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Abstract: Engineered phage with properties optimised for the treatment of bacterial infections hold
great promise, but require careful characterisation by a number of approaches. Phage–bacteria
infection time courses, where populations of bacteriophage and bacteria are mixed and followed
over many infection cycles, can be used to deduce properties of phage infection at the individual
cell level. Here, we apply this approach to analysis of infection of Escherichia coli by the temperate
bacteriophage 186 and explore which properties of the infection process can be reliably inferred.
By applying established modelling methods to such data, we extract the frequency at which phage
186 chooses the lysogenic pathway after infection, and show that lysogenisation increases in a graded
manner with increased expression of the lysogenic establishment factor CII. The data also suggest
that, like phage λ, the rate of lysogeny of phage 186 increases with multiple infections.

Keywords: lysogeny; phage infection; multiplicity of infection; bacteriophage; temperate phage;
phage therapy; CII protein; synthetic biology

1. Introduction

The ability of temperate bacteriophage to choose between two alternative lifestyles,
lysis and lysogeny, provides simple systems for examining how genetic circuits can encode
decision making, signal responsiveness and developmental commitment.

In phage λ, the best understood of these systems, lysogenic or lytic development
and the signal-regulated transitions between them are controlled by a small network of
regulatory proteins [1–6]. Commitment to either lysogeny or lysis, respectively, is provided
by the lysogenic repressor CI or the late gene antiterminator Q. The choice between lysis and
lysogeny after infection is generally thought to be determined by the cellular level of the CII
protein. CII is required for establishment of lysogeny; it is necessary for effective expression
of CI (and the integrase), and it also inhibits expression of Q [7–9]. CII is sensitive to host
proteases [10,11], and environmental factors that influence the lysis-lysogeny decision, such
as the multiplicity of infection (MOI), nutritional status, temperature, and cell size [12–14],
are thought to act by affecting the rate of this proteolysis [8].

We have been studying the lysis-lysogeny system of the P2 family temperate coliphage
186 as an alternative simple decision-making genetic circuit [14–16]. Phage 186 expresses
a protein, also called CII, which is essential for establishment of lysogeny and regulates
gene expression in a similar manner to the unrelated λ CII protein. 186 CII is produced
from the early lytic pR transcript and activates transcription of the lysogenic operon
from the pE promoter to express the CI lysogenic repressor and the 186 integrase [17,18]
(Figure 1). 186 CI enforces lysogeny by repressing the early lytic promoters, including
pR, and activating its own promoter, pL [15]. CI also represses the promoter for the late
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gene activator B [19]. 186 CII is rapidly degraded by the host RseP and FtsH proteases
in vivo [17]. We hypothesised that, like λ, the cellular concentration of 186 CII is the critical
factor in its lytic → lysogenic decision. Consistent with this, a 186 phage expressing a
stabilised version of CII has a frequency of lysogeny (FOL) close to 100% [17].
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Figure 1. The lytic-lysogenic switch region of bacteriophage 186. Establishment of lysogeny requires
the following steps. After infection, pR is on and represses lysogenic transcription by transcriptional
interference (TI) with the weak pL promoter. Transcription from pR leads to the production of CII
and Apl. CII activates pE to produce CI, while Apl cooperatively represses both pR and pL (dashed
lines). If sufficient CI is produced, pR is repressed, lytic development is halted, and the phage enters
lysogeny. The transcriptional interference (TI) from pR at pL is alleviated, allowing pL to maintain CI
production. CII is subject to degradation by host proteases. The bent arrows represent promoters
and the dashed lines represent repression by Apl. The red and green boxes indicate the CI and CII
binding sites, respectively.

To examine whether the cellular concentration of CII determines the FOL for phage 186,
we analysed infection time courses to estimate the FOL of cII-deficient 186 phage in
response to different fixed CII levels. Infection time courses involve mixing phage with an
excess of bacteria and following the optical density of the culture over time. For phage that
cause cell lysis, this allows the progress of the infection of the bacterial population to be
followed. The low multiplicity of addition (MOA) of phage means that multiple rounds of
infection occur before major effects on the culture are seen. Time course data can provide
information about infectivity, rates of phage production and the FOL, with large amounts
of data able to be readily obtained using microtitre plates [20]. By optimising the fitting
of such data to predator-prey infection models, we were able to quantitate key infection
parameters. We show that the 186 FOL increases in a gradual manner as the cellular level
of CII is increased. In addition, our analysis suggests that the phage 186 lysis-lysogeny
decision responds to the multiplicity of infection.

2. Results
2.1. Analysis of Phage 186 Infection Time Courses with a Simple Lysogenisation Model

Infection time courses were obtained by the method of Maynard et al. [20], in 96-well
microtitre plates maintained with shaking at 37 ◦C in a spectrophotometer. Wild type 186
(186+) phage was added to a log phase culture of BW25113 cells at 3.1 × 106 cells per well
in rich medium, at an initial phage to cell ratio (MOA) of 1.5 × 10−4. The OD600 of infected
cultures was followed for 8 h (Figure 2A). Temperate phage infection generally follows
three distinct phases. At low MOAs, the number of phage at the initial stage of infection is
insignificant in comparison to cells, so that the cell population initially grows exponentially
with minimum influence from the phage, resulting in increasing OD600 that is similar to
an uninfected culture. However, the phage reproduce at a faster rate than the bacteria,
so eventually a large fraction of cells becomes infected and lyses, resulting in a drop in
OD600. After this peak, the growth of immune lysogens leads to the recovery of the OD600.
This postlysis outgrowth was absent after infection by 186 cI10, a clear plaque mutant
that cannot lysogenise [21] (Figure 2B). The depth of the postlysis ‘trough’ thus gives an
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indication of the frequency of lysogeny. Uninfected cultures (Figure 2C,D) show no such
trough in the infection curve.
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Figure 2. Analysis of 186 phage infection time courses with a simple lysogenisation model. (A) In-
fection time course data (blue) and fit (green) following 186+ (wild type) phage infection. (B) The
cell debris coefficient d was obtained by fitting 186 cI10 infection curve by setting lysogenisation
frequency (f) to 0. The growth parameters (µB, KB, µL, and KL) were fixed at the best fit parameters
from fitting the nonlysogen (C) and 186+ lysogen (D) growth curves. (E) Schematic representation of
the assumptions underlying the lysogenisation model. Populations that contribute to OD600 readings
are shaded in blue. (F) A better fit to the infection data was obtained when the lysogenic growth
parameters were allowed to vary. In this case, the best fit lysogen growth rate was ~1/2 that from the
growth curve fit (panel D). (G) A good fit to the wild type 186 infection curve was also obtained with
predetermined growth parameters (panels C,D) when the infection curve is trimmed to two points
beyond the trough minimum (~5 h). All infections were performed at MOA of 1.5 × 10−4. Error bars
represent standard deviation, n = 6. For data fitting, three rounds of 50,000 iterations of fitting were
performed, and the best fit from each round was plotted.
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We attempted to quantitate the lysogenisation frequency of phage 186 from this data
by using a simple infection model modified from Maynard et al. [20]. Let BT = B0 + L.

d[B0]/dt = µB [B0] (1 − [BT]/KB) − ki [B0] [P] (1)

d[P]/dt = b ki (1 − f ) [B0] [P] − ki [BT] [P] (2)

d[L]/dt = µL [L] (1 − [BT]/KL) + ki f [B0] [P] (3)

d[D]/dt = d ki (1 − f ) [B0] [P] (4)

The Maynard model considers three populations (Equations (1)–(3)), uninfected bacte-
ria (B0), lysogens (L), and phage (P) (Figure 2E). The concentrations of the bacterial species
[B0 + L] are measured by OD600, which can be considered as proportional to the number of
cells per unit volume. The units for the phage concentration are the same, even though the
phage are too small to scatter any measurable amount of light at 600 nm. We modified the
Maynard model by adding a cell debris species (D; Equation (4)), as it was found that even
after complete cell lysis with 186 cI10, the cell lysate can scatter a substantial amount of
light at 600 nm (Figure 2B), resulting in significantly higher OD600 readings than medium
alone. D is produced by phage lysis and has the same concentration units as B0 and L, with
all three of them contributing to the overall OD600 measurement.

The growth of bacteria and phage are modelled according to classical predator-prey
dynamics [22]. The growth of bacteria is assumed to follow a logistic fashion at rate µ
towards a carrying capacity K, the maximal total bacteria density that the system can sustain
(Equations (1) and (3); Figure 2E). These parameters for the nonlysogen and lysogen were
estimated by fitting growth curves for uninfected BW25113 and BW25113(186+) lysogen
(Figure 2C,D). The best-fit parameters for growth rate µ and carrying capacity K for the
nonlysogen strain were 1.09 h−1 and 0.15, and those for the lysogen were 1.04 h−1 and 0.16,
indicating that both strains have similar growth profiles, with estimated doubling times of
38–40 min (= ln2/µ).

The rate of phage infection of nonlysogenic cells is dependent on the product of
the concentrations of the phage [P], the host [B0], and the infection rate constant ki
[hour−1 OD600

−1], given by ki [B0] [P]. There are two possible outcomes following a tem-
perate phage infection: (1) lysis of bacterial cells to release more phage, and (2) formation
of lysis resistant lysogens. We define the frequency at which the infected cell undertakes
the lysogenic pathway as f, and the lytic fraction is thus given by 1 − f (note that this is the
reverse nomenclature of that used by Maynard et al. [20]).

At any given time, the change in phage concentration is given by the production
of phage minus their loss due to absorption (Equation (2)). Phage loss occurs through
absorption by both nonlysogens and lysogens (with rates ki [BT] [P]) and is lysogenisation-
frequency-independent. Phage production is a product of the rate of infection of nonlyso-
gens (ki [B0] [P]), the proportion of the infected cells that undergo lytic development (1 − f ),
and the unitless ‘burst’ coefficient b. Here, b is effectively a productivity factor that scales
the phage ‘return’ relative to each phage ‘spent’ in infection of nonlysogens.

We found that the model does not allow strong specification of ki and b from the data,
with a range of ki and b values giving similar fits. The estimates obtained for ki and b are
strongly anticorrelated, presumably because phage production depends on their product
(ki.b). Because cell lysis and phage production occur immediately upon infection in the
model, ki must represent both a rate of phage removal by infection, and what is in reality
a considerably slower rate of infection followed by phage production. We therefore do
not attach particular significance to the estimates for ki and b. To simplify the fitting, we
therefore constrained ki and b to phage-like values: a 20–50 min average time for infection
and lysis (1.2 ≤ ki ≤ 3), and between a 20 and 200 phage return per single infecting phage
for b.

The lysis of host cells results in the formation of cell debris, with a rate d ki (1 − f ) [B0]
[P] (Equation (4)). It is expected that the amount of light scattered by the cell debris may
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differ considerably from an intact cell. Thus, an additional coefficient d is introduced, which
denotes the proportion of OD600 that the debris from a lysed cell contributes compared to a
viable bacterial cell. By fitting the 186 cI10 data (Figure 2B), we estimated d = 0.1 (Materials
and Methods).

Finally, infection by temperate bacteriophage also gives rise to lysogens (Equation (3)).
The rate of change in lysogen numbers over time can be expressed as a product of the lyso-
genisation frequency, the infection rate constant, and the concentrations of both nonlyso-
gens and the phage, ki f [B0] [P].

The fit between the phage 186+ time course and this model was not entirely satisfactory
(Figure 2A). In particular, the rate of increase of OD600 postlysis was substantially slower
than that expected based on the growth rate of lysogens measured in the absence of
infection (Figure 2D). Accordingly, allowing lysogenic growth parameters to vary in the
fitting gave a lysogen growth rate ~1/2 that of the nonlysogen (Figure 2F). A slow growth
rate in this phase might be explained by depletion of small molecule nutrients due to
previous production of bacterial and phage mass. Another possibility is that lysogen
growth may be inhibited by repeated phage infection. Whatever the cause, we decided
to focus the fitting on those features that are determined by the frequency of lysogeny,
the peak and the postlysis trough. We thus included only two points beyond the trough
minimum in the fitting, giving an improved match of the model with the positions of the
peak and trough after phage 186+ infection (Figure 2G).

Using this model and the trimmed data, the FOL, f, for phage 186+ was estimated
to be ~18%. This value is slightly higher than the ~10% previously obtained from single
round phage plating experiments performed at low MOAs [17]. However, it should be
emphasised that the infection time course experiment involves multiple rounds of infection,
and thus f reflects an aggregate lysogenisation frequency from multiple rounds of infection
under changing conditions.

2.2. Control of the Frequency of Lysogeny by 186 CII

Extremes of CII activity are known to have strong effects on the frequency of lysogeny
in phage 186. In the absence of active CII, 186 establishes lysogeny only rarely [17,21]. In
contrast, high level CII expression due to a stabilising mutation in cII results in ~100%
lysogeny [17]. If CII is a determining factor in the frequency of lysogeny, we would
expect that intermediate CII activities should result in frequencies of lysogeny between
these extremes.

We first tested the mildest of available phage mutants that are defective in CII activity.
186 KS54 is one of a set of pE mutants isolated from a genetic screen for phage that were
able to form plaques on a strain constitutively expressing a high level of CII [18]. The KS54
mutation is an A to G change in the promoter-distal half-site of the CII binding site at pE
(Figure 1) and retains substantial pE activity, reducing activation by CII to ~63% that of
wild type pE at high levels of CII [18].

The growth rate of the 186 KS54 lysogen (~35 min per doubling, Figure S1A) was
similar to the 186+ lysogen and the nonlysogenic parental strain, although the fitted
carrying capacity KL for the 186 KS54 lysogen was slightly lower. Infection by 186 KS54
produced a time course similar to that seen for 186 cI10, with model fitting giving a very
low FOL of ~0.005 (Figure 3A). Thus, even a relatively mild defect in CII activity produces
a strong decrease in the FOL, though it should be noted that we do not know how much
the KS54 mutation affects pE activity at physiological CII levels.

To better test the effect of a range of CII levels on lysogenisation frequencies, we
expressed CII under IPTG control from a plasmid and infected the cells with a 186 cII−

phage. Plasmid pZS45-186CII169 carries the wild-type cII gene downstream of the placUV5
promoter that is repressed by LacI produced from a separate pUHA-1 plasmid (Methods;
Figure 3B). Addition of IPTG leads to dose-dependent induction of CII, as judged by pE
activity [23]. BW25113 carrying these plasmids was infected with 186 cIIHTH−, which
carries mutations in the CII helix-turn-helix DNA binding motif that fully inactivate CII [23].
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Addition of IPTG up to 20 µM had little effect on the growth of the nonlysogenic host strain
or 186 cIIHTH− lysogens of this strain, with the doubling time for both strains remaining
at ~40 min, regardless of whether IPTG was added (Figure S1B–D). In addition, infecting
CII-expressing cells with 186 cI10 phage again resulted in complete cell lysis (Figure S1E).
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In the infection time-courses with these phage and bacterial strains (Figure 3C), the
depth of the postlysis trough became shallower with increasing CII expression, indicative
of increasing FOLs. To fit these data with the model, we treated the five curves as a group.
The bacterial growth parameters and d were fixed at the predetermined values and though
ki was allowed to vary, its value was global, that is, shared for all curves. Individual values
for f were allowed for the different IPTG concentrations. We also allowed individual values
for b, as we thought that higher levels of CII might inhibit lytic development, as seen
for λ [24,25]. A good fit between the data and the model was obtained with f estimates
of 0.02, 0.05, 0.10, 0.24 and 0.62 for 0, 2, 5, 10 and 20 µM IPTG, respectively (Figure 3C).
This gradually increasing FOL supports the idea that CII levels are a critical quantitative
determinant in the phage 186 lysis-lysogeny decision. However, we were surprised that the
estimates for b also increased with increasing CII expression. Fitting of the five time-courses
in which the fitted value for b was applied globally gave poor fits (Figure 3D). It does not
make sense to us that a lysogeny-promoting factor should make lytic development, when
it is chosen, more efficient.

We reasoned that the increase in b is a way for the model to compensate for decreased
phage production in the prepeak phase due to increased frequency of lysogeny. A lower
rate of phage production in this early phase causes a later timing of the peak, because the
peak occurs when the phage numbers have accumulated to the point at which the number



Pharmaceuticals 2021, 14, 998 7 of 14

of bacteria lost through infection equals the number of bacteria gained by cell division. All
else being equal, a higher f should thus tend to delay the peak, as seen in the fits where b is
global (Figure 3D). Since the observed peak times are similar, at least up to 10 µM IPTG,
and the f values are primarily determined by the depth of the postpeak trough, the model
can only fit the data by increasing b as f increases.

A possible solution to this conundrum is if lysogenisation in the prepeak phase is
at a relatively low frequency and is thus less deleterious to phage production, while the
frequency of lysogenisation in the later phase is higher and able to rapidly produce the
level of lysogens observed by the trough depth. One mechanism that could achieve this is
if the phage 186 lysis-lysogeny decision is MOI sensitive, with the FOL for an individual
cell increasing when the cell is simultaneously infected by more than one phage, as seen
for λ [11,12,26]. Thus, in the prepeak period of the time course, low phage numbers would
mean that MOIs rarely exceed 1 and the FOL would be low, allowing phage production
to be relatively uninhibited by lysogenisation. At the peak and postpeak phase, phage
numbers should exceed the number of bacteria, resulting in higher MOIs, higher FOLs and
thus rapid accumulation of lysogens. To test this idea, we utilised a phage infection model
developed by Sinha et al. [27] that allows different FOLs for multiple phage infections.

2.3. Application of a Multiple-Infection Lysogenisation Model to the CII Expression Time-Courses

The multiple-infection model (Figure 4A) introduces two new species, bacteria infected
with one phage (B1) or with multiple phage (B>1), and a new rate δ that defines the timing
of the lysis-lysogeny decision. Thus, singly infected bacteria (B1) make a decision at a
rate δ either to become lysogenic (with probability f 1) or to lyse and produce phage (with
probability 1− f 1). Before this decision is made, they can be infected with a second phage to
become multiply infected (B>1). These B>1 bacteria make the same lysis-lysogeny decision
but with a different FOL (f >1). The B>1 cells can be further infected by phage, but this does
not affect their decision and they remain as B>1. The growth of B1 and B>1 cells before lysis
or lysogeny is assumed to be negligible, as the decision is fast relative to cell division. Let
BT = B0 + B1 + B>1 + L.

d[B0]/dt = µB [B0] (1 − [BT]/KB) − ki [B0] [P] (5)

d[B1]/dt = ki [B0] [P] − ki [B1][P] − δ [B1] (6)

d[B>1]/dt = ki [B1] [P] − δ [B>1] (7)

d[P]/dt = b δ (1 − f 1) [B1] + b δ (1 − f >1) [B>1] − ki [BT] [P] (8)

d[L]/dt = µL [L] (1 − [BT]/KL) + f 1 δ [B1] + f >1 δ [B>1] (9)

d[D]/dt = d (1 − f 1) δ [B1] + d (1 − f >1) δ [B>1] (10)

In theory, this model can be readily expanded to specify bacteria infected with any
number of phage, e.g., B2, B3 [27], but we found that specifying B0, B1 and B>1 was sufficient.

This model was able to give good fits to the CII expression time-courses with all
parameter values except for the FOLs (f 1 and f >1) applied globally between the different
IPTG concentrations (Figure 4B). Very low f 1 values were obtained up to 10 µM IPTG
with f 1 ~0.24 at 20 µM IPTG. Estimated values for f >1 increased steadily from ~0.02 to 1
as the concentration of CII was increased, confirming CII’s critical role in setting the FOL.
A striking feature of the optimal estimates is that f >1 > f 1 for each IPTG concentration,
suggesting that the phage 186 lysis-lysogeny decision is indeed responsive to the MOI.

To better appreciate the ranges of f 1 and f >1 that are compatible with the combined
CII expression time-course data, we systematically scored the fit between model and data
over f 1, f >1 space. The resulting heatmaps (Figure 4C; low scores indicate better fits) show
that while there is considerable uncertainty in the f 1 and f >1 estimates, that there is a
clear increase in these FOLs with increasing CII expression and that f >1 > f 1 holds for the
preferred fits once IPTG exceeds 5 µM.
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Figure 4. The multiple-infection lysogenisation model allows a better fit to the 186 cII− phage infection curves with a global
b. (A) Schematic representation of the assumptions underlying the multiple-infection lysogenisation model. Populations
that contribute to OD600 readings are shaded in blue. (B) Fitting of the 186 cII− phage infection time courses at five different
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2.4. Application of the Multiple-Infection Model to the Phage 186 wt Time-Course

We next asked whether these features were also apparent in a more natural infec-
tion scenario, infection by 186+ of the non-CII-expressing host, where CII is made by the
infecting phage. The multiple-infection model gives an excellent fit to the 186+ infec-
tion time course, giving optimal estimates for f 1 and f >1 of ~0.11 and 0.22, respectively
(Figure 5A). The result for f 1 is consistent with previous 186 FOL measurements of ~10% at
low MOAs [17] and the value for f >1 represents a mild MOI sensitivity. Scanning of f 1, f >1
space showed that f >1 > f 1 for the majority of good scores, supporting the idea that phage
186+ is MOI sensitive, however good scores can also be obtained with f 1 = f >1 (Figure 5B).
Interestingly, the 186+ f 1 and f >1 estimates do not align well with any of the optimal f 1,
f >1 combinations for 186 cII− infection of the CII expression strain (Figure 5B), suggesting
that a fixed CII concentration does not precisely mimic CII expression in a phage 186+

infection. However, there are some f 1, f >1 values that give good scores for both the 10 µM
CII expression data and the 186+ data (Figures 4C and 5B).
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the 186+ phage infection time course using the multiple-infection lysogenisation model. Data are taken from Figure 2A.
Error bars represent standard deviation, n = 6. For data fitting, three rounds of 50,000 iterations of fitting were performed,
and the best fit from each round was plotted. (B) Heatmaps showing the range of f 1 and f >1 values that produce a good
fit (blue). The best fit f 1, f >1 values for 186 cII− phage infection at each IPTG concentrations are overlayed. None of the
fixed CII concentration precisely mimic CII expression in a phage 186+ infection. However, there are some overlap in f 1, f >1

ranges between 10 µM IPTG and 186+ infection. (C–E) The concentrations of different species, the relative phage to cell
ratio, and (F) the average f over the course of the 186+ infection as predicted by the multiple-infection lysogenisation model.

In the multiple-infection model, the parameter delta (δ) represents the timing between
infection and cell lysis or lysogenisation. Estimates for delta cluster tightly around its
optimal value of 2.4 h−1 (Figure S2), equating to an average time of 25 min, which conforms
reasonably well to observed latent periods for phage 186 of ~30–40 min in single-step
infection experiments [26,28]. The presence of delta frees up ki so that it can represent
a simple rate of phage infection. The optimal estimate for ki of 2.9 OD600

−1 h−1 implies
that at a bacterial concentration of 1 OD600 unit under these conditions, a single phage
would take ~20 min to infect. While this may seem slow, phage 186 infection is reasonably
inefficient, and we routinely concentrate late log phase bacterial cultures five- to tenfold
for infection experiments. The parameter b now should better represent the phage burst
size, the number of phage produced per lytic cell, and the optimal estimate of b ~60 also
accords well with observations for phage 186 [29]. As for the simple infection model, the
estimates for ki and b tend to be anticorrelated (Figure S2).

We used the model to follow how the concentrations of different species are predicted
to change over the course of the 186+ infection (Figure 5C–E). Strikingly, phage numbers
remain very low until just 30 min before the OD600 peak and increase rapidly over the
next 60 min (Figure 5D), equalling the number of bacteria at ~10 min before the peak, and
reaching double the number of bacteria at the peak. The majority of infections, single and
multiple, as well as lysogenisations occur in the period 30 min before and 30 min after the
OD600 peak (Figure 5C). The maximal phage concentration at ~5 OD600 units (Figure 5D)
is ~30-fold the bacterial concentration at carrying capacity (0.16 OD600 units), which is
equivalent to ~5 × 109 phage/mL, given that 0.16 OD600 units is ~1.6 × 108 cells/mL.
Such titres are comparable to those achieved in single-step phage infections [30,31]. The
increasing phage concentrations cause the average FOL to shift from f 1 to f >1 over this
60 min postpeak (Figure 5F).
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3. Discussion
3.1. Control of the Phage 186 Lysis-Lysogeny Decision by CII

It has long been known that the CII protein of phage 186 is essential for the estab-
lishment of the lysogenic life cycle [17,21]. However, these studies indicated a digital
‘all-or-nothing’ response to changes in CII activity; an FOL close to 0% for cII-deficient
phage or an FOL close to 100% for a stabilised CII mutant [23]. In agreement with this
digital response, we showed here that even a moderate defect in CII activity, a mutation
at pE that reduces its activity by 40% at high CII levels [18], caused an almost complete
loss of lysogenisation. However, a graded response to CII levels was seen in the infection
time-course analysis for 186 cII− phage exposed to different levels of CII expressed by
IPTG induction, with estimated FOLs ranging from ~1% to 27% for single infections and
from 2% through 5%, 15%, and 43% to 100% for multiple infections (Figure 4). This result
is the first demonstration that the lysogenisation frequency of phage 186 can be fine-tuned
by regulating the expression levels of CII, and supports the idea that CII is a key regulator
in the lysis-lysogeny decision. Stochastic modelling indicates that the instability of 186 CII
confers a more rapid decision [17], a feature also proposed to be provided by instability of
λ CII [25,32]. 186 CII is likely to also be a target for environmental signals that affect the
decision, given it is degraded by both FtsH and RseP proteases [17].

3.2. Response to the Multiplicity of Infection

Analysis of the phage 186+ infection time-course with a multiple infection model
that allows different FOLs for cells infected by a single or multiple phage suggested an
approximate doubling of the FOL for multiple infections. This MOI response was more
pronounced with infection of cells expressing CII by 186 cII−, possibly only because of
the increased statistical power of the larger data set, but possibly because higher or fixed
CII levels somehow increase MOI sensitivity. Such MOI sensitivity is proposed to allow
temperate phage to sense the phage:bacteria ratio and to favour lysogeny when sensitive
hosts are scarce. In λ, measurements of MOI sensitivity vary depending on experimental
conditions. Estimates of f 1 close to zero and f 2 close to 1 have been obtained in bulk
studies [11,12,33], while single-cell studies have given estimates of f 1 ~30% and f 2 ~50%,
increasing to ~70% at f 5 [34].

Lambda’s MOI response is thought to result from an increased chance of reaching a
lysogenic threshold for CII when multiple phage genomes are present [7,8,33], in part due
to titration of cellular proteases active against CII, and their inhibition by λ CIII [6,9,35].
Phage 186 is not known to encode a CIII-like function, but the sensitivity of 186 CII to
cellular proteases [17] could result in multiple infections giving an increased level of CII
relative to other phage proteins if these proteases become overwhelmed. However, this does
not explain the presence of the MOI effect in the CII-expressing cells infected by 186 cII−,
where the level of CII does not change with MOI and would presumably be lower relative
to other phage proteins at higher MOIs. Thus the phage 186 MOI effect may be achieved
differently from λ. It is also possible that, while our MOI-sensitive model can explain the
data, 186 may actually be using some other signal to increase lysogenisation around the
OD600 peak. For example, phage SPbeta uses a ‘phage quorum’ chemical produced by
previous infections to increase lysogenisation as phage:bacteria ratios increase [33,36].

4. Materials and Methods
4.1. Strains

Escherichia coli (E. coli) strain BW25113 [∆(araD-araB)567, ∆lacZ4787(::rrnB-3), λ-, rph-1,
∆(rhaD-rhaB)568, hsdR514] [35] was used as a general host strain, unless otherwise stated.
Strains AH1839 and IM514 are both derivatives of BW25113 that carry either wt or cII−

(helix-turn-helix mutant) 186 prophage [17]. The 186 pE_down strain KS54 is derived
from E. coli C600 [thr-1, leuB6(Am), fhuA21, cyn-101, lacY1, glnX44(AS), λ-, e14-, rfbC1,
glpR200(glpc), thiE1] and is a lysogen of 186 that carries an A to G mutation at 186 pE
promoter that reduces CII mediated pE activation [18].
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4.2. Phage

The 186 cII− and 186 pE mutant phage were produced from IM514 and KS54, re-
spectively. The 186 cI10 is a clear plaque mutant, which has a defective cI gene due to a
frameshift mutation [21].

4.3. Plasmids

The pZS45-cII169 is a low copy number vector for expression of wide type cII under
control of Isopropyl β-d-1-thiogalactopyranoside (IPTG) inducible plac promoter [23]. The
pUHA-1 plasmid (a gift from H. Bujard, Heidelberg University, Heidelberg, Germany) was
used to supply a constant level of LacI repressor.

4.4. Phage Titring and MOA Calculation

Indicator strain (BW25113) was grown in lysogeny broth (LB) until OD600 ~0.5. 300 µL
of indicator cells was then mixed with 10 µL of each of eight 1:10 serial dilutions of the
phage stock in TM (10 mM Tris-HCl, pH 7.5, 10 mM MgSO4) buffer and 3 mL of melted
(48 ◦C) soft agar (0.7% w/v) supplemented with 10 mM MgSO4 and 5 mM CaCl2. The
mixture was quickly but very gently poured onto pre-warmed LB agar plates and rotated
gently to evenly distribute the mixture. The plate was left at room temperature for 15 min
for the top layer to set before moving to 37 ◦C for overnight incubation. Plates exhibiting
~100 well-isolated plaques were used to calculate the phage titre. A plate stock of 186+

typically gives ~1 × 109 plaque forming units (pfu)/mL, and a plate stock of 186 cI10
typically gives ~1 × 1010 pfu/mL. MOA is calculated as the number of phage (pfu) added
at the beginning of infection over the number of cells to be infected.

4.5. Microtitre Plate-Based Phage Infection Assay

Cells were initially streaked onto a 1.5% LB agar plate, and an individual bacterial
colony was then picked to inoculate an overnight culture in Tryptone Broth (1% Oxoid™
Tryptone and 86 mM NaCl) supplemented with 5 mM CaCl2 (TBC). The overnight culture
was diluted 100-fold in TBC and then grown to OD600 ~0.4 (~2.5 h at 37 ◦C). For cells
carrying the pZS45-cII169 and pUHA-1 plasmids, spectinomycin (50 µg/mL), kanamycin
(50 µg/mL), and IPTG (0–20 µM) were also added. The culture was then diluted in TBC to
OD600 0.05, and 185 µL of culture was transferred to each well of a 96-well microtitre plate
together with 15 µL of diluted phage stock at MOA of 1.5 × 10−4 or TM buffer alone as a
no phage control. The infection time course was monitored by incubating the microtitre
plate at 37 ◦C in a Victor X5 plate reader (Perkin-Elmer) equipped with a 600 nm optical
filter (Perkin Elmer, 600/8 nm, 1420–521). The injector accessory was used to add 5 µL
of sterile water per well every 15 min to compensate for volume loss due to evaporation,
as per Maynard et al. [20]. Eight replicates for each condition were assayed, but for data
analysis, only the results obtained from the inside six wells were included as evaporation
is generally higher for outside wells than inside wells.

4.6. Fitting Procedure

Data were imported into MATLAB for processing. The OD600 measurements were
background subtracted (0.036 for TBC broth) and stored as a series of 12 × 8 matrices, each
of which corresponds to one time-point. The time at which the first measurement was
taken was defined as time 0.

Simulations were performed by numerically integrating a given set of parameters with
a MATLAB built-in ordinary differential equation solver (ode45) using Equations (1)–(4),
modified from Maynard et al. [20] or Equations (5)–(10), modified from Sinha et al. [27].
The initial OD600 value was taken as the initial concentration of bacteria B0. The initial
concentrations of infected cells ([B1] and [B>1]), lysogens [L] and cell debris [D] were set
to zero, and the initial concentration of phage [P] was calculated as the product of [B0]
and MOA.
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Model fitting was performed with a Monte Carlo simulated annealing approach. The
expected OD600 values were calculated at each of the experimentally tested timepoints
with an initial guess of parameters. The simulated values were compared with the experi-
mentally observed OD600 values by calculating a score = Σ{(measured OD − simulated
OD)2/simulated OD}. Since each condition was repeated 6 times, the overall score was
computed as a sum of all six individual scores calculated from each of the experimental
repeats. The fitted parameter values (ki, b, δ, and f ) were then varied at random by a factor
of 0.9–1.1, and a new score was calculated using this new parameter set. If the new score
was better than the previous score, the new parameter set was retained, and the score was
updated, otherwise the new parameter set was rejected. To reduce the complexity of the
fitting, the growth parameters for nonlysogen and lysogen (µB, KB, µL, and KL) were fixed
from the growth curve fit. The cell debris coefficient d was determined using data obtained
from lytic only 186 cI10 phage infections. The model assumes that adsorption of phage to
the cell debris is negligible. The best fit value of d was determined to be 0.1.

To reduce the search time, the parameters were allowed to vary only within a range
deemed appropriate. The boundaries of the ki and b were set to be within the range 1.2 to
3, and 20 to 200, respectively, while f may fall anywhere between 0 and 1. A typical run
involved three rounds of 50,000 iterations of fitting, which took ~5 min on a MacBook Pro.

5. Conclusions

Infection time-courses provide a simple and relatively high-throughput method to
examine interactions between lytic phage and their bacterial hosts in a more ecologically
relevant way than traditional single-step growth experiments. We have shown that analysis
by an improved mathematical model can extract key infection parameters from a single
time course. Together, these approaches can be used to examine effects of phage and
host mutants and can be easily applied to provide useful information about less well-
characterised phage and hosts of ecological or medical importance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph14100998/s1, Figure S1: Control growth and infection curves. Figure S2: Analysis of
fitting parameters.
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