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scattering selection rules and
control: an application to nanofriction and thermal
transport†

Antonio Cammarata *

Phonon–phonon scattering processes are the crucial phenomena which account for phonon decay,

thermal expansion, heat transfer, protein dynamics, spin relaxation and related quantities. In this work,

we show how the symmetries of the system determine which scattering processes are allowed at any

order of anharmonic approximation, irrespective of the chemical composition. We also discuss how to

control the system symmetries to switch on and off any single scattering process. We apply the

presented results to the study and control of nanoscale intrinsic friction and thermal transport in lamellar

van der Waals transition metal dichalcogenides. Thanks to its general formulation, the presented

framework expands the materials science tool set for the design of nanoengineered thermally-active

materials, irrespective of the specific chemical composition and atomic topology.
Introduction

Lattice vibrations are usually described within the harmonic
approximation of the potential energy, allowing Newton's
equations of motion to be solved and to express atomic
displacements as a superposition of sinusoidal functions, i.e.,
the normal modes of the system.1,2 However, such harmonic
theory implies that: (i) a single lattice wave does not decay nor
changes form with time because two lattice waves do not
interact; (ii) there is no thermal expansion nor heat transfer; (iii)
adiabatic and isothermal elastic constants are equal; (iv) elastic
constants are independent of temperature and pressure; (v) the
heat capacity becomes constant at high temperatures. In real
materials, no such implications are strictly observed. Deviations
are attributed to anharmonic terms in the interatomic
displacements, which allow for phonon–phonon recombina-
tion processes. The ne tuning of such processes would allow
selective and powerful control of a vast variety of phenomena
such as spin relaxation,3,4 protein dynamics,5 thermoelectricity,6

phase transition,7 and thermal conductivity8 among others,
which are the basis of the design of ordinary and meta-
materials.9

In this work, we show how it is possible to state if a multi-
phonon scattering process is allowed by means of symmetry
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arguments only, without the need to compute the actual value
of the interaction strength. Symmetry properties are ordinarily
exploited to identify selection rules which govern infrared and
Raman transitions.10–15 Such rules are based on group theoret-
ical arguments involving the symmetries of vibrational wave
functions of the ground and excited states, and the Hamiltonian
representing the external electric eld inducing the transition;
in this framework, the knowledge of the point group of the
system under study is enough to predict which are the allowed
transitions. Recent works on thermal transport in carbon
nanotubes,16 graphene17 and Ba3N-derived materials18 pion-
ereed the formulation of phonon recombination selection rules
by means of symmetry arguments on the lattice potential energy
expansion in terms of interatomic force constants; such selec-
tion rules can be applied to all processes involving exural
modes or acoustic and optical phonons in specic class of
materials.

In what follows, we show that the knowledge of the point
group of the system geometry is enough to determine which
phonon recombination process is allowed; this result is general
and does not have validity restrictions which depend on
chemical composition, atom topology, phonon wave vector and
branch of the material under study. We also discuss how to
control the system symmetries to enable or forbid selected
scattering processes; to this aim, we present the study case of
nanoscale intrinsic friction and thermal transport in lamellar
van der Waals transition metal dichalcogenides (TMDs), such
phenomena being relevant in the assembly and functioning of
micro- and nanoelectromechanical systems,19,20 photochemical
water-splitting, smart health diagnostics and exible elec-
tronics, among others.21
RSC Adv., 2019, 9, 37491–37496 | 37491
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Method

We start by focusing on the rst anharmonic term of the Taylor
expansion of the potential energy of a system written in terms of
normal coordinates; however, the theoretical result which we
get is applicable to anharmonic terms of any order. The rst
anharmonic correction term Vpp reads

Vpp ¼ 1

3!

X
ll0l00

Fll0l00QlQl0Ql00 (1)

where l ¼ (q, j) represents the phonon mode with wave vector q
and band index j, Ql is the normal coordinate associated to the
phonon l, and Fll0l00 is the strength of interaction between the
three phonons l, l0 and l00 involved in the scattering. Fll0l00 is
explicitly written as2,22
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where ħ is the Planck's constant, N is the number of unit cells,
ul is the eigenfrequency of themode l,mk is themass of the k-th
atom, rk is the position of the k-th atom at the equilibrium,
el

a(rk) is the a-th cartesian component of the eigenvector asso-
ciated to the mode l and to the k-th atom, rk0l0 (rk00l00) is the
position of the k0-th (k00-th) atom in the l0-th (l00-th) cell replica,
and Fabg is the third-rank cartesian tensor of the cubic anhar-
monic force constants.

If, in the initial state, the populations of l, l0 and l00 are nl, nl0
and nl00, respectively, then the transition probability with which
the three phonons interact is22

P l00
l;l0 ¼

2p

ħ
nlnl0 ðnl00 þ 1ÞjFll0l00 j2dg;qþq0�q00dðħul00 � ħul � ħul0 Þ;

(3)

where dg,q+q0�q00 ¼ 1(¼0) if the sum of the three wave vectors q, q0

and q00 is (not) equal to a vector g belonging to the reciprocal
lattice,23 and d(ħul00 � ħul � ħul0) is the Dirac delta which
guarantees the conservation of the energy. We here note that,
while the populations depend on the temperature, Fll0l00 is an
intrinsic property of the system. According to eqn (3), l + l0 + l00

scattering is not allowed if Fll0l00 is null. By a proper control of
Fll0l00, it is therefore possible to enable or forbid selected scat-
tering processes.

We now show how it is possible to know if a specic phonon
recombination is not allowed, that is if Fll0l00 is null, without
evaulating eqn (2); it is worthy to note here that the result which
we will obtain is analogous to the selection rules of infrared and
Raman transitions.

As a rst step, let's notice that the eigenvectors do not
depend on the cell replica, that is el

b(rk0)¼ el
b(rk0l0) and el

g(rk00)¼
el

g(rk00l00). If r is a generic vector spanning the cartesian space,
then each eigenvector el(r) can be thought to be a function
dened in this way:
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elðrÞ ¼
�

elðrkÞ if r ¼ rk
0 otherwise

(4)

where 0 is the null vector. The quantity
X
l0l00

f/ghFll0l00 in

eqn (2) is a third rank tensor which corresponds to the Fourier
transform of the cartesian anharmonic tensor Fabg. Similarly to
denition 4, we can then dene the function Fll0l00 ðr; r0; r00Þ as

(5)

where is the null third-rank tensor. We then consider the
scalar function M(r, r0, r00) dened as

M
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By using the denition of the triple inner product24 between
three vectors and a third-rank tensor, we can then write eqn (2)
in a more compact form as
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where we changed the sum over the atomic labels into an
integral over the cartesian positions thanks to the denitions 4,
5 and 6. By exploiting a known result from group theory,10 we
can state that, if the integrand in eqn (7) forms a basis for the
totally symmetric representation, that is, if the direct product
among the representations of each factor of the integrand
contains the totally symmetric representation, then the integral
is not null and the l + l0 ¼ l00 recombination is allowed.25 TheM
and F functions are both invariant under symmetry operations,
since the former is a scalar and the latter depends only on the
relative positions of the atoms; then, they both transform as the
totally symmetric representation. Therefore, to know if Fll0l00

can assume values different than zero, it is enough to check if
the direct product of the irreducible representations of el, el0
and el00 contains the totally symmetric representation. In other
words, given the irreducible representations Gel , Gel0 and Gel00 ,
for which the eigenvectors el, el0, el00 are respectively a basis,
then

Fll0l00s00Gel5Gel05Gel004A (8)

which states that if the direct product among the irreducible
representations contain the totally symmetric representation A,
then the l + l0 ¼ l00 scattering is allowed. The magnitude of the
allowed process depends on the actual numerical value of the
interaction strength which, in turn, depends on the specic
values of the anharmonic force constants. It is worthy to notice
This journal is © The Royal Society of Chemistry 2019
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here that this result is general and also applies to scattering
processes involving more than three phonons, corresponding to
anharmonic terms of any order, since the relative interaction
strength can be recast in a form analogous to eqn (7). In fact,
condition 8 can be generalized as

Fl1l2/lps00Ge
l15/5Gelp4A (9)

for a scattering process involving p phonons. By controlling the
symmetries of the eigenvectors el, it is then possible to forbid/
allow selected scattering processes. Moreover, condition 9 is
a quick guide to identify which recombination processes are not
null and at which order of anharmonic approximation.

Results and discussion

As showcase examples, we apply this result to the study of
intrinsic friction and thermal conductivity in MX2 transition
metal dichalcogenides. Related results are discussed in what
follows.

Intrinsic friction

Nanoscale intrinsic friction in lamellar van der Waals MX2

transition metal dichalcogenides occurs during relative sliding
of adjacent layers. We have already shown26–29 that all possible
sliding directions can be represented by suitable combinations
of few vibrational modes, namely sliding modes; moreover, the
layer sliding occurs until such modes own enough energy, and
therefore, the frictional forces are all those forces which activate
dissipative processes producing a depopulation of the sliding
modes.30 Such depopulation occurs via phonon–phonon scat-
tering involving sliding and non-sliding, hence dissipative,
modes; if such scattering is forbidden, then dissipation does
not occur and sliding is longer active. In what follows, we show
how symmetries determine which dissipation processes are
allowed and suggest how to control them. Computational
details and schematic of the discussed modes with relative
irreducible representations are reported in the ESI.†

We choose the 2H polymorph crystalline MX2 compound
as a reference structure (Fig. 1), with M ¼ Mo, W and X ¼ S,
Se, Te and hexagonal P63/mmc symmetry (SG 194). Starting
from such reference geometries, for each MX2 system, we
truncate the structure along the c periodic direction and
Fig. 1 Hexagonal P63/mmc structure of 2H polymorph MX2 model
geometry. M–X bonds are arranged in a trigonal prismatic coordina-
tion forming MX2 layers bound together by van der Waals interactions.

This journal is © The Royal Society of Chemistry 2019
consider only 2, 3, 4, 5 and 6 adjacent layers. In this way, we
build 5 model geometries that we name MX-nL, where n
corresponds to the considered number of adjacent MX2

layers. The space group of the MX-nL systems is P�3m1 (#164)
or P�6m2 (#187) if n is even or odd, respectively. Regardless the
chemical composition, the sliding modes which mainly
contribute to relative layer displacements have wave vector
corresponding to the G point of the Brillouin zone (see ESI†).
One of the main sources of energy dissipation preventing
layer gliding is the recombination involving rigid lateral
(Fig. 2a) and vertical (Fig. 2b) layer shis. At increasing
number of layers, more and more sliding modes are present
other than rigid ones, thus increasing the number of possible
recombination channels; however, some of the latter are not
effective because the corresponding recombination process
is forbidden by symmetry. For example, the scattering
involving lateral layer sliding at different velocity (Fig. 2c) and
vertical layer shi (Fig. 2b) is not allowed in systems with an
even number of layers (point group �3m), while it is active for
odd number of layers (point group �6m2), no matter the
chemical composition of the system. In order to conrm such
prediction, for all the considered compounds, we calculated
the Fll0l00 matrix elements by means of eqn (2) with q¼ q0 ¼ q00

¼ G and band indices j, j0, j00 spanning the integer value range
[1, 3N], where N is the number of atoms in the system; indeed,
the numerical values we obtain for allowed processes vary in
the interval [10�9, 10�12] eV, while the magnitude of
forbidden processes is of the order of 10�30 eV. Moreover, it is
immediately apparent that the number of possible phonon
recombinations involving sliding and dissipative modes,
hence the relevant Fll0l00 values to be calculated, rapidly
increases with the size of the system. In this respect, eqn (8)
(in general Equation (9)) constitutes a fast tool to promptly
identify which are the Fll0l00 coefficients, hence the recom-
bination channels, which effectively contribute to the global
dissipation process, thus avoiding unnecessary computa-
tional effort to evaluate anharmonic terms which will turn
out to be null by symmetry.

The scattering involving rigid lateral and vertical layer shis
is allowed in nite n-layer systems but it is forbidden by
symmetry in the bulk. In this latter case, one of the main
dissipative processes involving the sliding modes is instead due
to the dissipative mode corresponding to out-of-phase lateral
shi of the X atom layers only (Fig. 2d). Since symmetries
cannot be now adjusted by changing the number of layers (n ¼
N in bulk), we choose to perform a cation substitution in order
to turn off this dissipation channel. We then consider the
Ti : MoS2 system which we already identied as promising
tribological material,26 with the symmetry of Cmcm (#63) space
group. With such specic Ti/Mo substitution, the dissipative
scattering which was allowed in the pristine MoS2 bulk, is now
forbidden by symmetry (see ESI†).

Thermal conductivity

The lattice thermal conductivity tensor as a function of the
temperature T can be written in terms of phonon modes of the
system22 as
RSC Adv., 2019, 9, 37491–37496 | 37493



Fig. 2 Schematic representation of selected phonon modes: (a) rigid layer sliding, (b) rigid vertical shifting, (c) layer sliding at different velocity
and (d) out-of-phase lateral shift of X anions. Displacement patterns represented in (a and c) and (b and d) correspond to sliding and dissipative
modes, respectively. Larger arrow size indicates larger atomic displacement per time unit. Atom color code is the same as in Fig. 1.
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where V is the unit cell volume, Nq is the number of q points,
sl(T) is the relaxation time of the mode l, vl is the group velocity
of the phonon l and cl(T) is the mode specic heat capacity. In
bulk MX2 TMDs, lattice thermal conductivity is dominated by
phonon recombination processes involving low- and high-
frequency phonon bands.31,32 Inspection of eqn (10) suggests
that one way to control such processes is to act on the group
velocity vl; indeed, this has already been achieved by inducing
strain on the pristine structure via ion intercalation in the
interlayer region, or by applying an external pressure.31–33 An
other approach is to modify the relaxation time sl. One of the
factors determining the value of sl is the phonon–phonon
interaction strength, since

sl
�1fspp;l

�1 ¼ 2GlðuÞ ¼ 36p

ħ2
X
l0l00

|F�ll0l00 |
2
�ðnl0 þ nl00 þ 1Þ

� dðu� ul0 � ul00 Þ þ ðnl0 � nl00 Þ

�	
dðuþ ul0 � ul00 Þ � d

�
uul

0 þ ul00
�
�

(11)

where spp,l is the phonon lifetime due to phonon–phonon
scattering and Gl(u) is the self energy.34 From eqn (10) and eqn
(11), it is apparent that the higher the number of non-null Fll0l00

elements, the shorter the lifetime of the phonon sl and the
lower the lattice thermal conductivity. We now show how the
selection rule represented by eqn (8) can help to identify which
interband scattering processes bring an effective contribution
to the thermal conductivity. We rst notice that each band j has
a specic symmetry which does not depend on the considered
q-point;35 all the allowed scattering processes can then be
identied by means of eqn (8) at any q-point and are valid
throughout the entire Brillouin zone, regardless of the chosen
{q, q0, q00} triplet. The phonon band structure of all the consid-
eredmodel systems of the bulk MX2 compounds is formed by 18
bands (since there are 6 atoms in the primitive unit cell),
labeled with an increasing integer number j ¼ 1/18; the low-
37494 | RSC Adv., 2019, 9, 37491–37496
and high-frequency bands are labeled as 1–6 and 7–18,
respectively. The number of interband three-phonon processes
is then 6 � 18 � 18 ¼ 1944, which rapidly increases with the
number of atoms in the unit cell.36 By applying eqn (8), we
observe that the number of active interband processes is 1656,
all the remaining one being forbidden by symmetry. In solving
the Boltzmann transport equation, a mesh comprising at least
about 4300 q-points is required, in order to obtain reliable
values of the tensor ;31 this corresponds to a maximum of
about 8 359 000 matrix elements to be evaluated; by using eqn
(8), it is possible to precompute a list of effective transitions to
be considered, and the number of Fll0l00 elements to determine
is reduced by 15% (about 7 121 000 values).

The detail of the microscopic mechanisms giving an effec-
tive contribution to the thermal conductivity can then be
revealed by identifying the allowed phonon–phonon scattering
processes. As an example, we consider the 1656 identied
allowed processes in MoS2 and WS2, and calculate the average
FMoS2 and FWS2 values of the corresponding Fll0l00 elements on
a mesh of 19 � 19 � 12 ¼ 4332 q-points; we obtain 1.92 �
10�14 and 1.79 � 10�14 eV for FMoS2 and FWS2, respectively.
This result can explain the higher thermal conductivity in bulk
WS2 compared to bulk MoS2 discussed in a previous work,31

while the identied allowed processes constitute the micro-
scopic origin of such difference. Once the allowed processes
have been determined, it is possible to selectively control
them. To show this, we here examine the case of the Ti : MoS2
bulk system already considered above. The Ti-doped MoS2
system is represented by a unit cell containing 24 atoms, 4
times larger than the unit cell of pristine MoS2, corresponding
to a larger number of phonons hence interband recombina-
tions (i.e., 124 416); however, the induced change of the band
symmetry reduces to 62 464 (about 50% less) the number of
allowed transitions effectively contributing to . The average
FTi:MoS2 value which we obtain for such transitions is 6.54 �
10�14 eV; by comparing this value with those obtained for the
MoS2 and WS2 systems, this compound is expected to show
lower phonon lifetimes hence lower phonon contribution to
the thermal conductivity.
This journal is © The Royal Society of Chemistry 2019
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Conclusions

By exploiting the knowledge of the symmetries of the phonon
modes of the stable structure, it is therefore possible to predict if
a specic multi-phonon scattering process is allowed without the
need to compute the corresponding interaction strength coeffi-
cient. As a consequence, by acting on the symmetries of the
system, it is possible to switch on and off specic phonon chan-
nels. As a rst example, we apply such result to the analysis of
dissipative processes preventing layer sliding in lamellar var der
Waals transition metal dichalcogenides. We nd that, in nite
systems, the number of layers determine the symmetries of the
atom geometry, hence which specic dissipation channel is active.
In bulk systems, where the number of layers in the unit cell is
xed, a viable solution to act on the symmetries is to perform
a cation substitution. Other ways to switch on/off selected dissi-
pation channels is the local control of the symmetries via atom
dislocations, creation of vacancies, local distortion of the atomic
geometry and introduction of geometric constraints (e.g. presence
of xed substrate). We then exploit the here presented selection
rules to identify the effective contribution to the lattice thermal
conductivity in bulk TMDs. We nd that the number of active
scattering processes is 85% of the total amount obtained without
considering the symmetry restrictions on the involved eigenvec-
tors. The number of effective phonon recombinations found in the
considered bulk systems is further reduced by lowering the atomic
site symmetries via cation substitution.

The specic value of the interaction strength, that is the
magnitude of the scattering process, can be tuned via a ne
control of the electronic structure or the lattice vibrations through
collective descriptors such as orbital polarization,37,38 bond cova-
lency39,40 and cophonicity.26 The present results can be exploited to
build a simulative framework which combine symmetry, elec-
tronic and dynamical descriptors, in order to nely design scat-
tering processes in solid state materials. Finally, the selection rule
condensed in eqn (9) could help to further expedite the calculation
of anharmonic terms in large automated libraries41 or soware
packages which compute physical quantities involving anhar-
monic corrections,34,42,43 where symmetry properties are already
exploited in the calculation of phonon self-energies.44
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