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Abstract
The inference of gene regulatory networks (GRNs) from expression data can mine the direct

regulations among genes and gain deep insights into biological processes at a network

level. During past decades, numerous computational approaches have been introduced for

inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayes-

ian network (BN) methods cannot handle large-scale networks due to their high computa-

tional complexity, while information theory-based methods cannot identify the directions of

regulatory interactions and also suffer from false positive/negative problems. To overcome

the limitations, in this work we present a novel algorithm, namely local Bayesian network

(LBN), to infer GRNs from gene expression data by using the network decomposition

strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses

conditional mutual information (CMI) to construct an initial network or GRN, which is decom-

posed into a number of local networks or GRNs. Then, BN method is employed to generate

a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate reg-

ulatory genes, which significantly reduces the exponential search space from all possible

GRN structures. Integrating these local BNs forms a tentative network or GRN by perform-

ing CMI, which reduces redundant regulations in the GRN and thus alleviates the false posi-

tive problem. The final network or GRN can be obtained by iteratively performing CMI and

local BN on the tentative network. In the iterative process, the false or redundant regulations

are gradually removed. When tested on the benchmark GRN datasets from DREAM chal-

lenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outper-

forms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with

more accurate and robust performance. In particular, the decomposition strategy with local

Bayesian networks not only effectively reduce the computational cost of BN due to much

smaller sizes of local GRNs, but also identify the directions of the regulations.
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Author Summary

Gene regulatory network (GRN) represents how some genes encode regulatory molecules
such as transcription factors or microRNAs for regulating the expression of other genes.
Accurate inference of GRN is an important task to understand the biological activity from
signal emulsion to metabolic dynamics, prioritize potential drug targets of various dis-
eases, devise effective therapeutics, and discover the novel pathways. In this paper, we pro-
pose a novel local Bayesian network (LBN) algorithm to improve the accuracy of GRN
inference from gene expression data by exploring advantages of Bayesian network (BN)
and conditional mutual information (CMI) methods. BNs with kNN network decomposi-
tion and CMI are respectively introduced to reduce the high computational complexity of
BN and remove the false or redundant regulation interactions. The superior performance
of the proposed LBN approach is demonstrated on GRN datasets from DREAM challenge
as well as the SOS DNA repair network in E. coli.

Introduction
Gene regulatory networks (GRNs) that explicitly characterize regulatory processes in cells are
typically modeled by graphs, in which the nodes represent the genes and the edges reflect the
regulatory or interaction relationship between genes [1]. Accurately inferring GRN is of great
importance and also an essential task to understand the biological activity from signal emulsion
to metabolic dynamics, prioritize potential drug targets of various diseases, devise effective
therapeutics, and discover the novel pathways [2–4]. Identifying the GRNs with experimental
methods is usually time-consuming, tedious and expensive, and sometimes lack of reproduc-
ibility. In addition, recent high-throughput sequencing technologies have yielded a mass of
gene expression data [5], which provides opportunity for understanding the underlying regula-
tory mechanism based on the data. Therefore, numerous computational approaches have been
developed to infer the GRNs [3, 6–45]. Such computational methods can be roughly catego-
rized into the co-expression based approaches [6], supervised learning-based approaches [7–
13], model-based approaches [3, 14–30], and information theory-based approaches [31–40].
The co-expression based methods have low computational complexity, but they cannot infer
direct associations or model system dynamics. The supervised learning-based methods make
use of the known regulations to infer GRNs on a genome-wide data, such as SEREND [8],
GENIES [9] and SIRENE [11], but require additional information of the regulatory interactions
to train a model. By guiding the inference engine from the prior information of the known reg-
ulations, it can achieve higher precision and outperform many other methods [46]. However,
the insufficient information of the labeled or known gene datasets limits the application of this
kind of approaches [47, 48].

On the other hand, model-based methods can be further classified into ordinary differential
equation [14, 15], multiple linear regression [18, 19], linear programming [20, 21], Boolean
networks [17, 22], and probabilistic graphical models including Bayesian network (BN) [3, 16,
23, 49] and graphical Gaussian model [24, 25]. Overall, these model-based methods can pro-
vide us a deeper understanding of the system’s behaviors at a network level and can also infer
the directions of regulations in the network. However, these methods are parameters-depen-
dent and time-consuming, which makes them difficult to deal with large-scale networks. For
example, inferring GRNs based on the probabilistic graphical models requires to search the
optimal graph from all possible graphs with respect to all genes in the network. Due to this NP-
hard nature [50] of learning static Bayesian network structure, two common alternative
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techniques, i.e., a heuristic-based search [26] and the maximum-number-of-parents (maxP) [27,
28] were developed approximately to search the sub-optimal graphs. Yet, the heuristic search
approaches still have high computational complexity and do not guarantee global optimal.
Although the maxP technique by limiting the maximum number of parents for each gene to q
can partly reduce the computational complexity, it needs to traverse search all genes for inferring
the parents of one gene. Thus, maxP techniques have polynomial complexity of O(nq) for an n-
node GRN [28], which are still unsuitable for large-scale GRNs. To reconstruct dynamic Bayesian
networks (DBNs), two structure learning algorithms such as BNFinder [29] and globalMIT [30]
have been proposed to infer GRNs, but these algorithms are currently suitable only for small net-
works since they also require to search all combinations of regulators for a gene.

Recently, information theory-based methods are widely used for reconstructing GNRs, such
as mutual information (MI) [33, 34–36, 42–44] and conditional mutual information (CMI)
[31, 38, 45]. These approaches are assumption-free methods, measuring unknown, non-linear
and complex associations rather than linear-correlations between genes [38, 40], and address-
ing the problem of intense computation for parameters. Thus, they can be used to infer large-
scale GRNs. However, MI-based methods overestimate the regulation relationships to some
extent and fail to distinguish indirect regulators from direct ones, thereby leading to possible
false positives [38, 51, 52]. Although CMI-based methods are able to separate the direct regula-
tions from the indirect ones, they cannot derive the directions of regulations in the network
and also tend to underestimate the regulation strength in some cases [32, 37, 45].

To overcome these limitations of BN, MI and CMI, in this paper, we propose a novel local
Bayesian network (LBN) algorithm to reconstruct GRNs from gene expression data by making
use of their advantages, i.e., infer the directed network with less false-positive edges and with
high computational efficiency. LBN algorithmmainly consists of five distinct elements shown in
Fig 1: i) CMI is first employed to construct an initial network, i.e.,GMI, which then is decomposed
into a series of smaller sub-networks, i.e., local networks or GRNs, according to the nearest rela-
tionship among genes in the network with k-nearest neighbor (kNN) method. ii) For these local
networks or GRNs, BNmethod is used to identify their regulatory relationships with directions,
generating a series of local BNs which are integrated into a candidate GRN GB. iii) CMI is applied
to remove the false positive edges inGB, forming a tentative GRN GC. iv) According to the rela-
tionships of kNN among genes in the network, the tentative GRN (GC) is further decomposed
into a series of smaller sub-networks or local networks, in which BNmethod is implemented to
delete the false regulatory relationships. v) The final network or GRN GF is inferred by iteratively
performing BN and CMI with kNN decomposition until the topological structure of the tentative
networkGC does not change. On the benchmark GRN datasets from DREAM challenge [53, 54]
and widely used SOS DNA repair network in Escherichia coli [55, 56], the simulation results con-
firmed the effectiveness of our LBN algorithm, which is superior to other three state-of-the-art
approaches, i.e., ARACNE [36], GENIE3 [13] and NARROMI [20].

Results and Discussion

Datasets and evaluation metrics
The benchmark network datasets play an important role in assessing the effectiveness of algo-
rithms in reconstructing GRNs. Many researchers used the simulated datasets derived from
DREAM challenge [53] to evaluate their algorithms. DREAM challenge gives a series of gene
expression datasets with noise and gold benchmark networks, which were selected from source
networks of real species. In this work, we utilized three simulation datasets as well as two real
gene expression datasets to validate our method. The three synthetic datasets in sizes 10, 50 and
100 (marked as dataset10, dataset50 and dataset100, respectively) obtained from DREAM3

Inference of Gene Regulatory Network Based on Local Bayesian Networks

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005024 August 1, 2016 3 / 17



challenge contain 10, 50 and 100 genes with 10, 77 and 125 edges, respectively, which come from
10, 50 and 100 samples respectively. The real gene expression dataset is the well-known SOS
DNA repair network with experiment dataset in E. coli [55, 56], which includes 9 genes with 24
edges. Another large-scale gene expression dataset from E. coli data bank [57] is an experimen-
tally verified network [58], which includes 1418 genes with 2675 edges.

In order to validate our algorithm, the true positive rate (TPR), false positive rate (FPR),
false discovery rate (FDR), positive predictive value (PPV), overall accuracy (ACC), F-score
measure and Matthews correlation coefficient (MCC) are used to evaluate the performance of
our LBN and other algorithms. These metrics are defined as follows:

TPR ¼ TP=ðTP þ FNÞ; FPR ¼ FP=ðFP þ TNÞ;
FDR ¼ FP=ðTP þ FPÞ; PPV ¼ TP=ðTP þ FPÞ;
ACC ¼ ðTP þ TNÞ=ðTP þ FP þ TN þ FNÞ;
F ¼ 2PPV � TPR=ðPPV þ TPRÞ;

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp

ð1Þ

Fig 1. Schematic diagram of LBNmethod. (1) process the data, (2) construct the initial network (a large-
scale network) by CMI or MI, (3) decompose the network into local networks (a number of small-scale
networks) by kNNwith k = 1, (4) perform BN to obtain local BNs (a number of small-scale networks), (5)
integrate local BNs into a candidate network (a large-scale network), (6) perform CMI to obtain the tentative
network (a large-scale network). Iteratively performing BN and CMI with kNN (k = 2) untilGC topological
structure tends to stable, the final network or GRN can be inferred. The solid lines denote the true regulations
and the dashed lines denote redundant correlations between two genes.

doi:10.1371/journal.pcbi.1005024.g001
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where TP is the number of edges that are correctly identified, TN is the number of non-link
edges correctly identified, FP is the number of edges that are incorrectly identified, FN is the
number of non-link edges incorrectly identified. By setting different CMI threshold values
varying from large to small with a fixed scale, we obtained a series of TP, FP, TN and FN to cal-
culate their corresponding TPR and FPR values, which are used to plot the receiver operating
characteristic (ROC) curves. The area under ROC curves (AUC) is calculated as another metric
for comparing different algorithms.

Evaluating simulation datasets
Three synthetic datasets (dataset10, dataset50 and dataset100) from DREAM3 challenge were
used to assess LBN algorithm, and three state-of-the-art methods of GENIE3 [13], ARACNE
[36], and NARROMI [20] were chosen to evaluate the performance of LBN and those methods.
GENIE3 [13] decomposes the problem of inferring a regulatory network of p genes into p differ-
ent feature selection problems by using Random Forest and Extra-Trees algorithms. ARACNE
[36] utilizes the data processing inequality to eliminate the majority of indirect interactions
inferred by co-expression methods, which cannot recover all transcriptional interactions in a
GRN but rather to recover some transcriptional interactions with a high confidence. NARROMI
[20] combines the information theory-based CMI and the path-consistent algorithm (PCA) to
improve the accuracy of GRN inference. In NARROMI, MI is firstly used to remove the noisy
regulations with low pairwise correlations, and then CMI is utilized to exclude the redundant reg-
ulations from indirect regulators iteratively by PCA from a lower order to a higher order. For all
the methods in comparison, the parameters were set to default values.

We use the Z-statistic test [59, 60, 38] at the significance level of P-value = 0.05 to select the
suitable thresholds for parameters α and β, which are approximately α = 0.03, 0.1 and 0.1 as
the threshold values of CMI to construct the gene correlation network GMI for dataset10, data-
set50 and dataset100 respectively. In the same way, we also selected β = 0.03, 0.1 and 0.1 as the
threshold value of CMI to remove the false positive edges for dataset10, dataset50 and data-
set100 respectively. The results in Table 1 show that our LBN method has the highest PPV,
ACC, MCC, F and AUC scores among all, except that the AUC of ARACNE on the dataset 100
is a little higher than that of our LBN method. The results on the three datasets with different
network sizes selected from real and experimental verified networks in Yeast genomes also
demonstrate the effectiveness of our LBN in terms of higher and more robust performances in
inferring GRNs.

In addition, there are a number of methods for inferring GRNs based on Markov Blanket,
such as Grow-shring [61], IAMB [62] and Fast-IAMB [63]. Both of Grow-shring and IAMB
methods first identify the Markov Blankets for each variable (or node) by iteratively executing
a series of conditional independence and dependence tests, then connect nodes in a consistent
way to infer Bayesian network. However, in the process of discovering the Markov Blanket of a
target variable T, Grow-shring and IAMB methods require to search almost all other variables,
which increases algorithm’s time complexity. Although the computational complexity (O(n2))
of these two methods is in the same scale as our method and is lower than that of BN method
(O(2n)), numerical computations show that our method performs superior to them for simula-
tion dataset and real datasets or large-scale GRNs. Specifically, in order to assess effectiveness
of our LBN method, we compared LBN with Grow-shring and IAMB methods on dataset10.
The comparative results of three methods are shown on Table 2, from which we can see that
the computational time of our LBN method is considerably lower than that of either Grow-
shring method or IAMB method. In addition, as shown in Table 2, the accuracy of our GRN
inference is also high.

Inference of Gene Regulatory Network Based on Local Bayesian Networks
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Inferring SOS network and gene regulatory interactions in E. coli
In order to further evaluate the performance of our LBN algorithm, we also implemented our
LBN method and other five methods, i.e., GENIE3, ARACNE,NARROMI, Grow-shring and
IAMB on the well-known SOS DNA repair network, which is an experimentally verified net-
work in E. coli, with real gene expression data [55, 56]. SOS network (Fig 2A) includes two
mediators of the SOS response (lexA and recA), four other regulatory genes (ssb, recF, dinI and
umuDC) involved in the SOS response, and three sigma factor genes (rpoD, rpoH and rpoS)
whose regulations play important roles in the SOS response. Choosing threshold α = β = 0.01,
the comparison results of LBN with GENIE3, ARACNE, NARROMI, Grow-shring and IAMB
are shown on Table 3, in which we can see that the performance of our LBN method is also
superior to GENIE3, ARACNE, NARROMI, Grow-shring and IAMB. For example, the ACC
of LBN is 73.6%, which is 4.2%, 25%, 15.3%, 9.7% and 2.8% higher than that of GENIE3, ARA-
CNE, NARROMI, Grow-shring and IAMB, respectively, and AUC of LBN achieves at 0.816,
which is 0.132, 0.077, 0.025, 0.058 and 0.007 higher than that of GENIE3, ARACNE, NAR-
ROMI, Grow-shring and IAMB, respectively. Fig 2B gives the SOS network inferred with LBN,
which shows that LBN method infers 15 true regulatory relationships and 10 false regulatory
links. These results also indicate that our LBN method can infer most of the true regulatory
relationships between genes, and verify the effectiveness and efficiency of LBN method on the
real gene expression data.

LBN was also applied to construct a large-scale GRN from real gene expression data. We
used the experimentally verified reference network in E. coli [58] to evaluate the performance
of LBN, and downloaded the gene expression data from the well-known E. coli data bank [57].
The experimentally verified network includes 2675 edges between 160 regulators and 1258

Table 1. Comparison of different methods on dataset10, dataset50 and dataset100.

Method TPR FPR FDR PPV ACC MCC F AUC

Dataset10

GENIE3 0.700 0.112 0.563 0.437 0.867 0.483 0.538 0.919

ARACNE 0.900 0.112 0.500 0.500 0.888 0.618 0.643 0.930

NARROMI 0.700 0.050 0.364 0.636 0.922 0.623 0.666 0.938

LBN 0.900 0.050 0.308 0.692 0.944 0.759 0.782 0.942

Dataset50

GENIE3 0.481 0.078 0.833 0.167 0.908 0.245 0.248 0.843

ARACNE 0.597 0.082 0.809 0.192 0.908 0.303 0.291 0.832

NARROMI 0.532 0.062 0.783 0.217 0.925 0.307 0.308 0.839

LBN 0.403 0.011 0.456 0.544 0.971 0.453 0.463 0.863

Dataset100

GENIE3 0.265 0.015 0.768 0.232 0.972 0.234 0.247 0.809

ARACNE 0.421 0.042 0.854 0.146 0.949 0.227 0.217 0.887

NARROMI 0.277 0.010 0.676 0.324 0.978 0.289 0.299 0.849

LBN 0.283 0.005 0.510 0.490 0.983 0.364 0.359 0.852

doi:10.1371/journal.pcbi.1005024.t001

Table 2. Comparison of Grow-shring, IAMB and LBNmethods on dataset10.

Method TPR FPR FDR PPV ACC MCC F Runtime(s)

Grow-shring 0.700 0.100 0.533 0.467 0.878 0.506 0.560 128.815

IAMB 0.800 0.075 0.429 0.571 0.911 0.629 0.667 70.524

LBN 0.900 0.050 0.308 0.692 0.944 0.759 0.782 10.462

doi:10.1371/journal.pcbi.1005024.t002
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targets that can be found in the gene expression dataset [20]. The comparison results of LBN
with GENIE3, ARACNE, NARROMI, Grow-shring and IAMB on the large-scale gene regula-
tory network in E. coli are listed on Table 4, from which we can see that the proposed LBN
method performs better than other methods with the highest average AUC scores, number and
proportion for regulators and target genes. These results indicate that our LBN method is also
suitable to infer large-scale GRNs.

Effects of the strategies of network decomposition and false-positive
edge deletion
In order to evaluate the effectiveness of the strategies of the network decomposition and false-
positive edge deletion introduced in our LBN algorithm, we tested the performance of different
combination ways (i.e. MI+BN, MI+BN+CMI, MI+BN+CMI+kNN+BN) on the dataset10,
which includes 10 genes and 10 regulatory edges. MI+BN denotes that MI method was firstly
used to construct the initial GRN, then the network decomposition strategy and BN method
were adopted to generate GRN; MI+BN+CMI denotes that MI, the network decomposition
strategy and BN method were used to infer GRN, then CMI was chosen to remove the false
positive edges; MI+BN+CMI+kNN+BN denotes that MI, the network decomposition strategy,
CMI and BN methods were used to generate GRN, then kNN and BN methods were respec-
tively taken to decompose GRN, reconstruct GRN and further delete the false positive edges.
On the same PC (i5-2400 CPU, 4GB RAM), the results of different combination ways were
listed on Table 5. Fig 3 shows the true gene regulatory network (a) that was selected from an
experimental verified network in Yeast genome, the inferred networks (b), (c), (d) and (e) gen-
erated by BN, MI+BN, MI+BN+CMI and MI+BN+CMI+kNN+BN, respectively. From Table 5

Fig 2. SOS DNA repair network. (a) True network. (b) Inferred network with LBN (α = β = 0.01). The solid
lines are correctly inferred regulatory relationships, and the dotted lines are false regulatory links.

doi:10.1371/journal.pcbi.1005024.g002

Table 3. Comparison of different methods on SOS DNA repair network.

Method TPR FPR FDR PPV ACC MCC F AUC

GENIE3 0.500 0.208 0.455 0.546 0.694 0.299 0.522 0.684

ARACNE 0.708 0.625 0.638 0.362 0.486 0.083 0.479 0.739

NARROMI 0.667 0.458 0.579 0.421 0.583 0.197 0.516 0.791

Grow-shring 0.458 0.271 0.542 0.458 0.639 0.188 0.458 0.758

IAMB 0.583 0.229 0.440 0.560 0.708 0.351 0.571 0.809

LBN 0.625 0.208 0.400 0.600 0.736 0.412 0.612 0.816

doi:10.1371/journal.pcbi.1005024.t003
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and Fig 3, we can see that the running time of MI+BN was 0.7852s lower than that of BN,
while it wrongly predicted 7 regulatory edges, which means that the strategy of MI+BN effec-
tively reduces the computational time, meanwhile it results in more false positive edges; CMI
can really remove the false positive edges, and kNN indeed helps the Bayesian network accu-
rately learning and reducing the false positive edges. These results indicate that our strategy of
the network decomposition can significantly reduce the high computation cost of the BN
method for large-scale GRNs, whereas the strategy of deleting the false-positive edges with
CMI and kNN can remarkably enhance the accuracy of the network inference.

Effects of the threshold parameters
There are two parameters α and β in our LBN algorithm, which determine whether or not
there is a link or an edge between two genes in the reconstructed GRN. In order to evaluate the
impact of α and β parameters in LBN algorithm, we performed simulations on dataset10 by
calculating ACC with different α and β values by fixing another parameter, and the simulated
results are shown in Fig 4. From Fig 4A, we found that the ACC value increases gradually in
the range 0� α< 0.025, and reaches the highest value (ACC = 0.944) in the range 0.025� α�
0.03, and decreases gradually in the range 0.03< α< 0.045, while the ACC basically remains
unchanged (ACC� 0.9). From Fig 4B, we found that the ACC value increases gradually in the
range 0� β< 0.024, and reaches the highest value (ACC = 0.944) in the range of 0.024� β�
0.03, and decreases gradually in the range 0.03< β< 0.09. Although the parameters α and β
have some influence on the results of the inferred GRNs, the effect is minor in those threshold
ranges. Thus, we can select α and β lied in these range (e.g., 0.025� α� 0.03 and 0.024� β�
0.03) to obtain the best GRN for dataset10. We also performed simulations by calculating ACC
with different α and β values on dataset50, dataset100 and SOS DNA dataset, respectively. The
experimental results show that we should select the suitable parameters (α and β) for different
datasets to obtain the best GRNs.

Table 4. Comparison of different methods on the large-scale gene regulatory network.

GENIE3 ARACNE NARROMI Grow-shring IAMB LBN

AveAUC_TF 0.684 0.749 0.754 0.724 0.751 0.761

#AUC>0.7(rate) 78(0.486) 86(0.538) 93(0.581) 84(0.525) 89(0.556) 96(0.600)

#AUC>0.8(rate) 60(0.375) 68(0.425) 71(0.444) 62(0.389) 68(0.425) 72(0.450)

AveAUC_TG 0.723 0.733 0.735 673(0.535) 690(0.548) 0.747

#AUC>0.7(rate) 484(0.385) 691(0.549) 694(0.552) 472(0.375) 479(0.381) 702(0.558)

#AUC>0.8(rate) 428(0.340) 484(0.385) 485(0.386) 602.776 472.598 488(0.388)

Notes: AUC represents the area under ROC curve; AveAUC_TF is average AUC for transcriptional factors (TFs); AveAUC_TG is average AUC for target

genes (TGs);

#**(rate) is the number and proportion of TFs/TGs predicted correctly under the condition **.

doi:10.1371/journal.pcbi.1005024.t004

Table 5. Results of different combination ways on the dataset10.

Method TPR FPR FDR PPV ACC MCCC F Time (s)

BN 0.800 0.050 0.333 0.667 0.933 0.693 0.727 0.8247

MI+BN 0.900 0.088 0.438 0.563 0.911 0.668 0.692 0.0395

MI+BN+CMI 0.900 0.063 0.357 0.643 0.933 0.726 0.750 0.0544

MI+BN+CMI+kNN+BN 0.900 0.050 0.308 0.692 0.944 0.759 0.782 0.2677

doi:10.1371/journal.pcbi.1005024.t005
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Analysis of LBN computational complexity
The computational complexity of LBN method involves five phases or parts. In the phase of
inferring an initial network, LBN needs to compute MI or CMI value of each gene pair at zero
order, thus the maximum complexity is in the order of O(n2), where n is the total number of
genes. For the phase of constructing the directed network, LBN needs to select regulatory genes
for each target gene, and thus the maximum complexity is in the order of O(n×2m), wherem is
the number of regulatory genes, andm<< n. In the phase of filtering false positive edges by

Fig 3. Gene regulatory networks composed of 10 genes. (a) The true network with 10 genes and 10
edges. (b) The network inferred by BNmethod. (c) The network inferred by MI+BN. (d) The network inferred
by MI+BN+CMI. (e) The network inferred by MI+BN+CMI+kNN+BN. The solid lines are correctly inferred
regulatory relationships, and the dotted lines are false regulatory links.

doi:10.1371/journal.pcbi.1005024.g003

Fig 4. Effect of parameters α and β for LBN on dataset10.

doi:10.1371/journal.pcbi.1005024.g004
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CMI, the time complexity is O(n2). For the phase of further removing the redundant edges
with kNN, LBN needs to find n sub-networks, and hence the time complexity is O(n). In last
phase of iteratively performing CMI and BN with kNN methods until the topological structure
of the tentative or candidate network does not change. If iteratively performing l times, then
the total complexity of LBN is O(2l×n2+l×n+l×n×2m). When n is very large andm<< n, the
computational complexity of LBN is O(n2), which is lower than that of BN method (O(2n)).

Conclusions
In this work, we presented a novel method, namely LBN, to improve the accuracy of GRN
inference from gene expression data by adopting two strategies, i.e., the network decomposi-
tion and the false-positive edge deletion, which can accurately infer a directed network with
high computational efficiency. Specifically, the network decomposition can effectively reduce
the high computational cost of BN method for inferring large-scale GRNs, whereas CMI with
kNN can delete the redundant regulations and thus reduce the false positives. By iteratively
performing CMI and BN with kNNmethods, LBN algorithm can infer the optimal GRN struc-
ture with regulation directions. The results on the benchmark gene regulatory networks from
the DREAM3 challenge and a real SOS DNA repair network in E. coli show that our LBN
method outperforms significantly other three state-of-the-art methods of ARACNE, GENIE3
and NARROMI. Clearly, our LBN makes Bayesian network accurately to learn the network
structure and reduce the false positives by searching k-nearest neighbors of every gene, and
thus, LBN is effective and robust for inferring the directed GRNs. On the other hand, based on
probabilistic graphical model, a network inference method called the module network method
[64] was also developed. Compared with Segal’s Module network method [64] which infers the
network among modules, our LBN algorithm adopts the iterative algorithm between CMI and
probabilistic graphical model (i.e., BN) to infer the network among genes.

Despite the above advantages of LBN, it can be improved from the following two aspects.
Firstly, it is still a challenging task to select the parent genes of X gene in the set of variables,
which will affect the computational cost and accuracy of inferring GRNs. Secondly, the inferred
network is a static network, and thus it is a future direction to extend LBN to consider the
dynamical features in the network, e.g., Dynamic Bayesian Networks (DBNs) or Dynamical
Network Markers (DNMs) [65] by using time-course or stage-course data, which can be found
in wider applications [66–68] in biomedical fields.

Methods

MI and CMI
Recently, both of mutual information (MI) and conditional mutual information (CMI) have
been widely applied to inferring GRNs [20, 31, 38, 40, 55, 56, 69], due to their capability of
characterizing nonlinear dependency, which provides a natural generalization of association
between genes. MI can be used to measure the degree of independence between two genes Xi

and Xj, but it tends to overestimate the regulation strengths between genes (i.e., false positive
problem). On the other hand, CMI measures the conditional dependency between two genes
Xi and Xj given other gene Xk, which can quantify the undirected regulation.

For discrete variables X and Y, MI is defined as [31, 38, 70, 71]:

MIðX;YÞ ¼ �
X

x2X;y2Y
pðx; yÞ log pðx; yÞ

pðxÞpðyÞ ¼ HðXÞ þ HðYÞ � HðX;YÞ ð2Þ

where p(x, y) is the joint probability distribution of X and Y, and p(x) and p(y) are the marginal
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probability distributions of X and Y, respectively; H(X) and H(Y) are the entropies of X and Y,
respectively; and H(X,Y) is the joint entropy of X and Y.

CMI between two variables X and Y given variable Z is defined as [31, 38, 70]:

CMIðX;Y jZÞ ¼
X

x2X;y2Y ;z2Z
pðx; y; zÞ log pðx; yjzÞ

pðxjzÞpðyjzÞ
¼ HðX;ZÞ þ HðY ;ZÞ � HðZÞ � HðX;Y ;ZÞ ð3Þ

where p(x,y|z), p(x|z) and p(y|z) are conditional probability distributions, and H(X, Z),H(Y, Z),
andH(X, Y, Z) are the joint entropies.

With the widely adopted hypothesis of Gaussian distribution for gene expression data, the
entropy can be estimated by the following Gaussian kernel probability density function [38,
42],

PðXiÞ ¼
1

N

XN

j¼1

1

ð2pÞn=2jCjn=2expð�
1

2
ðXj � XiÞTC�1ðXj � XiÞÞ ð4Þ

where C is the covariance matrix of variable X, |C| is the determinant of the matrix, N is the
number of samples and n is the number of variables (genes) in C. Generally, if the sample num-
ber is almost equal to the gene number, the empirical covariance matrix is often used to esti-
mate the covariance matrix of the distribution of gene expression profile, which can be
considered as a good approximation of the true covariance matrix. However, when the number
of samples is smaller than that of genes, the regularized covariance matrix [72, 73] is used to
estimate the covariance matrix of the distribution of gene expression profile. The number of
replicate samples will affect the performance of the method, and increasing replicate samples
can enhance the GRN inference algorithm’s power.

Thus, the entropy of variable X can be denoted as:

HðXÞ ¼ log½ð2peÞn=2jCj1=2� ¼ 1

2
log½ð2peÞnjCj� ð5Þ

According to Eqs 2 and 5, MI between two variables (genes) X and Y can be easily calculated
by using the following equivalent formula [31, 38, 70].

MIðX;YÞ ¼ 1

2
log

jCðXÞj � jCðYÞj
jCðX;YÞj : ð6Þ

HighMI value indicates that there may be a close relationship between the variables (genes)
X and Y, while low MI value implies their independence. If variables (genes) X and Y are inde-
pendent of each other, clearlyMI(X, Y) = 0.

Similarly, under the assumption of Gaussian distributions for gene expression data, CMI of
two variables (genes) X and Y given variable (gene) Z can be easily calculated by using the fol-
lowing equivalent formula [31, 38].

CMIðX;Y jZÞ ¼ 1

2
log

jCðX;ZÞj � jCðY ;ZÞj
jCðZÞj � jCðX;Y ;ZÞj : ð7Þ

Obviously, when X and Y are conditionally independent given Z, CMI(X, Y|Z) = 0. In addi-
tion, this equivalent expression is an efficient method to calculate CMI between two variables X
and Y given one or more variables Z, e.g., if the conditional variable Z = (Z1, Z2) is composed of
two variables Z1 and Z2, we can obtain the second-order CMI.

Inference of Gene Regulatory Network Based on Local Bayesian Networks

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005024 August 1, 2016 11 / 17



Bayesian networks
A Bayesian network (BN) is a graphical model of the probabilistic relationships among a set of
random variable X = {X1,X2,. . .,Xi,. . ..Xn}, which is a directed acyclic graph G. In a Bayesian
network, the vertices (nodes) are the random variables (genes), and the edges represent the
probabilistic dependencies among the corresponding random variables (genes). Under the
Markov assumption that given its parents, each variable is independent of its non-descendants,
the relationships between the variables (genes) are described by a joint probability distribution
P(X1,X2,. . .,Xn), which can be decomposed into a product of conditional probabilities based on
the graphical structure:

PðX1;X2; :::;XnÞ ¼
Y

Xi2X
PðXijPaðXiÞÞ ð8Þ

where Pa(Xi) is the set of parents of node Xi in graph G.
In the process of BN structure learning, the most likely graph G for a given dataset D can be

inferred by searching for the optimal graph based on a Bayesian scoring metric. That is, by try-
ing out all possible graphs G (i.e., all possible combinations of interaction among genes), the
graph G with the maximum Bayesian score (joint probability) is chosen as the most likely gene
regulatory network. In general, the number of possible graph G grows exponentially with the
number of nodes (or genes), and the problem of identifying the optimal graph is NP-hard [50].
For a larger dataset D which contains more variables, it is not computationally possible to cal-
culate the Bayesian score for all possible graphs G. Therefore, the heuristic search methods,
such as greedy-hill climbing approach, the Markov Chain Monte Carlo method and simulated
annealing, are often used to infer the Bayesian network structure [28, 74].

Here, the optimal graph G can be decomposed into a series of optimal sub-graphs, each of
which is centered on one node or gene. However, the parent set of every node Xi may be con-
sisted of other nodes in G, the computational complexity of identifying the optimal sub-graphs
is considerably high, i.e., it is still not computationally possible to calculate the maximum
Bayesian score of all possible sub-graphs of every node for a large-scale network. Generally, the
neighbor genes of gene Ximost likely regulate it. Thus, we limit the size of parents of each node
Xi to approximately calculate the maximum Bayesian score of every node.

In this paper, as shown in Fig 1, we first construct the undirected network with CMI
method, and decompose the network into a series of sub-networks in which the central node
just is linked with its k nearest neighbors (or nodes). Due to every sub-network just contains a
few nodes, we can identify the set of parents of every central node by calculating the Bayesian
scores of all possible sub-network structures of the central node to choose the optimal Bayesian
sub-network with maximum joint probability distribution score. Then, by integrating all of the
sub-networks, we have the candidate global Bayesian network (or GRN). Note that BN can be
extended to dynamic Bayesian network by using time-course expression data.

k-nearest neighbor
In a graph G(V,E), V represents a set of nodes and E represents edges between nodes. The k
closest neighbors of each node are selected according their shortest path distance in the graph
structure. That is, the k-nearest neighbor (kNN) of node Vi consists of a set of nodes whose
shortest path to the node Vi is k. In this paper, we used the k-nearest neighbors of each node to
decompose a large-scale network to form a series of local Bayesian networks. For each local
Bayesian network, the Bayesian network inference method is used to remove the false positive
edges. For a large-scale network, we show that it can actually achieve a high accuracy even with
the first- and second-nearest neighbors of each node. Actually, the k-nearest neighbors of a
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gene or node with k = 2 contains the Markov blanket of the node, which includes all the k-near-
est neighbors with k = 1 and the partial the k-nearest neighbors with k = 2 for that node. The
Markov blanket of a node in a Bayesian network is composed of all the variables that shield the
node from the rest of the network, which implies that the Markov blanket of a node is the only
knowledge needed to predict the behavior of that node. Thus, we choose k = 2 in this paper.

LBN algorithm
Given an expression dataset with n genes and N samples, a novel algorithm (called LBN) was
developed to infer its underlying GRN. As shown in Fig 1, LBN is composed of four main
parts: i) Construct an initial network (or GRN) with MI or CMI method, ii) Decompose the
large-scale (initial) network into series of sub-networks by kNNmethod, i.e., local networks or
GRNs, iii) Identify the regulatory relationship among genes by BN method for each sub-net-
work, and iv) Integrate all local BNs as a candidate network, and then remove the false regula-
tory relationships by CMI, i.e., construct the tentative network. Then we have the final network
or GRN by iteratively performing CMI and BN with kNN methods. Numerical computations
show that our LBN method can infer the final GRN after iterating 10–20 times. Fig 1 is the
schematic diagram of our LBN method, which is described in detail as follows:

Step 1: Construct the initial network by CMI. In general, the gene-gene pairs with high
MI or CMI values are co-expressed genes, in which one is the target gene, and another is the reg-
ulatory gene (regulator). For an expression dataset with n genes, we first compute the MI or CMI
values between all gene pairs with Eq 6, deleting these edges whose MI values are smaller than a
pre-defined threshold α, and then construct an initial GRN which is an undirected networkGMI.

Step 2: Decompose GMI into n sub-networks or local networks by kNN. For a larger
network GMI which contains a large number of genes, it is a NP-hard problem to try out all its
possible structures to search for the most likely gene regulatory network with BN method.
Therefore, we proposed a strategy to bypass this problem by decomposing network GMI into
series of sub-networks which contains a few genes. Suppose every gene gi in the network GMI is
a potential target gene, and its nearest neighbor genes in GMI are its potential regulatory genes
(regulators), that is, gene gi and its nearest neighbor genes form a local network GMI. Based on
this assumption, the network GMI can be decomposed into n sub-networks or local networks,
where n is the total number of genes in the network. Every sub-network is composed of the
gene gi and its nearest neighbor genes.

Step 3: Construct local BNs by estimating the gene regulations and integrate local BNs
into a candidate network. For every sub-network, we calculate the joint probability distribu-
tion value of all its possible structure, selecting the network with the maximum joint probabil-
ity distribution value as the optimal Bayesian sub-network from which we can identify the
candidate regulatory genes (regulators) of the target gi. Then, the n optimal Bayesian sub-net-
works or local BNs are integrated into a directed network GB as a candidate network or GRN
from which we can find the regulatory relationship between genes. In the process of construct-
ing the Bayesian sub-network, it can not only identify the edge direction between the interact-
ing genes, but also eliminate the redundant regulation edges.

Step 4: Construct tentative network by eliminating the redundant regulations by CMI.
MI method commonly tends to overestimate the regulation strengths between genes, which
does not consider the joint regulations of a target gene by other two or more genes, and thus
results in more false positive edges. In this step, we use CMI to remove false positive edges by
computing the first-order CMI(i, j|k), second-order CMI(i, j|k, l) with Eq 7. If CMI(i, j|k) (or
CMI(i, j|k, l)) is smaller than a pre-defined threshold β, the edge linked genes i and j is deleted
from network GB. Thus, we can generate a tentative network or GRN GC.
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Step 5: Decompose GC into N smaller networks or local networks. In Steps 2 and 3, the
sub-networks decomposed from GMI are the smallest local networks whose shortest path is 1
(i.e., k = 1). Using these sub-networks to construct local GRN with BN method may introduce
some false regulatory edges. For further filtering the false genes regulatory edges, we should
enlarge the parent set of each gene. However, if selecting more neighbors for one gene as its
candidate regulators, it will increase the computational complexity. In this work, we select
k = 2 to enlarge the parent set of each gene. Thus, we applied the second-nearest neighbor of
each node to decompose GC, forming n sub-networks whose shortest path is 2 (i.e., k = 2), then
using the BN method to reconstruct local GRNs for every sub-networks. The candidate GRN
GC is calculated by iteratively performing Steps 3–5 until its topological structure does not
change. In the end, we can obtain the final network or GRN GF.
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