolution
in-vivo anatomical atlas of the human HT with a spatial
resolution up to 0.25 × 0.25 × 0.25mm voxel size. Based on
this high resolved template, three experts were able to delineate
the thirteen hypothalamic nuclei and individualized them.
Projection to individual subjects using non-linear registration
showed differences in volumes of hypothalamic nuclei which are

dependent on brain hemisphere and subject gender in healthy
subjects. These improvements in delineation and quantification
were highly dependent on the artificially increased spatial
resolution brought by the use of a large number of exams, which
limited partial volume effects and allowed for a better contrast
between HT nuclei.

In this context, spatially more resolved raw data, brought by
in vivo ultra-high field (UHF) 7T MRI, should play a major role
in the finer characterization of HT nuclei at the individual level.
Indeed, it should open new opportunities to better understand
individual structural organization of tiny HT sub-structures.
Thus, unbiased MP2RAGE acquisitions performed at 7T (55)
should provide T1 weighted images and unbiased quantitative
T1 maps at high spatial resolution (typically 0.6 x 0.6 x 0.6mm)
and allow for a better description of HT sub-structures. As an
example, projection of the Neudorfer hypothalamic atlas to a
home-made 7TMP2RAGE Uni-Den template on a single subject
is presented in Figure 3.

Figure 4 compares two different parcellation processes of the
human HT using MRI.

In line with these technological improvements regarding
acquisition and post-processing methods, the finer
structural characterization of HT nuclei using UHF MRI
should play a major role in the depiction of structural
abnormalities in the different HT nuclei of patients with eating
disorders.
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FIGURE 4 | Representative diagram of the advances in the parcellation of the hypothalamus. (A) Schematic drawing of hypothalamic nuclei, lateral view from the

midline. Left, nuclei directly located under the wall of the third ventricle; right, more deeply located nuclei up to the lateral region (52). (B) 3D overview of hypothalamic

nuclei, constructed from a 3D high-field MRI data set. Left, frontal view; middle, lateral view; right, medial view. VTA, ventral tegmental area; Ac, anterior commissure;

D, dorsal or posterior nucleus: Dm, dorsomedial nucleus; Fx, fornix; F, fornix nuclei; If, infundibular (arcuate) nucleus; L, lateral nucleus; Mb, mammillary body; Mtb,

Fmillo-thalamic bundle; Cx, optic chiasma; Pv, paraventricular nucleus; Pr, preoptic nuclei; Sc, suprachiasmatic (ovoid) nucleus; Vf, ventricular foramen; So, supraoptic

(tangential) nucleus; Tm, tuberomamillaris (mamilloinfundibularis) nucleus; Vm, ventromedial (tuber principal) nucleus (52). (C) 3D reconstruction of hypothalamic nuclei

and their neuroanatomical relationships. (a) top view, (b) bottom view, (c) frontal view, (d) occipital view, (e) sagittal view depicting the outer surface of hypothalamic

nuclei, (f) sagittal view depicting the inner surface of hypothalamic nuclei. AH, anterior hypothalamic area; AN, arcuate nucleus; DP, dorsal periventricular nucleus; DM,

dorsomedial hypothalamic nucleus; LH, lateral hypothalamus; MPO, medial preoptic nucleus; PA, paraventricular nucleus; PE, periventricular nucleus; PH, posterior

hypothalamus; SCh, suprachiasmatic nucleus; SO, supraoptic nucleus; TM, tuberomammillary nucleus; VM, ventromedial nucleus (4).

ANATOMICAL CHARACTERIZATION OF HT
IN OBESITY AND ANOREXIA NERVOSA

Very few structural hypothalamic abnormalities have been
observed in obesity, while whole brain morphometry showed
subtle gray matter (GM) atrophy in some regions of the frontal
lobe implicated in behavioral control such as the post-central
gyrus, the frontal operculum as well as the putamen which is
involved in the regulation of taste and reward (56–58). BMI has
been positively associated with GM volume in the right middle
occipital gyrus involved in visual processing and systematically

activated in food-cue task (57). Such high GM volumes of
occipital regions of obese individuals could be associated to the
selective attention bias toward appetitive food cue (59) and could
constitute a predictor of future weight gain (57). In contrast,
total body fat appeared negatively correlated with volumes of
subcortical GM structures, with greater associations in men
compared to women (58).

On the other hand, a lot of structural hypothalamic
abnormalities were found in AN. HTGM volume has been found
to be correlated with BMI in AN patients (60). Moreover, while
a higher decrease in GM volume was observed in the cerebellum
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FIGURE 5 | Schematic representations of extra-hypothalamic networks of food intake. For clarity concern, extra-hypothalamic connections reported in the literature

have been divided in an appetitive network (left) and a control network (right). BNST, bed nucleus of the stria terminalis; Hipp, hippocampus; HT, hypothalamus; NA,

nucleus accumbens; Parietal, parietal cortex; Occipital, occipital cortex; OFC, orbitofrontal cortex; Thal, thalamus. The schematic sagittal slice of the hypothalamus

(HT) includes; Ant, anterior hypothalamus; Arc, arcuate nucleus; DHA, dorsal hypothalamic area; DMH, dorsomedial hypothalamus; LHA, lateral hypothalamic area;

MB, mammillary body; Pe, periventricular nucleus; Post, posterior hypothalamic nucleus; PreO, preoptic nucleus; PVN, paraventricular nucleus; SCN, suprachiasmatic

nucleus; SON, supraoptic nucleus; VMH, ventromedial hypothalamus.

of AN patients with longer disease duration (> 9 years), lower
hypothalamic GMwas found significant only in AN patients with
shorter disease duration (< 3 years) (60).

Furthermore, a meta-analysis of voxel-based morphometry
in AN revealed regional GM decreases in the left HT and
other areas implicated in somatosensory perception and appetite,
such as the left inferior parietal lobe, right lentiform nucleus
and right caudate (61). Nevertheless, and surely due to the
lack of spatial resolution, the largest variations were observed
outside the HT, with enlargement of ventricles, cortical sulci
(62), interhemispheric fissure and generalized volume reduction
(63) associated with cortical thinning (64). GM atrophy has
been specifically observed in somatosensory and reward regions
which could explain abnormal reward responses to food stimuli
and distortion of body perception (61). However, the nutritional
status in AN affects cortical folding (65), and a longitudinal study
on adolescent and young adults with acute and recovered AN
patients reported that weight restoration seems to have a rapid
reversible effect on cortical thinning (66).

STRUCTURAL CONNECTIVITY OF
HYPOTHALAMUS

The appetitive and self-control brain networks underlying food
intake regulation can be represented by three interconnected
sub-networks. First, the “lipostat” regulating energy balance
signals including the HT, the ventral tegmental area (VTA) and
the Substantia Nigra (SN) participating in the dopaminergic
system. Second, the “limbic system” receiving sensory inputs

and programming action to fulfill energy. This sub-network
is composed by the amygdalar and hippocampal formations
(memory, emotion, learning), the insula (ingestive cortex), the
OFC and the ventromedial prefrontal cortex (VMPFC) (eating
value), the accumbens nuclei and the striatum (motivation and
value to action). Finally, the “control system” is composed by
the dorsolateral prefrontal cortex (DLPFC) and the anterior
cingulate cortex (ACC) which participates in self-regulation (67).
Through the participation of its numerous nuclei and their WM
connections, the HT appears as a central node for each of these
different sub-networks.

Diffusion-weighted MRI has helped to better characterize in
vivo this organization. Kamali and coworkers showed that the
stria terminalis connects the amygdala to the anterior HT (68).
The stria terminalis projects to the mammillary body region as
well as multiple septal and hypothalamic nuclei, which could not
be identified due to the lack of spatial resolution (68). Atlases
of human neuroanatomy reported that the ventral amygdalo-
fugal fibers originating from the basolateral and central nucleus
of the amygdala, project to the nucleus accumbens, basal
forebrain, medial dorsal nucleus of the thalamus (69). The ventral
amygdalo-fugal fibers also reach the septal nuclei, LHA, lateral
preoptic, anterior and tuberal nuclei of the HT (70, 71).

The fornix originates from the hippocampal formation and
links the hippocampus to major structures involved in the
homeostatic (HT), hedonic valence (amygdala) and reward
control (OFC, nucleus accumbens) of food intake (12, 68,
72). The fornix fibers were also shown to terminate in the
region of mammillary bodies and septal nuclei (68). The
pathway connecting the hippocampus to the HT might be
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involved in the motivated and conditioned pattern of food
intake (73).

Recently, Kamali’s team was the first to reconstruct the
dorsal thalamo-hypothalamic tract, revealing in the meantime
the existence of a direct connection from the dorsal thalamus to
the ventral hypothalamic nuclei (74). The authors hypothesized
that since the thalamus constitutes a hub for somatosensory
information, the dorsal thalamic nuclei could carry sensory
information from the thalamus to the limbic system, in particular
to the HT. These findings are in line with studies done in
rats suggesting the association of the thalamus and the HT
with eating behavior, food motivation/ reward and the circadian
rhythms (75–77).

A high-spatial and angular resolution diffusion weighted
tractography technique revealed the detailed pathway of
the parieto-occipito-hypothalamic tract. The parieto-occipito-
hypothalamic tract seems to allow for visuosensory information
to be carried from the parietal and occipital cortices to the
limbic system, especially the HT and the bed nucleus of the
stria terminalis. This finding stresses the point that many limbic
functions, such as hunger, fear or circadian rhythm rely on
visuo-sensory information (78).

The cerebellum might be involved in the locomotor and
foraging aspects of eating behavior (79). Lesional animal
studies showed that ablation of the cerebellar nuclei induced
degeneration in the HT, reflecting the existence of a cerebello-
hypothalamic connection (80, 81). In human, high-resolution
diffusion-weighted tractography at 3T revealed that the
cerebellar-ponto-hypothalamic tract is responsible for the
reciprocal communication between the cerebellum and the
limbic system, especially the HT and the septum (82). More
recently, a direct cerebello-hypothalamic tract was described in
Human. Indeed, DTI results reported fibers projecting from the
cerebellar nuclei to the contralateral anterior HT and ipsilateral
posterior HT (83). The cerebellar-hypothalamic connection
seems to allow for the convergence of non-limbic information to
the limbic system through the hypothalamic and septal nuclei.
Numerous animal studies support the modulatory action of
the cerebellum on food intake through its action on the HT
(84). Therefore, these findings suggest that the cerebellar-ponto-
hypothalamic tract might carry the modulatory action of the
cerebellum on hypothalamic feeding centers.

Finally, structural connectivity derived fromDTI tractography
was used to parcel the HT by studying the orientations and
projections of the different efferent and afferent WM fibers
connecting the HT to other brain areas. Lemaire and co-
workers characterized parts of the macroscopic internal structure
of the HT and its extrinsic connectivity with deep brain
and cortical regions (85). Thus, preoptic, anteroventral and
lateral hypothalamic regions were shown to predominantly
project to the right frontal hemisphere, largely involved in
behavioral control (85). Figure 5 summarizes the structural
extra-hypothalamic networks of food intake discussed above.
Using color coded directional fractional anisotropy (FA) maps
of the HT, three different subregions of the HT were defined:
an anteromedial region with dorsoventral diffusion direction,
a posteromedial region with rostro-caudal direction, and a

lateral region with mediolateral direction (86). The anteromedial
region was assigned to the PVN, anterior, and dorsomedial
hypothalamic nucleus and part of the LHA, the lateral region to
the VMH and supraoptic nucleus and finally the posteromedial
region to the suprachiasmatic, infundibular, VMH, posterior
hypothalamic, medial and lateral mammillary nucleus.

ALTERED STRUCTURAL CONNECTIVITY
IN OBESITY AND ANOREXIA NERVOSA

Obesity has been associated with abnormal WM volume and
microstructure as well as microstructural brain diffusion changes
in HT and other structures involved in satiety and hunger
(87). Indeed, DWI studies revealed that the apparent diffusion
coefficients (ADCs) of HT, hippocampal gyrus, amygdala,
insula, cerebellum and midbrain were significantly increased
in obese patients. More specifically, hypothalamic longitudinal
diffusivity λ1, a DTI metric related to axonal integrity, has
been found to be negatively correlated with fat mass in obese
subjects (88). Furthermore, altered hypothalamic microstructure,
characterized by a higher mean diffusivity (MD) within the
HT, has been associated with a higher BMI (89). Indeed,
alteration in the hypothalamic microstructure visible on DTI
has been associated with the presence of inflammatory factors,
such as C-reactive protein (CRP) or lipopolysaccharide-binding
protein (LBP) (88). However, there is no consensus regarding
the sign of the correlations between BMI and WM volumes.
Most studies have established an increase of WM volume in
the frontal, temporal, parietal and occipital lobes, fusiform
and parahippocampal gyri, brainstem and cerebellum in obese
relative to lean participants (90, 91). On the contrary, a decrease
in WM volume has been reported in overweight and obese
older adults within the frontal lobe, anterior cingulum and
corona radiata (92). The percentage of total body fat has been
positively associated with global FA in men and women, and
negatively associated with global MD in women. These results
suggest that obese women globally present higher integrity but
lower magnitude of WM microstructure, showing differential
gender effects of obesity on WM microstructure (58). Generally,
the association between markers of obesity and diffusion
parameters seems stronger in women than in men (93). However,
regionally, obese individuals demonstrate a negative correlation
between BMI and FA in the corpus callosum and fornix (94).
Furthermore, BMI was found to be negatively associated with
the microstructural integrity of numerous WM bundles such
as callosal and limbic tracts (95). Interestingly, obese subjects
show partial recovery of WM volumes after only 6 weeks of
dieting (90).

Alteration of WM microstructure has also been observed in
AN patients (96). DTI studies reported low FA and/or high MD
of the fornix, amygdala and the prefrontal region in AN (97).
Low FA was also found in the lateral part of the cerebellum
of AN patients (84, 98). This result is in line with animal
studies stating that cerebellar nuclei would modulate lateral
hypothalamic response to satiety and hunger through interaction
with gastric vagal nerves (99).
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Using a probabilistic tracking algorithm, the same team
who implemented the first 3D-MRI atlas of the HT (50)
found a significant reduction in the number of fibers in
the arcuate nucleus of AN patients and leanness controls
compared to normal-weight controls but higher connectivity
of LHA in AN compared to leanness and normal-weight
controls (42). In the same study, high basal levels of
HT glutamatergic markers (Glutamate-Glutamine/Cr ratios)
derived from magnetic resonance spectroscopy (MRS) dropped
abnormally following food intake in AN compared to controls
(42). Therefore, lower BMI seems to be associated to a specific
altered structural connectivity of the arcuate nucleus and LHA as
well as a different HT metabolic response to food intake (42).

Moreover, AN seems to be characterized by a disrupted
fronto-accumbal structural connectivity since a longitudinal
neuroimaging study revealed that the abnormal increase in
structural connectivity within the fronto-accumbal network
found in AN patients persisted even after weight recovery (100).

However, the full structural connectome of HT nuclei
is far from being entirely described, both at the intra-
HT and extra-HT connectivity levels. DTI techniques cannot
provide crucial information such as the afferent or efferent
nature of fiber tracts. Only significant improvements in
DWI acquisitions and models including high angle resolution
diffusion imaging (HARDI), orientation diffusion functions,
multi-shell acquisitions and/or UHF protocols increasing spatial
resolution (101), and correlation with post-mortem data
should allow for the full characterization of these complex
hypothalamic networks. In that sense, improvement of post-
processing pipelines validated in large cohorts (102) will help to
correct distortion artifacts (eddy currents, susceptibility effects,
motions. . . ) in UHF DWI and will allow for high quality data to
be accurately overlaid with HT nucleus structural atlases.

FUNCTIONAL CONNECTIVITY OF
HYPOTHALAMUS

Appetite networks have also been explored through the
prism of functional connectivity (FC) by using resting-state
functional MRI (rs-fMRI). rs-fMRI consists in recording
temporal correlations of low frequencies blood oxygen level
dependent (BOLD) fluctuations between various brain areas
during a “resting” period (103). This technique is commonly used
to identify functional networks when no task is performed (104).

Such paradigm was used to explore the effect of fasting
and satiation on the FC patterns in healthy subjects (105).
Interestingly, variations of blood glucose levels between scans
accounted for numerous altered functional connectivities.
Indeed, FC between the left HT and inferior frontal gyrus
strengthened during fasting whereas FC increased between the
right HT and the superior parietal cortex during satiation (105).

In healthy subjects, a depleted energy state seems to favor
connectivity of the HT with the inferior frontal gyrus, which
is implicated in suppressing the desire for food and preventing
temptation to eat (106, 107). On the contrary, satiation is
associated with a stronger connectivity between the HT and the

superior parietal cortex, which is hypothesized to be involved in
decreasing the eating drive by being less distracted by thoughts
of food or eating (105). Thus, the HT connectivity seems to be
lateralized and to depend on the energy state.

Hunger may increase effective connectivity (EC) from
posterior insula to anterior insula while EC from the anterior
insula to posterior insula may be decreased (108). Therefore,
individuals’ energy states affect the strength and directionality
of connections between sub-regions of the insula. However, this
same study failed to provide evidence of an effect of hunger on
the connection between the HT and the insula.

Seed-based resting-state connectivity maps derived from a
3T MRI database of 49 healthy subjects were generated from
the LHA (109) considered as the hunger center, and from
the medial HT (including the VMH) considered as the satiety
center (11, 110). The LHA was shown to be strongly connected
to the dorsal striatum (caudate, putamen), anterior cingulum,
thalamus, and frontal operculum, regions involved in goal-
directed behavior (111), and to the lateral OFC implicated in
coding stimulus reward value (112). The LHA was also shown
to receive preferentially inputs from the lateral OFC (113). In
contrast, the medial HT showed stronger connections with the
ventral striatum (nucleus accumbens), the medial OFC and the
occipital gyrus, regions involved in reward and motivation (114)
and with the medial OFC (113).

Improvement of statistical power through a better temporal
resolution and higher spatial resolution available with UHF
MRI scanners (115) should be a game changer in the study of
functional reorganization of HT networks in healthy subjects and
eating disorders patients.

MODULATION OF FC IN OBESITY AND
ANOREXIA NERVOSA

Functional connectivity is altered in obese patients when
compared to healthy subjects. On one hand, high BMI subjects
show a decreased global brain connectivity (GBC) in the lateral
and prefrontal cortices, the insula and the limbic system (116),
and a reduced FC between HT and regions involved in cognitive
control such as the superior parietal lobule (117). On the other
hand, obese patients show increased global brain connectivity
in the visual, parietal, and premotor cortices (116). Functional
connectivity of the LHAwith the ventral striatum, anterior insula
and OFC were found to be enhanced in obese compared to
healthy individuals (118). In addition, high BMI subjects show
increased FC between HT and regions involved in motivation
processes (insula, thalamus, globus pallidus, cerebellum) (117),
and increased FC between medial HT and regions involved
in reward processing such as OFC and nucleus accumbens
(109). Therefore, BMI is positively associated with FC between
HT and brain regions involved in motivated feeding, reward
processes andmotricity, while FC betweenHT and areas involved
in cognitive control of food intake is negatively correlated to
BMI (117).

Modulation of hunger states showed that obese patients
exhibit higher connectivity between the HT and the medial
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prefrontal cortex (PFC) and the dorsal striatum when fasted
compared to lean subjects (119). Furthermore, in contrast to lean
subjects, FC between HT and the PFC did not decrease when
fed, which could explain the increased craving for food obese
individuals experience during a fast (119). Additionally, lower FC
was found between the HT and brainstem in response to glucose
administration in obese compared to normal-weight control
(120). These results stress the presence of FC alterations between
the HT and regions involved in the inhibition of the eating
drive, thus limiting the control of the balance between energy
intake and expenditure (119). However, weight loss surgery
allowed reversibility of FC abnormalities within HT networks,
with restored lower FC between the HT and the OFC and
somatosensory cortices (121).

Even though numerous resting-state fMRI studies were
conducted in AN, most of them did not look at HT connectivity.
Indeed, they rather focused on altered local- and large-scale-
connectivity of “conventional” resting state networks (RSN)
such as the default mode network (DMN), the visual network
and auditory networks, as well as the reward and cognitive
control systems. The DMN is a network associated with stimulus-
independent thoughts and self-reflection (122). Within this
network, increased FC was observed between the dorsal ACC
and regions such as the precuneus and the retro-splenial cortex,
which was positively correlated with body shape questionnaire
scores (123). Such FC increase could represent a supplementary
effort of the cognitive control system to restrain appetite (124).
Data driven approach using independent component analysis
(ICA) showed increased FC between the angular gyrus and
the frontoparietal network in AN, which was also correlated
with stronger cognitive control scores (125). In AN patients
compared to healthy subjects, ECwas increased from the bilateral
orbitofrontal gyrus to the right IFG and from the bilateral insula
to the left IFG while EC was decreased from the right inferior
frontal gyrus to the mid-cingulum (109). These findings suggest
that connectivity within the control network is reduced whereas
connectivity between salience-related systems is increased in AN.

The ventral attentional circuit was also shown to be
abnormally highly connected in AN, especially the inferior
frontal gyrus (126). Since the ventral attention circuit allows
for the implementation of appropriate behavioral responses,
especially when an unexpected or salient stimulus occurs,
its alteration could be responsible for lower interoceptive
sensations awareness and struggles in adapting one’s behavior to
environmental needs (127).Visuospatial and auditory processing
involved in self-body image have also appeared to be disturbed
in AN patients, with reduced FC within the lateral visual cortices
and the auditory network (104), and between the sensorimotor
and visual circuits (128).

Furthermore, hyperconnectivity in AN of the dorsal
caudate with prefrontal regions involved in motor and
cognitive functions (129), have been interpreted as altered
habit learning deficiencies responsible for the maintenance of
AN symptoms (130).

Within the reward system, AN patients showed increased FC
between the left nucleus accumbens and the left medial OFC
compared to control subjects (100). Moreover, the connectivity

within the ventral fronto-striatal circuit also seems to be
dysfunctional in AN. Furthermore, hypoconnectivity between
nucleus accumbens and superior frontal gyrus, found in AN,
correlated with greater cognitive eating disorder symptoms
(Eating Disorder Examination Global scores). Collectively, these
findings suggest that FC is altered in AN in key brain regions
involved in reward processing, homeostatic communication
and habit.

Half of the AN individuals who received medical care need
to be re-hospitalized within a year of discharge (131). Given the
persistence and high risk of relapse of this long-term disease,
the study of the resting state functional connectivity (rsFC) in
weight-recovered AN individuals is particularly important.

Complete restoration of rsFC in weight-recovered AN
individuals for at least 12 months has been observed in the PFC,
sensorimotor, precuneal, insular, left parietal and left temporal
cortices (132). In contrast, altered FC persists after 6 months
recovery in the frontoparietal network with reduced FC with the
DLPFC and increased FC with the angular gyrus and between
the precuneus and DLPFC (133). Overall, rsFC alterations in AN
tend to normalize after weight restoration, with the noticeable
exception of the cognitive control network, which could in part
explain the high risk of relapse of this disease.

However, more resting-state studies are needed since findings
on the same networks are inconsistent (134). Moreover,
undernutrition was found to alter reward and habit learning
related networks (135) as well as to influence rsFC results (108).
Therefore, rsFC AN studies might observe the consequence of
starvation and not the neuronal correlates of AN (136). On
the other hand, it can be hypothesized that a malfunction of
the reward system could be the trigger of AN in genetically
predisposed individuals exposed to certain environmental
conditions such as emotional shock or diet [see (137) for review].
Furthermore, most studies did not take into account the different
subtypes of AN (restrictive and binge eating/purging), although
they were not found to influence results (100).

TASK RELATED fMRI OF EATING
DISORDERS AND HYPOTHALAMUS

Different methods of functional imaging have been used to
study appetite networks. Tracking variations of BOLD signal
(fMRI), regional cerebral blood flow (rCBF) (PET or fMRI)
or ADCs (diffusion weighted MRI) have been conducted (i)
during different hunger states, (ii) before, during and after
glucose (or other nutriment) ingestion, or (iii) during different
food cue image display paradigms, including (or not) different
satiety states.

Hunger was shown to enhance BOLD signal and rCBF within
the HT, the ACC, the insula, the parahippocampal gyrus, and
the hippocampus, core regions of the limbic system (138).
Concurrently, during satiation, increase in rCBF was observed in
the VMPFC, the DLPFC, and the inferior parietal lobe, which are
all involved in the control of food intake (138).

Glucose ingestion in healthy subjects induce a dose-dependent
decrease in the BOLD signal within the PVN and the VMH,
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which have an anorexigenic role (139). Besides, oral glucose
intake triggers two peaks of response in healthy subjects: one
just after the ingestion, followed by another peak approximately
10min later (140). This delayed response was found to be
associated with a negative response in the medial HT, and
the fasting plasma insulin concentrations (140) reflecting the
important role of HT in the modulation of insulin secretion to
regulate glucose levels (141).

The type of ingestion may also play a role since both sweet
taste and energy content are necessary to trigger a hypothalamic
response (142). However, the limited spatial resolution of these
techniques may prevent the ability to detect such changes in HT
during glucose ingestion due to the different roles and activity
patterns (stimulatory or inhibitory) of close-by hypothalamic
nuclei (143).

However, more recently, Osada and colleagues described the
glucose metabolism of individual major HT nuclei by using areal
parcellation based on areal profiles of resting state functional
connectivity (144). They observed a decreased activity in the
VMHbut an increased activity in the LHAbetween 10 and 40min
after glucose ingestion. Furthermore, the decrease in activity
found in the arcuate nucleus was followed by a rise in blood
insulin during the first 10min after glucose ingestion (144).

Sun and colleagues demonstrated that the amygdala response
to the administration of a milkshake predicted weight in
satiated but not in hungry individuals (145). Looking at EC,
sated subjects showed an unidirectional gustatory input from
basolateral amygdala to the HT, whereas during hunger, HT
drove bilateral connectivity with the amygdala (145).

Another popular neuroimaging method commonly used to
investigate appetite networks is food-cue reactivity paradigms,
which consist in presenting images of food under various
forms and energy-content as well as non-related food images.
Comparison of BOLD signals between conditions helped to
decipher appetite processes. Indeed, high-calorie food were
shown to trigger a significant bilateral activation of the HT
(146, 147), the medial and DLPFC, the medial dorsal thalamus,
the cingular cortex, and the cerebellum compared to the non-
food condition (146). The cerebellum was also shown to be
activated when viewing high fat relative to low fat food images
(146). Furthermore, numerous animal studies revealed that
the cerebellum modulates the activity of the LHA through its
connections with gastric vagal nerves involved in hunger and
satiety signaling (99).

Similarly to results obtained during the glucose ingestion,
presentation of rewarding food tastes and images during satiation
decreased BOLD signal in the reward system, including the
HT, vmPFC, nucleus accumbens, OFC, and insula but increased
BOLD response in the DLPFC, which is part of the control
network (89). Similar manipulation of food types through hunger
states showed that presentation of high-energy food during
fasting might activate the HT and ventral striatum to a greater
extent compared to low-energy food (148). fMRI is also used in
the study of emotional connotation of food, which could be a
factor in unhealthy food choices. One of this studies found an
association between lower food healthiness evaluation of food
in a food-cue task, and higher activation in the amygdala (149).

Therefore, the ability to differentiate healthy from unhealthy
foods is affected by emotional state.

Nevertheless, reproducibility across these studies appears to
be highly dependent on various external factors, limiting the
fine characterization of the role of HT within food intake
networks. One meta-analysis (148) revealed that no more than
41% of experiments contributed to the activated voxel clusters
for the contrast between food and non-food pictures, which
could be explained by biases of subject selection according to
age (150), BMI scores (151), sex, hunger states (152), emotional
state (153), dietary restriction (154) and subject genotype (155).
Minimization of potential biases relative to menstrual cycle,
which could trigger cravings, has been proposed through the
recommendation of performing MRI scans during the follicular
phase (156). Indeed, mean diffusivity and metabolism of HT
appear to be modulated by artificial menstrual cycle, leading to a
decrease in ADCs and increase in Choline/NAA ratios after oral
contraceptive use compared to pill free period in young healthy
women (157).

Regarding study designs, food paradigms differ between
studies in the nature and nutritional properties of the food
presented, in task instruction and even in sample sizes, which are
generally small, and differences in the acquisition and analyses
methods (148). In regard to these irregularities, which hinder
the understanding of the role of the HT in the regulation
of food intake, standardized databases of food and non-food
images have been implemented (158, 159). Moreover, the
duration of the fasting period before scan sessions should be
harmonized to create a more homogenous hunger state in
subjects across studies.

Recent studies have tried to minimize the bias related to
individuals’ food preferences. Some studies take into account the
participant’s preferred food in their script (160), while others ask
them to rate the appetence of the presented food (161). One study
even had volunteers rate their hunger, satiety, thirst, fullness and
emptiness, before and after the scanning session (162). However,
taking into account those ratings did not refine the model fit in
this food-cue reactivity study.

FUNCTIONAL IMAGING IN OBESITY

During satiation, obese individuals showed deactivation of
the precuneus and the superior parietal cortex, with lower
rCBF in the HT, cingulate, nucleus accumbens, in the limbic
and paralimbic regions (parahippocampal gyrus, insular cortex,
amygdala), caudate nucleus, frontal and temporal regions relative
to controls (25, 163). In contrast, sated obese women exhibited
significantly higher rCBF in the ventral PFC and frontal
operculum (25, 163). These findings are in agreement with the
hypothesis that the PFC is implicated in the termination of a meal
by its inhibiting action on limbic and paralimbic areas (25).

Concurrently, glucose ingestion in obese patients relative
to controls induced a delayed and attenuated dose-dependent
decrease in BOLD signal in the PVN andVMH (139). In addition,
the decrease of rCBF in HT during a meal associated with normal
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satiety processes in healthy subjects has appeared to be attenuated
in obese patients (163).

When administered a liquid meal, obese and former obese
who succeeded in decreasing their BMI from at least 35 to a BMI
of 25 kg/m2 and in keeping their weight stable for no less than
3 months before the start of the study, exhibited an increased
rCBF in the middle insular cortex while no change in activity
was registered in lean individuals (164). Additionally, when
given a satiating amount of the same liquid, obese presented
a different neural response in the posterior hippocampus,
posterior cingulate cortex and amygdala. Indeed, the posterior
hippocampus rCBF decreased in a similar manner in obese and
former obese while it increased in lean individuals (164).

Persisting differential activities in regions implicated in
gustation and rewarding/ hedonic aspect of food (insular cortex)
or enteroception and learning/memory (hippocampus) could
partly explain the high risk for relapse of former obese.
Interestingly, a study on smokers and non-smokers revealed that
the hypothalamic response to oral intake of milkshake in non-
smokers was lower, which is associated with long-term weight
change in this population (165).

Food-cue task fMRI studies have reported elevated
responsivity of somatosensory (Rolandic operculum), gustatory
(insula, frontal operculum) and reward brain areas (caudate,
putamen, amygdala, OFC) in obese subjects compared to lean
individuals when presented with palatable food cues (166–
168). Abnormal activity patterns in obese patients have been
found in the HT, PFC, parietal and temporal cortex, cingulate
cortex, nucleus acumens, amygdala, midbrain, insula, and OFC
(25, 164).

During high-calorie food cue, obesity has been associated
with hyperactivation of the right putamen, left caudate body,
left anterior insula, left hippocampus, and the left parietal lobe
relative to control, while low-calorie food cue elicited exacerbate
responses in the left superior frontal, right middle and inferior
frontal gyrus, middle occipital gyrus, and left superior temporal
gyrus in obese compared to healthy controls (166). Thus, BMI
was positively associated with higher response to high-calorie
in brain regions involved in the processing of taste information
(anterior insula, lateral OFC), motivation (OFC), emotions and
memory (posterior cingulate cortex), salience-guided orienting
(claustrum) and reward anticipation (dorsal striatum) (166,
169). BMI is also positively associated with selective attention
toward appetitive food-cue and higher responsivity in reward
regions such as the ventrolateral prefrontal cortex (VLPFC),
lateral OFC, temporal operculum and anterior insula (59, 170).
However, when asked to inhibit responses to high-calorie food
images, obese individuals exhibited less activation in frontal
inhibitory regions, such as the superior and middle frontal gyrus,
VLPFC and VMPFC, and OFC, relative to lean individuals,
which is consistent with behavioral evidence of impulsivity often
found in overweight individuals (170). These findings suggest
that a higher weight is preferably linked to hypo-activation of
inhibition control regions and hyper-activation of reward regions
in response to palatable food. Failure of inhibition control regions
to inhibit reward regions when presented with appetitive food
could increase the susceptibility to overeat (171). Moreover,

obese-like activity in the middle insular cortex and hippocampus
persists in former obese (164). These results suggest that higher
activation in reward and somatosensory regions in response to
food-cue constitute a risk for future weight gain.

During reduced weight maintenance, obese individuals show
high FC between the HT and visual (occipital fusiform and
temporal fusiform areas, superior lateral occipital cortex and
cuneus), memory (hippocampus) and attention areas (dorsal
ACC, left middle and inferior frontal gyri) when viewing food
compared to non-food images (172). Moreover, the inferior
frontal gyrus, implicated in inhibitory control (173), has been
found to be more activated by food images in people able to
maintain their weight loss than in obese or lean subjects (174)
and its activation in satiation is lower in obese than in normal
weight participants (175). These results suggest that during
weight loss, obese patients have a higher sensitivity to food cues.
Furthermore, the inhibitory action of the inferior frontal gyrus
seems to be necessary to maintain weight loss (174).

Overall, obesity seems to be associated with a concurrent
blunted hypothalamic reactivity to glucose ingestion and an
exacerbated hedonic reactivity, which do not coincide with
homeostatic state and lead to overconsumption of high fat food.

FUNCTIONAL IMAGING IN ANOREXIA
NERVOSA

Considering the ability of AN patients to fight against the
natural instinct to feed oneself, the hypothesis of a dysregulation
in hypothalamic glucose-sensitivity was investigated. AN and
controls exhibited the same decrease in neuronal activity
when administered with a glucose solution (176). Therefore,
the hypothalamic reactivity to glucose does not seem to be
altered in AN. However, contrary to normal-weight controls
and obese subjects, AN patients did not display an increase of
FC between the HT and brains regions implicated in reward
processes (amygdala, nucleus accumbens) during infusion of
water when compared to glucose infusion, with the exception
of the posterior insula (120). As opposed to control, AN did
not show deactivation in the mesocorticolimbic reward circuit
including structures such as the caudate nucleus, putamen,
insular cortex, medial OFC, and inferior operculum after glucose
administration (120).

Furthermore, AN exhibited a higher FC between the HT and
the left ventral striatum in response to glucose administration
relative to normal-weight controls and obese subjects (120). The
abnormal hyper-activation of the ventral striatum is a neural
signature of patients suffering from AN and is hypothesized to
be involved in the onset and maintenance of this illness (177).
Interestingly, a study comparing the response to pictures of
underweight women demonstrated a higher activation in the left
ventral striatum in AN patients compared to lean control (178).

Moreover, patients with AN do not show satiety state–
dependent connectivity between the HT and the meso-
corticolimbic reward circuit that is commonly found in normal-
weight controls. This observation could explain the reduced
hedonic coding aspect of food associated with AN (120). AN
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individuals show hypoactivation of the food motivation network
in response to high-calorie foods (179). Indeed, both fasted
women with weight-restored (maintenance of 90%−110% ideal
body weight for at least 6 months) and active AN exhibited
hypoactivity in the HT, amygdala and anterior insula in response
to high-calorie foods vs. objects when compared to control.
Hypoactivation in the anterior insula persisted in women with
active disease after they were served a meal (18% calories from
protein, 23% from fat and 59% from carbohydrates).

In contrast, weight-restored AN women show similar
activation to controls after a meal (179). Compared with controls,
women with active disease show hypoactivation in the HT,
amygdala, hippocampus, OFC and anterior insula when fasted
and in the amygdala and insula after they ingested a meal
(179). Interestingly, activations in the HT, amygdala and anterior
insula are significantly associated with appetite (hunger) and
appetence ratings (how appealing is the food) in controls and
weight-restored AN women but not in those with active disease
(179). The authors provided evidence of a dysfunction of the
food motivation network, including the HT, in women with
active AN, which tends to persist even after weight-restoration.
AN has been shown to be associated with lower food-cue
processing activity in brain structures implicated in reward
and salience (HT, striatum, hippocampus, amygdala, cerebellum,
insula) but greater activity in regions involved with cognitive
control (dorsolateral PFC, mPFC, OFC, ACC) (180, 181). To
sum up, AN has been associated with a reduced hypothalamic
reactivity and connectivity with the reward system, which could
be responsible for the repressed motivational responses to food
cue, in relation with an alteration in food reward processing.

CONCLUSION

Despite the important progress in the neuroimaging of HT and
the better characterization of its functional activation pattern

across different hunger states or eating disorders, its role within
the structural and functional food-intake networks remains to
be elucidated. UHF MRI combined with the use of the highly
resolved atlases (4) should allow for a better understanding of the
role of each hypothalamic nuclei in a normal and pathological
context. Indeed, advanced magnetic resonance (MR) techniques
provide new significant anatomical, functional metabolic and
connectomic insights of the HT, through the improvement of
quantitative MRI, spectral/spatial resolution of MRS, spatial
resolution of anatomic MRI, diffusion and functional MRI.
Furthermore, the current paper briefly mentioned the possible
contribution of metabolic MRI in the study of obesity. In
addition, MRI is an undeniable interesting tool in the study of the
effectiveness of treatments for eating disorders in humans since
this technic is non-invasive and partially replace for the lack of
AN animal models. Finally, combining the study of the HT at
the structural, functional and metabolic levels could bring new
perspectives to better understand and better treat patients with
eating disorders, as it is already done in the study of pathologies
such as Alzheimer’s (182) or epilepsy (183).
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