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SUMMARY

The chemical industry must decarbonize to align with UN Sustainable Develop-
ment Goals. A shift toward circular economies makes CO2 an attractive feedstock
for producing chemicals, provided renewable H2 is available through technolo-
gies such as supercritical water (scH2O) gasification. Furthermore, high carbon
and energy efficiency is paramount to favorable techno-economics, which poses
a challenge to chemo-catalysis. This study demonstrates continuous gas
fermentation of CO2 and H2 by the cell factory, Cupriavidus necator, to (R,R)-
2,3-butanediol and isopropanol as case studies. Although a high carbon efficiency
of 0.75 [(C-mol product)/(C-mol CO2)] is exemplified, the poor energy efficiency
of biological CO2 fixation requires �8 [(mol H2)/(mol CO2)], which is techno-
economically infeasible for producing commodity chemicals. Heat integration
between exothermic gas fermentation and endothermic scH2O gasification over-
comes this energy inefficiency. This study unlocks the promise of sustainable
manufacturing using renewable feedstocks by combining the carbon efficiency
of bio-catalysis with energy efficiency enforced through process engineering.

INTRODUCTION

The chemical industry has been central to the modern world since the Industrial Revolution, converting raw

materials such as fossil reserves into thousands of products through numerous continuous processes.

Although the chemical industry has served economic growth well over many decades, much of the chemical

industry has become misaligned with the United Nation’s (UN) Sustainable Development Goals, notably

Sustainable Industrialization and Climate Action (Axon and James, 2018). Current large-scale

manufacturing processes suffer from a reliance on finite fossil reserves, high energy consumption, and

poor overall catalytic selectivity. Circular economies are markedly absent and net greenhouse gas emis-

sions exacerbate climate change (Keijer et al., 2019).

Given the chemical industry needs to decarbonize, the use of CO2 as a carbon feedstock for producing chem-

icals has significant synergy with UN Sustainable Development Goals, provided a renewable supply of reducing

power is available from either H2 or H2O. Renewable H2 can be produced via a number of sustainable technol-

ogies, including (1) biomass pyrolysis-gasification (Dou et al., 2019), (2) dark fermentation of complex carbohy-

drates (Boboescu et al., 2016), (3) supercritical water gasification (Okolie et al., 2019), and (4) megawatt-scale

water electrolysis (Schmidt et al., 2017). Such renewable H2 can be used to produce methanol from CO2

chemo-catalytically, where a typical reactor has amethanol outlet composition of�61% bymole of the total car-

bon products (Toyir et al., 2009). This renewable methanol can be converted to C2–C4 olefin chemical building

blocks using SAPO-34 zeolite catalysts, noting a typical reactor has a propene outlet composition of 39% by

weight of the total carbonproducts in commercial practice. In addition to low selectivity, theMethanol toOlefins

(MTO) process suffers from rapid catalyst coking, necessitating continuous regeneration of the catalyst within the

fluidized bed reactor (Tian et al., 2015). The MTO process’ greater selectivity for propene creates opportunities

to produce C3 and C4 alcohol solvents. Isopropanol can be produced via the hydration of the C3 propene frac-

tion, whereas C4 alcohols can be produced through hydroformylation of propene using theOxoSM Process with

�85% selectivity for the linear C4 product over the branched C4 by-product (Tudor and Shah, 2017). In addition

to the techno-economic challenges posed by low overall selectivity and catalyst deactivation, the high temper-

ature andpressureprocessing associatedwith the chemo-catalytic conversion ofCO2 andH2 toC3 andC4prod-

ucts is energy intensive (Toyir et al., 2009; Tian et al., 2015; Tudor and Shah, 2017).
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Microbial cell factories produce biocatalysts (enzymes) and use the cell’s energy carriers to synthesize

products via these non-native biochemical pathways. Such bio-catalysis presents opportunities to reinvent

chemicals manufacturing using sustainable feedstocks and renewable energy, harnessing the high catalytic

selectively of microbial cell factories at low temperature and pressure (Hedstrom, 2010). Although several

acetogenic cell factories are able to fix CO2 using H2 anaerobically, these cell factory platforms suffer from

energetic limitations (Molitor et al., 2017) and the production of fermentative by-products such as acetate

(Hoffmeister et al., 2016). Conversely, Cupriavidus necator (formerly, Alcaligenes eutrophus and Ralstonia

eutropha) is a chemolithoautotrophic bacterium capable of aerobic, autotrophic growth using CO2 as the

sole carbon source, H2 as electron donor, andO2 as the electron acceptor (Brigham, 2019). When the genes

producing C. necator’s natural carbon sink, polyhydroxybutyrate (phb), are attenuated, the cell accumu-

lates pyruvate as the central metabolite under nutrient limitation, which can be redirected to a number

of different carbon products (Steinbüchel and Schlegel, 1989). Consequently, metabolic engineering of

C. necator to produce chemicals from CO2 and H2 has demonstrated promise, most notably in the produc-

tion of (1) 2-hydroxyisobutyrate for Plexiglas (Przybylski et al., 2012), (2) isobutanol (Brigham et al., 2013), (3)

3-methyl-1-butanol (Li et al., 2012), (4) methyl ketones (Müller et al., 2013), (5) isopropanol (Marc et al.,

2017), (6) a-humulene (Krieg et al., 2018), and (7) acetoin (Windhorst and Gescher, 2019). These studies

have contributed appreciably to advancing the metabolic engineering of C. necator as a platform for using

CO2 as a carbon feedstock, noting that the focus was not on process engineering considerations. As such,

these studies were demonstrated at low cell density in batch operation, which is not aligned techno-

economically with continuous manufacturing. Additionally, these studies have not addressed the energy

inefficiency of biological CO2 fixation, where the high H2 utilization makes the process techno-economi-

cally infeasible for producing commodity chemicals (Emerson and Stephanopoulos, 2019).

The objective of this study has been to demonstrate integrated, continuous production of chemicals from

CO2 using C. necator as the microbial cell factory. Aligning with the continuous operating paradigm of the

chemical industry, this paper is the first to demonstrate the stable and continuous bio-manufacture of

chemicals from CO2 using C. necator as carbon-efficient cell factory. Furthermore, this study is the first

to demonstrate the use of process engineering to overcome the techno-economic hurdle associated

with the energy inefficiency of biological CO2 fixation. The following sections outline the metabolic engi-

neering, continuous gas fermentation, and rigorous process simulation, which exemplify carbon and en-

ergy-efficient continuous bio-manufacture through two case studies producing (R,R)-2,3-butanediol

(BDO) and isopropanol (IPA).

RESULTS

Metabolic Engineering

Microbial cell factories are able to produce a large number of products via their biochemical networks from

a variety of carbon feedstocks. BDO and IPA were selected as the two case studies for continuous autotro-

phic fermentation in this work, given both biochemical pathways have been extensively characterized (Ji

et al., 2011; Marc et al., 2017). The biochemical pathways that convert the central metabolite pyruvate to

either BDO or IPA are detailed in Figure 1A. The biochemical pathway genes depicted in Figure 1B

were overexpressed as a single operon from either a plasmid or chromosomal integration, employing

the synthetic biology methods described in the Transparent Methods section.

C. necator’s natural carbon sink pathway to polyhydroxybutyrate (phb) was knocked out by deleting the

operon phaC1AB1 for the BDO cell factory and the genes phaC1B1 for the IPA cell factory (Peplinski

et al., 2010; Raberg et al., 2014; Müller et al., 2013), thereby redirecting carbon flux and reducing equiva-

lents to the fermentation product. Also, given the reported degradation of BDO’s precursor acetoin by C.

necator via what would constitute a competing pathway (Fründ et al., 1989), the acoXABC gene cluster was

deleted in the BDO cell factory.

The performance evaluations of these BDO and IPA cell factories in heterotrophic shake flask culture are

summarized in Table 1 and Figure 2, demonstrating the carbon split using fructose as carbon source. Given

that chromosomal integration is associated with greater genetic stability in C. necator (Voss and Steinbü-

chel, 2006; Gruber et al., 2014), the performance of the expressed operons (Figure 1B) was assessed for

both plasmid-based and chromosomally integrated cell factories. The cumulative specific fructose uptake

rate was comparable across plasmid, integrated and control strains, where the biomass synthesis was

controlled via nitrogen limitation. In shake flasks, the integrated BDO cell factory had similar yield and

ll
OPEN ACCESS

2 iScience 23, 101218, June 26, 2020

iScience
Article



productivity performance to the plasmid-based cell factory, whereas the IPA plasmid-based cell factory

outperformed the integrated cell factory. The greater genetic stability of integrated cell factories is best

suited to continuous fermentation, and a single copy integration also provided for a better comparison

of performance between BDO and IPA. Therefore, both the BDO and IPA integrated cell factories were

taken forward into continuous fermentation using CO2 and H2 as per the Transparent Methods section.

Continuous Gas Fermentation

Microorganisms often show reduced tolerance to the accumulation of solvent products such as BDOor IPA.

Increasing IPA concentrations in fermentation are detrimental to C. necator’s growth above 15 g/L (Marc

et al., 2017), recognizing that stripping of IPA into the bioreactor’s off-gas increases as the aqueous con-

centration increases. Also, in continuous fermentation, the IPA is further diluted from the bioreactor.

The low volatility of BDO makes its accumulation in the bioreactor’s aqueous phase a greater concern.

Consequently, shake flask experiments revealed that, above a BDO concentration of 30 g/L, the growth

rate of C. necator H16 is impaired (Figure S1). Therefore, without resorting to genetic modification, the

BDO concentration in continuous bioreactors needs to be controlled through dilution alone.

The continuous, autotrophic fermentation results were generated using the bioreactor experimental setup

shown in Figure 3, outlining the decoupled, multi-loop SISO (single-input, single-output) process control

strategy for intensifying the process within the flammability safety constraints. The specific CO2 uptake

Figure 1. Biochemical Network and Pathway Operons for the Synthesis of (R,R)-2,3-butanediol and isopropanol

(A) Biochemical network outlining the synthesis of (R,R)-2,3-butanediol and isopropanol in the microbial cell factory, C.

necator H16, converting CO2 and H2 to pyruvate via the Calvin Cycle and redirecting carbon flux from pyruvate to

(R,R)-2,3-butanediol and isopropanol as case studies. Attenuated genes are contained in red text boxes. Genes

overexpressed to allow (R,R)-2,3-butanediol synthesis are contained in gray text boxes, whereas genes overexpressed for

isopropanol synthesis are contained in green text boxes.

(B) Pathway operons for BDO (BD2) and isopropanol (IPA4)-producing strains. Both operons rely on pBAD as inducible

promoter with ribosome-binding sites as per Table S2 and genes as per Table S4, noting that phaA is the native open

reading frame.
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rates and specific productivities on a biomass (DCW) basis are trended in Figure 4, thereby allowing for

comparison between BDO and IPA synthesis against the DphaC1AB1 DacoXABC control strain. For the

BDO cell factory, meso-2,3-butanediol is the principal by-product, indicative of promiscuous secondary

alcohol dehydrogenase activity accepting acetoin as substrate. Acetone is the principal by-product for

the IPA cell factory, indicating that the secondary alcohol dehydrogenase is the rate-limiting step in the

assembled pathway. The control strain produces no products or by-products. The molar ratios of H2 and

O2 uptake to CO2 uptake reflect the specific requirement for H2 as electron donor and O2 as electron

acceptor (Figure 5). The steady-state CO2 uptake rate for both case studies demonstrated a specific uptake

rate of 3–4 ([(mmol C)/(gDCW$h)], consuming �8 [(mol H2)/(mol CO2)] and 2–3 [(mol O2)/(mol CO2)]. An�8

[(mol H2)/(mol CO2)]) molar ratio reflects the reducing power required to fix CO2 and produce the product,

generating significant heat owed to the exothermic reaction. Alongside this measure of energy efficiency,

the carbon split to product, by-product, and biomass summarizes the carbon efficiency (Table 2 and Fig-

ure 6). As such, these data are the first to demonstrate genetically stable and continuous production in

C. necator via chromosomal integration of non-native genes. The calculation methodology for gas uptake

rates, steady-state dilution rate, and carbon fluxes for the continuous, autotrophic fermentations is

described in Figure S2. Given the results in Figures 4 and 5 represent calculated data incorporating several

sensors, analyses, and calibration standards, two thousand Monte Carlo simulations were undertaken to

determine the 90% confidence limits denoted by error bars in Figures 4 and 5. The histogram outputs

from the Monte Carlo simulations are contained in Figure S3.

Process Simulation and Systems Biology

Heat Integration of Gas Fermentation with Supercritical Water Gasification

Gas fermentation is a highly exothermic process owed to the cascade of electrons through the biochemical

network (Figure 1A) from the electron donor, H2, to the final electron acceptor, O2 (Tanaka et al., 1995). The

CO2 is reduced to a number of carbon sinks, typically biomass, the fermentation product, and by-products. Su-

percritical water (scH2O) gasification is a hydrothermal technology converting renewable carbon feedstocks,

such as wet lignin biomass, to CO2 and H2 at supercritical pressure and temperature, i.e., 240 bar (a) and

375�C (Rodriguez Correa and Kruse, 2018). The process is highly endothermic and the renewable H2 produced

by the scH2O reactor originates from both the hydrocarbon feedstock and the scH2O. A heat pump can be em-

ployed to facilitate the energy (heat) flow from a low temperature (gas fermentation) to a high temperature

(scH2O gasification) via a thermal cycle. The integrated process was rigorously simulated in Aspen HYSYS, sum-

marized in Figure 7 and detailed in Figure 8 using the lignin model compound, guaiacol, as the waste carbon

feedstock. From the heat pump cycle depicted in Figure 7, a suitable heat carrying fluid (isopentane) is evapo-

rated at low pressure in an evaporator by the bioreactor’s heat of reaction (4,004 kW/ton guaiacol), resulting in a

substantial increase in the isopentane’s enthalpy (energy) at constant temperature. The isopentane vapor is com-

pressed to a higher pressure via a compressor, further increasing the isopentane’s enthalpy owed to the heat of

compression (175 kW/ton guaiacol). Further energy is transferred to the vapor via a series of heat exchangers.

The scH2O Recovery Heat Exchanger recovers heat from the scH2O reactor’s effluent (5,565 kW/ton guaiacol),

and the Heat Pump Recovery Heat Exchanger recovers heat from the isopentane returning after heating the

scH2O reactor feed to supercritical temperature. Thereafter, the temperature of the isopentane is greatly

increased in a combustion chamber (3,952 kW/ton guaiacol), fired by a fraction of the renewable H2 generated

Performance Parameter Unit 2,3-Butanediol Isopropanol

Plasmid Integrated Host Plasmid Integrated Host

Cumulative specific fructose

uptake rate

[(mmol C)/((g DCW)$h)] 9.6 G 1.3 9.7 G 1.2 8.8 G 1.1 10.2 G 1.8 9.9 G 1.6 9.1 G 1.1

Cumulative molar carbon

efficiency (yield)

[(C-mol product)/(C-mol

fructose)]

Figure 2

Final product titer in liquid

phase

[g/L] 1.9 G 0.1 1.8 G 0.1 nd 2.7 G 0.2 1.8 G 0.2 nd

Table 1. Microbial Cell Factory Performance in Heterotrophic Shake Flasks for (R,R)-2,3-Butanediol and Isopropanol Synthesis (Triplicate Biological

Replicates)

nd designates not detected.
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in the scH2O reactor. The high temperatureof the isopentaneallows heat transfer to the subcritical aqueous feed

(3,660 kW/ton guaiacol), raising the sub-critical feed to the scH2O reactor to supercritical conditions. After the

Heat Pump Recovery Heat Exchanger, the vapor is condensed in a condenser (scH2O Reactor Pre-heater), which

pre-heats the feed to the scH2O reactor (10,036 kW/ton guaiacol). Finally, the liquid isopentane is expanded to

lower pressure over a valve for evaporation in the Heat Pump Evaporator by the bioreactor’s heat of reaction.

The thermal cycle linking the low-temperature energy source, i.e., the exothermic gas fermentation, and the

high-temperature energy sink, i.e., the endothermic scH2O gasification, is subsequently repeated.

The process integration into the heat pump cycle of (1) the combustion chamber, (2) air compression via a

turbo-expander, and (3) renewable energy generation via a turbine is detailed in Figure 8. The integrated

process was rigorously simulated in Aspen HYSYS, feeding the waste carbon from the High-Pressure Pump

(339 kW/ton guaiacol) to the scH2O Reactor, where CO2 and H2 are generated from the carbon feedstock

modeled as the lignin model compound, guaiacol. The high-pressure CO2 & H2 stream is expanded over

the turbo-expander, using the generated 575 kW/ton guaiacol to compress air as the oxygen source for gas

fermentation and the combustion chamber. A fraction of the depressurized CO2 and H2 and a fraction of

the compressed air are fed to the loop bioreactor, where the bleed and permeate fermentation products

are produced. The unreacted CO2 & H2 in the off-gas from the loop bioreactor is combined with the re-

maining fraction of the depressurized CO2 and H2 to fire the combustion chamber. The combustion cham-

ber’s off-gas is fed to a turbine producing renewable electricity (566 kW/ton guaiacol). The scH2O reactor’s

effluent is depressurized to release the CO2 that remained soluble at high pressure, after which the hot

aqueous solution can be used for biomass hot water extraction.

Systems Biology for BDO Synthesis Using CO2 & H2 and Guaiacol as Sole Energy and Carbon
Sources

Rather than gasifying lignin, a next best alternative technology within the context of more conventional het-

erotrophic fermentation would be a process that converts lignin to guaiacol, thereafter converting the

guaiacol to BDO via the 3-oxoadipate pathway. Shen et al. (2020) demonstrated that lignin can be selec-

tively converted to guaiacol as an alternate technology to gasification. C. necator is capable of degrading

Figure 2. Carbon Efficiency for BDO and IPA Strains in Shake Flask Culture

Cumulative molar carbon efficiency (yield) of microbial cell factories in heterotrophic shake flasks (triplicate biological

replicates), representing the carbon split using fructose as carbon source in [(C-mol product)/(C-mol fructose)]. The by-

product for the BDO strains is meso-2,3-butanediol and for the IPA strains is acetone. The CO2 carbon split has been

estimated from the carbon balance, noting that the analysis excludes losses of volatile products and by-products to the

gas phase. The desired product comprises less than 25% of the carbon from fructose, given the required reducing power

that needs to be derived from fructose. Table 1 summarizes additional performance parameters.
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lignin monomers such as catechol (Wang et al., 2014). However, a microbial cell factory using the lignin

model compound guaiacol as the sole energy and carbon source has not been reported. Mallinson

et al. (2018) uncovered theO-demethylase reaction that allows for guaiacol catabolism in bacteria, charac-

terizing kinetics that suggests guaiacol catabolism is constrained by the conversion of guaiacol to catechol.

The required biochemical network for the synthesis of BDO from guaiacol inC. necatorH16 is shown in Fig-

ure S4. Guaiacol is catabolized via the 3-oxoadipate pathway to succinyl-CoA and acetyl-CoA, after which

the carbon flux is directed to the cell’s TCA cycle. Pyruvate is produced frommalate via themalic enzyme as

the metabolite precursor to BDO synthesis. Using a genome scale model for C. necator (Unpublished

Data), which advances on the existingmodel proposed by Park et al. (2011), comparative Flux Balance Anal-

ysis (FBA) simulations were run using (1) guaiacol as the sole carbon and energy source and (2) CO2 and H2.

For CO2 and H2, the FBA simulation accurately predicted the O2 uptake rate, H2 uptake rate, and the BDO

productivity as detailed in Table 2, providing confidence in the predictive power of the genome scale

model. The FBA simulation for guaiacol predicted a molar carbon yield of 0.12 [(C mol product)/(C mol

guaiacol)] (Table S6). Accordingly, the upstream processing for the guaiacol case was scaled to a guaiacol

feed basis of 1,000 kg/h and simulated in Aspen HYSYS as shown for the conventional heterotrophic pro-

cess flow sheet in Figure 9. Similarly, the upstream processing for the CO2 & H2 case was scaled to a guaia-

col feed basis of 1,000 kg/h and simulated in Aspen HYSYS as shown for the autotrophic process flow sheet

in Figure 8. The bioreactor scale-up for the guaiacol and CO2 &H2 Aspen HYSYS simulations is summarized

in Table S7.

Figure 3. Continuous, Autotrophic Bioreactor Experimental Setup

Continuous bioreactor experimental setup, outlining the decoupled, multi-loop SISO (single-input, single-output) process control strategy for intensifying

the continuous autotrophic bioreactor within the flammability safety constraints. The steady-state dissolved oxygen (AIC101) is controlled via the phosphate

addition rate, maximizing the process intensification under phosphate limitation. Avoiding a flammable atmosphere in the headspace of the reactor, AIC102

controls the O2 concentration in the headspace using the air flow.
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DISCUSSION

High carbon and energy efficiency is essential to achieving favorable techno-economics when convertingCO2 to

chemicals, which poses a significant challenge to conventional chemo-catalysis. Principally, the low overall selec-

tivity of the Methanol to Olefin (MTO) process would hamper the sustainable production of C3 and C4 alcohols

fromCO2. For the integrated cell factories producingBDOand IPA (Table 1 andFigure 2), thebatch experiments

using fructose as carbon source showed lowmolar carbon yields of 0.16–0.18 [(Cmol product)/(C mol fructose)].

From Figure 2, the carbon sunk into biomass and by-products was low and a large fraction of carbon was

released as CO2, indicative of the reducing power required for the synthesis of BDO and IPA. Although fructose

makes no net contribution to CO2 emissions, a biogenic carbon source such as lignin would bemore cost-effec-

tive. However, for the lignin model compound, guaiacol, systems biology simulation for heterotrophic catabo-

lism predicts a similar molar carbon yield of 0.12 [(C mol product)/(C mol guaiacol)]. Scaling this conventional

heterotrophic process as in Figure 9 produces 158 kg of BDO per ton of guaiacol, requiring 744 kW of electricity

for air compression and 1,638 kW of electricity for the ammonia chiller per ton of guaiacol. The total cooling

tower duty amounts to 7,702 kW, adding to the operating cost burden. Despite using renewable feedstocks,

such a process could not be described as sustainable.

In contrast, the BDO and IPA cell factories in continuous gas fermentation have substantially improved car-

bon efficiency, given the reducing power from H2 is fed separately from the oxidized CO2 feed. The BDO

Figure 4. Specific CO2 uptake rates and specific carbon productivities for continuous, autotrophic fermentations

Specific CO2 uptake rate (CUR) and specific carbon productivity on a biomass basis during the synthesis of (R,R)-2,3-butanediol and isopropanol in

continuous autotrophic fermentation, compared with theDphaC1AB1DacoXABC control. Specific productivities are comparable, noting the greater carbon

overflow to by-product for the isopropanol cell factory. Error bars determined as per Figure S3.
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and IPA cell factories achieved high molar carbon yields of 0.75 [(C mol product)/(C mol CO2)] and 0.61 [(C

mol product)/(C mol CO2)], respectively (Table 2 and Figure 6), recognizing that the IPA cell factory would

benefit from further metabolic engineering optimization. Approximately 0.15–0.2 [(C mol DCW)/(C mol

CO2)] is invested into the continuous production of bio-catalyst, negating the need to have a separate

unit operation to regenerate catalyst as for the MTO process. Despite the stable and high overall carbon

selectivity (Figures 4 and 6) aligned with the chemical industry’s production paradigm, the poor energy ef-

ficiency of biological CO2 fixation requires considerable renewable H2 at �8 [(mol H2)/(mol CO2)] (Table 2

and Figure 5), which is techno-economically infeasible for producing commodity chemicals.

Several researchers have recognized that the energy inefficiency associated with biological carbon fixation is a

hurdle to creating techno-economic processes based on gas fermentation (Bar-Even et al., 2012; Emerson and

Stephanopoulos, 2019). The Calvin-Benson-Bassham (CBB) cycle is the dominant carbon fixation pathway given

its prevalence within photosynthetic organisms. The CBB cycle’s dominance is owed to its advantaged kinetics

over other carbonfixationpathways such as the reductive acetyl-CoApathwayprevalent in anaerobic acetogens.

This kinetic advantage to reduce CO2 into biomass and other metabolites comes at a substantial energy cost.

For example, toproduce 1moleof acetate, 7.5moles of H2 is requiredby theCBBcycle asopposed to4moles of

H2 for the reductive acetyl-CoA pathway (Emerson and Stephanopoulos, 2019). Consequently, a number of

augmented and artificial CO2 fixation pathways have been proposed as a means of improving the energy

Figure 5. Molar Uptake Ratios for Continuous, Autotrophic Fermentations

Molar uptake ratios for H2 (electron donor) and O2 (electron acceptor) to CO2 during the synthesis of (R,R)-2,3-butanediol and isopropanol in continuous

autotrophic fermentation, compared with the DphaC1AB1 DacoXABC control. An ~8 [(mol H2)/(mol CO2)] molar ratio reflects the reducing power required

to fix CO2 and produce the product, generating significant heat owed to the exothermic reaction. Error bars determined as per Figure S3.
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efficiency of biological C1 fixation cycles. Yu et al. (2018) proposed a malyl-CoA-glycerate (MCG) pathway to

augment the CBB cycle, which reduces energy requirements by 22.5% to produce the central metabolite,

acetyl-CoA. Implementing the MCG pathway would thus have potential benefit to this study’s IPA, but not

the BDO, cell factory. More generally, Gleizer et al. (2019) were the first to introduce an entire CO2 fixation

pathway into a heterotrophic cell factory by relying on CBB cycle enzymes and formate assimilation. This signif-

icant achievement in metabolic engineering imparted chemolithotrophic metabolism to E. coli. Given formate

needs to be oxidized toCO2 at amolar ratio of�8 [(mol formate)/(mol CO2 fixed)] to provide reducing power for

the CBB cycle, the carbon efficiency of this formate-assisted pathway is low and the cell’s energy efficiency no

better than the conventional CBB cycle. Furthermore, the production of formate fromCO2 via electrolysis is chal-

lenged by appreciable electricity demand and by electrode poisoning of the noble metal catalyst (Lee et al.,

2019), where megawatt-scale implementation would be as capital intensive as for H2O electrolysis (Schmidt

et al., 2017). Despite their apparent thermodynamic promise, no artificial CO2 fixation pathways have been suc-

cessfully implemented in a cell factory. The problem of poor energy efficiency needs to be solved another way.

Low-cost renewable H2 production is essential to achieving favorable techno-economics, although this is

only part of the solution. Biomass pyrolysis-gasification needs to be implemented at considerable scale to

justify the required solids handling capital investment, whichmay bemismatched with themore distributed

Performance

Parameter

Unit BDOa Microbial Cell

Factory

IPAb Microbial Cell

Factory

Specific CO2 uptake rate [(mmol C)/(gDCW$h)] 3.04 G 0.12 3.99 G 0.11

Molar carbon efficiency

(yield)

[(C-mol product)/(C-mol

CO2)]

Figure 6

Carbon balance closure [%] 102.6 93.7

H2/CO2

Molar ratio

[(mol H2)/(mol CO2)] 7.91 G 0.86 8.09 G 0.74

O2/CO2

Molar ratio

[(mol H2)/(mol CO2)] 2.92 G 0.1 1.85 G 0.06

Product in vapor phase [-] mole fraction 0 0.75

Product in liquid phase [g/L] 32.0 G 0.1 7.7 G 0.2

Table 2. Microbial Cell Factory Performance in Continuous Autotrophic Fermentation for (R,R)-2,3-Butanediol and

Isopropanol Synthesis
aBDO is 2,3-butanediol.
bIPA is isopropanol.

Figure 6. Molar Carbon Efficiencies for Continuous, Autotrophic Fermentations

Molar carbon efficiency (yield) of microbial cell factories in autotrophic fermentation, representing the carbon split using

CO2 as carbon source in [(C-mol product)/(C-mol CO2)]. The by-product for the BDO strains is meso-2,3-butanediol and

for the IPA strains is acetone. Table 2 summarizes additional performance parameters.
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nature of smaller bio-manufacturing facilities (Dou et al., 2019). Dark H2 fermentation of complex carbohy-

drates suffers from low process intensification (Boboescu et al., 2016), whereas megawatt-scale H2O

electrolysis is too capital intensive making large-scale H2 production prohibitive (Schmidt et al., 2017). Su-

percritical H2O gasification needs to overcome corrosion and fouling challenges but can be implemented

cost-effectively at a smaller scale, demonstrates high reaction rates, and is not prohibitive from a capital

investment perspective (Okolie et al., 2019). Cost-effective catalysis is key to economically viable H2 pro-

duction at temperatures �400�C, where scH2O presents opportunities to produce nano-catalyst in situ

(Huang et al., 2019) and for the recycle of valuable metals from spent catalyst (Grumett, 2003). Pertinent

to this study, in addition to serving as a source of renewable H2, the highly endothermic scH2O gasification

reaction provides a heat sink for the highly exothermic gas fermentation.

TheconsumptionofH2 to fuel theCBBcycle’s kineticsgeneratesasignificantamountofheat at low temperature in

bioreactors, which is conventionally removed via a chiller unit at the expense of electrical energy and high cooling

water duty as shown in Figure 9. A heat pumpcanbeemployed to facilitate theenergy (heat) flow froma low tem-

perature (gas fermentation) to a high temperature (scH2O gasification) via a thermal cycle as outlined in Figure 7

and detailed in Figure 8. Comparing the capital intensity of a conventional flowsheet (Figure 9) and the heat inte-

grated flowsheet (Figure 8), Figure 8 has (1) a turbo-expander rather than a megawatt-scale air compressor, (2) a

heat pump rather thana chiller thermal cycle, and (3) further energy recovery via a turbine. Reducing theoperating

costburdenassociatedwith compression forgas fermentation,a turbo-expander suppliesair forgas fermentation

and the combustion chamber with no intrinsic electrical power consumption. In addition to producing 148 kg of

BDOper ton of gasified guaiacol, comparable with guaiacol as sole carbon source (Figure 9), the process gener-

ates 566 kWof renewable electricity rather than consuming significant electrical power. FromFigure 7, the overall

heatdutyof the scH2Ogasifier amounts to13.7MW/tonguaiacol.Withoutheat integrationwithgas fermentation,

the combustion chamberwould need to supply 58%of this heat duty, severely limiting the supply of H2 per ton of

guaiacol to gas fermentation, whereas with heat integration only 29% of this heat duty needs to be obtained by

Figure 7. Schematic of the Heat Integration between Gas Fermentation and Supercritical Water Gasification

Schematic summarizing the heat integration between gas fermentation and supercritical water gasification via a heat

pump using isopentane as enthalpy carrying fluid though a number of heat exchangers. The Heat Pump Evaporator

recovers heat from the bioreactor at low temperature (4,004 kW/ton guaiacol), resulting in a reduction in the operating

cost burden associated with cooling water use and electricity demand (see Figure 9). The cumulative recovery of heat

energy within the heat pump cycle (purple cycle) minimizes the fraction of the H2 (pink arc) that needs to be combusted to

heat the aqueous guaiacol fed (blue arc) to the highly endothermic gasification reactor via the Supercritical Heater

(3,660 kW/ton guaiacol).
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combusting a fraction of the gasifier’s H2 product. Recovering the heat generated to fuel the CBB cycle removes

the thermodynamic inefficiency of CO2 fixation as a significant burden to the process techno-economics.

Although lignin is an abundant and low-cost feedstock, its recalcitrant, complex structuremakes its direct exploi-

tation in fermentation challenging. The process engineering solution in Figure 7 is not only energy efficient but

alsoprovidesan innovativesolutionviascH2Ogasificationtousingrenewable feedstockssuchas lignin toproduce

chemicals. This studyunlocks thepromiseofsustainablemanufacturingusing renewable feedstocksbycombining

the carbon efficiency of bio-catalysis with energy efficiency enforced through process engineering.

Limitations of the Study

In the design of a sustainable bio-manufacturing facility, capital cost is directly proportional to the produc-

tivity in the bioreactors, which impacts significantly on achieving favorable techno-economics. Although

Figure 8. Process Flow Diagram for the Heat Integration between Gas Fermentation and Supercritical Water Gasification

Process flow diagram detailing the heat integration between gas fermentation and supercritical water gasification on a guaiacol feed basis of 1,000 kg/h. H2-

rich gas (red) is produced from waste carbon in the aqueous media (blue) in a scH2O reactor. A heat pump using isopentane (purple) heat integrates the low-

temperature gas fermentation with the high-temperature supercritical water gasifier through a number of heat exchangers. The H2-rich product (red) from

the supercritical H2O gasification is feed to the gas fermentation and the combustion chamber as electron donor. Reducing the operating cost associated

with compression for gas fermentation, the turbo-expander supplies air (green) with O2 as electron acceptor for gas fermentation and the combustion

chamber, respectively. In addition to producing 148 kg of BDOper ton of guaiacol, the process generates 566 kW of renewable electricity per ton of guaiacol

with a negligible requirement for cooling water.
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this work is the first to demonstrate the stable and continuous bio-manufacture of chemicals from CO2 us-

ing C. necator as a carbon-efficient cell factory, productivity in gas fermentation will be limited by O2 trans-

fer constraints in light of H2 flammability. Therefore, process intensification toward higher O2 mass transfer

remains an important continued area of research. Although this study demonstrated stable and continuous

gas fermentation experimentally, the integration of gas fermentation with scH2O gasification was verified

through process simulation. Notably, process simulators, such as Aspen HYSYS, provide for rigorous simu-

lation that enables effective process design. Although this study is the first to demonstrate the use of pro-

cess engineering to overcome the techno-economic hurdle associated with the energy inefficiency of bio-

logical CO2 fixation, this work will benefit from the future demonstration of this integrated, continuous

process at large laboratory scale.

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Rajesh Reddy Bommareddy (rajesh.bommareddy@nottingham.ac.uk).

Materials Availability

Materials generated in this study are available from the Lead Contact under Material Transfer Agreement

(MTA).

Data and Code Availability

The ScrumPy package of metabolic modeling tools (build OMICS_20,375) was used for all systems biology

simulations (Poolman, 2006). Aspen HYSYS V11 (build 37.0.0.395) from Aspen Technologies, Inc. was used

for all process simulations in this study. Experimental sensor and analytical data from shake flask and

continuous fermentation experiments (please see Transparent Methods section) were processed in Micro-

soft Excel 2016. Graphical representations of the processed data were produced using MATLAB R2019b

Figure 9. Process Flow Diagram for Conventional, Heterotrophic Fermentation of Guaiacol to BDO

Process flow diagram for waste carbon as sole energy and carbon source, modeled on a guaiacol feed basis of 1,000 kg/h. A chilled ethylene glycol (EG,

orange) loop provides for heat removal from the bioreactor via an ammonia refrigeration unit (purple). The compressor and cooling water duties reflect the

operating cost burden associated with this conventional heterotrophic operating strategy, producing 158 kg of BDO per ton of guaiacol.
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(9.7.0) version 19.0 fromMathworks, Incorporated. Data and code generated in this study are available from

the Lead Contact under MTA.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101218.
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SUPPLEMENTAL INFORMATION 1 

 2 

TRANSPARENT METHODS 3 

 4 

METABOLIC ENGINEERING 5 

 6 

Gene selection 7 

The biochemical network for the synthesis of BDO and IPA in the microbial cell factory, C. necator 8 

H16, is outlined in Figure 1A. The BDO biochemical pathway entails three enzymatic steps from 9 

pyruvate, where pyruvate is converted to 2-acetolactate by the feedback resistant 2-acetolactate 10 

synthase from Bacillus subtilis (ALS, alsS). Thereafter, 2-acetolactate is decarboxylated to 11 

stereospecific (R)-acetoin by acetolactate decarboxylase from Bacillus subtilis (ALDC, alsD). Finally, 12 

(R)-acetoin is reduced to BDO by a NADPH-specific secondary alcohol dehydrogenase (sADH, adh) 13 

from Clostridium beijerinckii. The isopropanol (IPA) pathway entails a four-step enzymatic 14 

conversion of two moles of acetyl-CoA to one mole of IPA (Figure 1A). Acetyl-CoA is converted to 15 

acetoacetyl-CoA by a β-ketothiolase from C. necator (phaA). Thereafter, acetoacetyl-CoA is 16 

hydrolysed to acetoacetate by a CoA-transferase from Helicobacter pylori (ctfAB, ctfAB) and 17 

decarboxylated to acetone by a decarboxylase from Clostridium acetobutylicum (ADC, adc). Finally, 18 

acetone is reduced to IPA by a NADPH-dependent secondary alcohol dehydrogenase from 19 

Clostridium beijerinckii (sADH, adh). The genes encoding for the enzymes of the BDO and IPA 20 

pathways are detailed in Table S4.   21 

 22 

Synthetic biology 23 

 24 

Growth media and heterotrophic cultures 25 

Unless stated otherwise, lysogeny broth (LB) was used for routine cultivations of E.coli and C. 26 

necator, adding 15 [g/L] agar for solid media plates. Where required, antibiotic selection pressure 27 

at 300 [µg/mL] and 50 [µg/mL] kanamycin (kanr) was used for C. necator and E.coli cultures 28 

respectively. For pLO3 vector based cultivations, 12.5 [µg/mL] tetracycline (Tcr) was used for E.coli 29 

and C. necator. Shake flask cultivations were performed in 500mL baffled flasks with 50 [mL] 30 

working volume and incubated at 30 [°C] and 200 [rpm]. The minimum media recipe advocated by 31 

(Schlegel et al., 1961) was used for all microbial shake flask performance evaluations including 20 32 

[g/L] fructose as carbon source. Shake flask evaluations were incubated for 72 [h]. 33 

 34 

Plasmid cloning & transformation protocols 35 

The genetic constructs for the BDO and IPA pathways were codon optimised for expression in C. 36 

necator and synthetised using Invitrogen Geneart® gene synthesis (Table S5). All primers used in 37 

the study are listed in Table S1. DNA amplification was performed using Phusion U hot start 38 



 
 
 
polymerase (NEB) with GC buffer for USER assembly. GC rich DNA amplifications were performed 39 

using Phusion polymerase with green GC buffer (NEB). For routine DNA amplifications, DreamTaq 40 

polymerase master mix (Thermo Scientific) was used. The pBAD promoter with the araC gene was 41 

obtained from the plasmid, pCM291rfp. Ribosome binding sites (RBS) were taken from previous 42 

studies as outlined in Table S2. Plasmids (see Table S3) were constructed with USER assembly kit 43 

(New England Biolabs, NEB) and transformed into E.coli DH5α by heat-shock method. The 44 

plasmids were extracted using mini-prep kit from NEB (Monarch®) and transformed into C. necator 45 

by electroporation using a 0.2cm cuvette (Bio-rad), at 2.5 kV, 200Ω and 25µF using a GenePulser® 46 

electroporation unit (Ausubel, 2003).  47 

 48 

Chromosomal attenuation and integration protocol 49 

For chromosomal attenuation and integration, suicide vectors (see Table S3) were transformed via 50 

conjugation using E.coli S-17 cells carrying the desired vector and C. necator strains using the 51 

protocol described by Lenz et al (Lenz and Friedrich, 1998). Suicide vectors (pLO3 based) with 52 

flanking regions were created by overlap extension PCR using primers listed in Table S1. The BDO 53 

operon was placed between 750bp homology arms, each flanking upstream of phaC1’s start codon 54 

and downstream of phaB1’s stop codon, producing a suicide vector pLO3-CAB-BD-2 (Table S3). 55 

This vector was then used to knock-out the phaC1AB1 operon in H16 and knock-in the BDO operon, 56 

creating the strain H16-CAB-BD2. The IPA operon was placed between 750bp homology arms each 57 

flanking 750bp upstream of phaC1 start codon and phaC1 stop codon producing vector pLO3-CB-58 

IPA4. This vector was used to attenuate phaC1 in the H16-B strain (knockout of phaB1) and knock-59 

in the IPA operon upstream of phaA gene. Trans-conjugants were selected on minimal media plates 60 

with 0.4 [%] (w/w) fructose and appropriate antibiotics. Knock-in and knock-off events for 61 

integrating the operons were performed by two-step homologous recombination (tetr and sacB 62 

selection). The first recombination event, i.e. the first crossover, was confirmed on LB plates using 63 

tetracycline as the selection marker. The second recombination step was carried out by inoculating 64 

single colonies from the first crossover into low salt LB medium with 15 [%] (w/v) sucrose without 65 

antibiotics overnight. Sucrose resistant colonies were plated on low salt LB agar plate with 15 [%] 66 

(w/v) sucrose, and single colonies were selected for further screening. Colonies without antibiotic 67 

resistance (tetr) were selected and successful integration was confirmed via PCR using primers 68 

flanking the upstream and downstream regions of the chosen homologous sequences. Integration 69 

was also confirmed using Sanger sequencing (Eurofins genomics GmbH).  70 

  71 

GAS FERMENTATION 72 

 73 

Gas fermentation media 74 

Pre-cultures for bioreactor cultivations were prepared in tryptic soy broth (TSB) medium from a 75 

single colony and incubated overnight at 200 [rpm], 30 [°C] in 500mL baffled flask with 100 [mL] 76 



 
 
 
working volume. Modified DSMZ 81 medium was used for autotrophic bioreactor cultivations, 77 

where the vitamin solution and NaVO3 were omitted. Metaphosphates were added instead of 78 

orthophosphates in the form of trisodium trimetaphosphate (Na3P3O9) to avoid struvite 79 

precipitation. L-Arabinose was added at a final concentration of 1 [g/L] (0.1 [%] (w/v)) for culture 80 

induction.  81 

 82 

Bioreactor setup 83 

As depicted in Figure 3, continuous fermentations were performed in a DASGIP® bioreactor system 84 

(Eppendorf), using 1L capacity vessels with a 750 [mL] working volume, fitted with a headplate 85 

condenser chilled to 10 [°C]. The agitation system comprised two Rushton turbine impellers. Gas 86 

sparging was via two pin-hole, L-shaped spargers, separating the CO2 and air feed from the H2 feed. 87 

For continuous operation, the level in the bioreactor vessel was controlled (LIC100) using a 88 

conductivity probe positioned at an appropriate height in the vessel. The temperature was 89 

controlled (TIC100) at 30 [°C] using a chilled water feed. The pH was monitored by a Mettler Toledo 90 

pH probe, calibrated at pH = 4 and pH =7 in standard pH buffers. The pH was controlled (AIC100) at 91 

a set point of 6.9 using 5 [%] (w/v) NH3(aq). The dissolved oxygen (DO) concentration was 92 

monitored using an optical Mettler Toledo DO probe, calibrated in situ at atmospheric pressure in 93 

N2 at 0 [%] pO2 and in air at 100 [%] pO2. The DO was controlled (AIC101) at micro-aerobic, steady 94 

state concentration through phosphate addition under phosphate limiting conditions. The off-gas 95 

outlet from the bioreactor was fed to an external foam trap bottle, fitted with an optical oxygen 96 

probe (VisiFerm, Hamilton), calibrated at 0 [%] (v/v) with N2 and at 10 [%] (v/v) with 10 [%] (v/v) O2 97 

in N2. The off-gas O2 concentration was controlled (AIC102) at a non-flammable set point of 4 [%] 98 

(v/v) by controlling the air flow rate (FIC100) to the bioreactor. Guarding against a flammable 99 

atmosphere, a safety trip was programmed into the Dasware® software, which interlocked all the 100 

gases feeds should the off-gas O2 concentration rise above 5 [%] (v/v), flooding the bioreactor with 101 

N2.  102 

 103 

The initial agitation speed (SIC100) was set at 400 [rpm] and stepped to a maximum agitation of 104 

1600 [rpm] approximately 24 [h] after inoculation. CO2 was fed via a mass flow controller (FIC101) 105 

at a rate of 1.35 [L/h]. H2 was fed via mass flow controller (FIC102) at a rate of 35.1 [L/h]. The mass 106 

flow rates for CO2, H2 and Air mass flow controllers were calibrated using a M13 mini CORI-FLOW 107 

Coriolis Mass Flow Meter from Bronkhorst, ranged between 0 – 50 [g/h]. The Nutrient Feed media, 108 

containing 0.1 [%] (w/w) arabinose as inducer, was fed at 7 [mL/h] via a peristaltic pump. The off-109 

gas from the external foam trap bottle was connected to a local exhaust ventilation (LEV) unit and 110 

the whole bioreactor setup was placed in the LEV with polycarbonate doors to ensure a ventilated 111 

enclosure.  112 

 113 

 114 



 
 
 
ANALYTICAL METHODS 115 

 116 

Liquid fraction analyses 117 

Supernatants from the shake flask and fermentation cultivations were obtained by centrifuging 118 

culture samples for 5 [min] at 13000 [rpm]. Fructose, pyruvate, acetoin, meso-2,3-butanediol, R,R-119 

2,3-butanediol, S,S-2,3-butanediol, acetone, acetate, succinate and isopropanol were analysed 120 

using an HPLC with an Aminex HPX-87H column (Bio-Rad, Hercules, CA), equipped with UV and RI 121 

detectors. The flow rate of the 5 [mM] H2SO4 mobile phase was set at an isocratic 0.5 [mL/min] with 122 

a column temperature of 50 [°C]. Quantifications were performed from the standard curves 123 

obtained using standards purchased from Sigma Aldrich.  124 

 125 

Dry cell weight (DCW) measurement was used as primary method for biomass concentration. DCW 126 

was determined by centrifuging 1 [mL] culture in a pre-weighted 2mL Eppendorf tube. After 127 

washing once with distilled water, the pellet was dried for 48 [h] at 100 [°C] and weighed. Optical 128 

density measurement was used as secondary method for biomass concentration, quantified using 129 

a spectrophotometer at an optical density of 600 [nm]. A correlation factor of 1 OD600 = 0.30 ± 0.03 130 

[g/L] biomass was determined with an R2 = 0.96.   131 

 132 

Gas fraction analyses 133 

Off-gas analyses from fermentation were undertaken in-line after the foam trap using a 134 

multiplexed Raman Laser Analyzer from Atmospheric Recovery Incorporated. The span for the off-135 

gas analyser was calibrated with two high specification gas mixtures from BOC Gases, containing 136 

ultra-high purity (UHP) argon as the background gas. The two gas mixtures were (1) 40 [%] (v/v) H2 137 

in UHP argon, and (2) 4 [%] (v/v) O2, 50 [%] (v/v) N2 and 3 [%] (v/v) CO2 in UHP argon. The zero 138 

calibration was undertaken in UHP purity argon. The off-gas analyser was set to sample for 20 [s] 139 

from each fermenter in an 80 [s] cycle at a sample flow rate of 280 [mL/min].  140 

 141 

SYSTEMS BIOLOGY AND PROCESS SIMULATION 142 

 143 

Systems Biology biochemical network simulation 144 

The ScrumPy metabolic modelling software package (Poolman, 2006) was used to simulate carbon 145 

fluxes using a genome scale model for C. necator (Unpublished Data), which advances on the 146 

existing model proposed by Park et al (Park et al., 2011). The cell’s ATP maintenance requirement 147 

for autotrophic growth was set at 10 [mmol/(gDCW·h)] and 3 [mmol/(gDCW·h)] for heterotrophic 148 

growth. The BDO pathway genes were added to the genome scale model for wild-type C. necator 149 

H16 as per Figure 1A. For the simulations using guaiacol as sole energy and carbon source, the 150 

cytochrome P450 aromatic O-demethylase characterised by Mallinson et al (Mallinson et al., 2018) 151 

was incorporated into the genome scale model. Carbon uptake rates for the carbon source, either 152 



 
 
 
CO2 or guaiacol, and biomass growth rates were constrained to align with fermentation data. The 153 

objective function for Flux Balance Analysis (FBA) was to maximise the BDO production in light of 154 

the overexpressed BDO pathway.     155 

 156 

Aspen HYSYS process simulations 157 

The process simulator, ASPEN HYSYS V11, was used to rigorously model the heat integration of 158 

gas fermentation with scH2O gasification through a heat pump thermal cycle. The Lee-Kesler-159 

Plocker equation of state was used to model the thermodynamic properties of the process fluids, 160 

given it represents the most accurate enthalpy model for high pressure gases. The scH2O 161 

gasification reactor was modelled as a plug flow reactor using the pseudo first order, Ni-catalysed 162 

kinetic rate constant proposed by DiLeo et al (DiLeo et al., 2007). The bioreactor was modelled as 163 

a conversion reactor using the experimentally determined reaction stoichiometry for CO2 & H2 and 164 

the FBA simulation stoichiometry for the guaiacol bioreactor. Similarly, the combustion chamber 165 

was modelled as a conversion reactor, assuming total conversion of the H2 and O2 to H2O. 166 

Compressors were modelled having a single stage with an adiabatic efficiency of 75 [%]. Turbines 167 

were modelled as having an isentropic efficiency of 75 [%]. Heat exchangers were modelled as 168 

single pass shell-and-tube, maintaining a minimum approach temperature of 10 [°C]. Given the 169 

high accuracy of the Lee-Kesler-Plocker equation of state, ASPEN HYSYS was also employed to 170 

estimate the volatile product fraction for the BDO and IPA continuous gas fermentations.   171 

 172 

 173 

 174 

 175 

 176 

 177 

 178 

 179 

 180 

 181 

 182 

 183 

 184 

 185 

 186 

 187 

 188 

 189 

 190 

 191 

 192 



 
 
 
Table S1. Sequences of primers. Related to Figure 1B. 193 

Primer Sequence (5’ ----> 3’) 

U-ara-F gggaaagUaacgttatgacaacttgacggctac 

U-ara-R atatctccUtcttaaaagatcttttgaattccc 

U-alsS-F aggagataUacatatgaccaaggccaccaaggaacag 

U-alsS-R atggtaacUtctcctttacgtacgtcacagcgccttggtcttcatcagc 

U-alsD-F agttaccaUgaagcgcgagtcgaacatccag 

U-alsD-R atggttgUcctcctttctcgagtcattccggcgagccctcg 

U-sADH-F acaaccaUgaagggcttcgccatgctg 

U-sADH-R ggagacaUcctaggtcacaggatcaccacggccttg 

acoXABC-F tgcccaacagcttctccggc 

acoXABC-R tcgcagaaggaaccggccac 

Aco-up-sacI-F ttatgagctctactaccgcctcaacggcgcg 

Aco-dn-xbaI-R ttattctagaggctcaggttgaggatgccg 

Aco-ov-speI-F ggagacaggcaatggggcacactagtcatctgggcggctgatgcc 

Aco-ov-speI-R ggcatcagccgcccagatgactagtgtgccccattgcctgtctcc 

phaC-up-F acgcgccgatgaacaggtc 

phaB-dn-R tgctcatcatgccctgcatcatcg 

phaC-up-sacI-F ttattgagctcacgccggtcgcttctactcctatc 

phaB-dn-pacI-R attatattaattaatcgatgtagttgctcatcatgccctg 

phaCB-ov-speI-F acggcagagagacaatcaaatcactagtcctaggcctgccggcctggttcaaccag 

phaCB-ov-speI-R ctggttgaaccaggccggcaggcctaggactagtgatttgattgtctctctgccgt 

U-ctfAB-F aggagataUacatatgaacaaggtgatcacggacc 

U-ctfAB-R atggtaacUtctcctttacgtacgtcacagatgcacctcgaactcg 

U-adc-F agttaccaUgctgaaggacgaggtgatc 

U-adc-R atggttgUcctcctttggatcctcacttcagatagtcgtagatcacttcgg 

phaC-dn- pacI-R     attatattaattaaaaggcgggcttgaggccggac 

phaC-dn-R tctccatcaggtccaggtcttg 

phaC-ov-speI-F ggcagagagacaatcaaatcatggcgactagtaaggcatgacgcttgcatgagtgc 

phaC-ov-speI-R gcactcatgcaagcgtcatgccttactagtcgccatgatttgattgtctctctgcc 

phaB1-up-sacI-F ttattgagctccatcacacgcgaggc 

phaB1-dn-xbaI-R attattctagagcctggatgttcttttccag 

phaB1-ov-speI-F acgaagccaatcaaggagtggacactagtcctgccggcctggttc 

phaB1-ov-speI-R gaaccaggccggcaggactagtgtccactccttgattggcttcgt 

phaB1-up-F tcaagccggagcaggtgagc 

 194 

 195 

 196 

 197 



 
 
 
Table S2. Ribosome binding sites. Related to Figure 1B. 198 

RBS RBS sequence Reference 

RBS1 tttaagaaggagatatacatATG (Bi et al., 2013) 

RBS2 cgtacgtaaaggagaagttaccATG (Li and Liao, 2013)  

RBS3 aaaggaggacaaccATG (Grousseau et al., 2014) 
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Table S3. Strains and plasmids used in this study. Related to Figure 2. 200 

Cupriavidus 

necator strains  

Genotype or description Reference or 

source 

H16  

 

wild-type 

 

DSM 428, ATCC 

17699 

H16-CAB 

 

H16 with in-frame deletion of phaC1AB1 operon 

 

This study 

 

H16-CAB-Aco 

 

H16 with in-frame deletion of phaC1AB1 and 

acoXABC operons 

 

This study 

 

H16-CAB-Aco-BD-

2 

 

CAB-Aco with integrated 2,3-BDO operon with 

NADPH-dependent alcohol dehydrogenase 

This study 

 

H16-CAB-Aco-p-

BD-2 

 

CAB-Aco with plasmid pBBR-BD-2 This study 

 

H16-CB-IPA-4 

 

H16-CB with integrated IPA-4 pathway This study 

 

H16-CB-p-IPA-4 

 

H16-CB with pBBR-IPA-4 This study 

 

H16-CB 

 

H16 with in-frame deletion of phaC1 and phaB1 This study 

 

H16-B H16 with in-frame deletion of phaB1 This study 

E.coli strains 

DH5α fhuA2 Δ(argF-lacZ)U169 phoA glnV44 Φ80 

Δ(lacZ)M15 gyrA96 recA1 

Invitrogen 

 

S17-1 

 

relA1 endA1 thi-1 hsdR17 recA pro hsdR RP4-2-

Tc::Mu-Km::Tn7 integrated into the chromosome 

Invitrogen 

Plasmids 

pBBR1MCS-2-

USER 

 

Expression vector, Kanr (Alagesan et al., 

2018) 



 
 
 

Cupriavidus 

necator strains  

Genotype or description Reference or 

source 

pCM291rfp 

 

Source of pBAD promoter with araC gene (Bi et al., 2013) 

pLO3 

 

Suicide vector, Tcr, sacB, RP4 ori, ColE1 ori  (Lenz and 

Friedrich, 1998) 

pLO3-CB pLO3 with 750 bp upstream region of phaC1 and 

750 bp downstream region of phaB1 

  

This study 

pLO3-C 

 

pLO3 with 750 bp upstream region of phaC1 and 

750 bp downstream region of phaC1 

This study 

pLO3-B pLO3 with 750 bp upstream region of phaB1 and 

750 bp downstream region of phaB1 

This study 

pBBR-BD-2 

 

pBBR1MCS-2-USER with pBAD-ALS-ALDC-

sADH 

This study 

 

pLO3-CAB-BD-2 

 

pLO3 with 750 bp upstream region of phaC1-

pBAD-ALS-ALDC-sADH and 750 bp downstream 

region of phaB1 

 

This study 

 

pLO3-acoXABC-

KO 

 

pLO3 with 850 bp upstream region of acoX and 

900 bp downstream region of acoC 

This study 

 

pBBR-IPA-4 

 

pBBR1MCS-2-USER with pBAD-ctfAB-ADC-

sADH 

 

This study 

 

pLO3-C-IPA-4 pLO3 with 750bp upstream of phaC-pBAD-ctfAB-

ADC-sADH and 750bp downstream region of 

phaC1 

This study 
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Table S4. Pathway gene selection. Related to Figure 1B. 202 

Pathway Gene Enzyme Host Origin Accession 

number 

Reference 

BDO 

pathway 

genes 

alsS 2-acetolactate 

synthase 

Bacillus subtilis EnsemblBacteria: 

BSU36010 

 

(Yan et al., 

2009) 

alsD acetolactate 

decarboxylase 

Bacillus subtilis EnsemblBacteria: 

BSU36000 

 

(Yan et al., 

2009) 

adh NADPH-specific 

secondary alcohol 

dehydrogenase 

Clostridium 

beijerinckii 

GenBank: 

AAA23199.2 

 

(Yan et al., 

2009) 



 
 
 

IPA 

pathway 

genes 

ctfAB CoA-transferase Helicobacter 

pylori 

GenBank: 

AJ000086.1 

 

(Corthésy-

Theulaz et al., 

1997) 

adc acetoacetate 

decarboxylase 

Clostridium 

acetobutylicum 

EnsemblBacteria: 

CA_P0165 

 

(Grousseau et 

al., 2014) 

adh NADPH-specific 

secondary alcohol 

dehydrogenase 

Clostridium 

beijerinckii 

GenBank: 

AAA23199.2 

(Yan et al., 

2009) 

 203 

Table S5. Condon optimised sequences. Related to Figure 1B. 204 

Gene Sequence 

 

alsS 

 

atgaccaaggccaccaaggaacagaagtcgctggtcaagaatcgcggcgccgaactggtggtggactgcctggtggaacagg

gcgtgacccacgtgttcggcatcccgggcgccaagatcgacgccgtgttcgacgcgctgcaggacaagggccccgagatcatc

gtggcccgccacgagcagaatgccgccttcatggcccaggcggtgggccgcctgaccggcaagccgggcgtcgtgctggtgac

gagcggcccgggcgcgagcaacctggccaccggcctgctgaccgccaacaccgaaggcgacccggtggtggccctggccggc

aacgtgatccgcgccgaccgcctgaagcgcacccatcagtcgctggacaatgccgcgctgttccagccgatcaccaagtactcg

gtggaagtgcaggacgtgaagaacatcccggaagccgtgaccaacgccttccgcatcgcctcggccggccaggccggcgccgc

cttcgtgtcgttcccgcaggacgtcgtgaacgaggtgaccaacaccaagaacgtgcgcgccgtggccgcgccgaagctgggcc

ccgccgccgacgacgccatctcggccgcgatcgccaagatccagaccgccaagctgccggtggtgctggtcggcatgaagggc

ggccggccggaagcgatcaaggccgtgcgcaagctgctgaagaaggtgcagctgccgttcgtggaaacctaccaggccgcgg

gcaccctgtcgcgcgatctggaagatcagtacttcggccgcatcggcctgttccgcaaccagccgggcgacctgctgctggaaca

ggcggatgtggtgctgaccatcggctacgacccgatcgagtacgaccccaagttctggaacatcaacggcgaccgcaccatcat

ccacctggacgaaatcatcgccgacatcgaccacgcctaccagccggacctggaactgatcggcgacatcccgagcacgatcaa

ccacatcgagcatgacgccgtgaaggtcgagttcgccgagcgcgagcagaagatcctgtcggacctgaagcagtacatgcacg

agggcgaacaggtgccggccgactggaagtcggatcgcgcccatccgctggaaatcgtgaaggaactgcgcaacgccgtgga

cgaccacgtgaccgtgacctgcgacatcggctcgcacgccatctggatgtcgcgctacttccgcagctacgagccgctgacgctg

atgatcagcaacggcatgcagaccctgggcgtcgccctgccgtgggccatcggcgcctcgctggtgaagcccggcgaaaaggt

ggtgtcggtgagcggcgatggcggcttcctgttctcggccatggaactggaaaccgccgtgcgcctgaaggccccgatcgtgca

catcgtgtggaacgactcgacctacgacatggtggccttccagcagctgaagaagtacaaccgcacctcggccgtggacttcgg

caacatcgacatcgtgaagtacgccgagtccttcggcgccacgggcctgcgcgtggaatcgccggaccagctggccgacgtgct

gcgccagggcatgaacgcggaaggcccggtgatcatcgacgtgccggtggactactcggacaacatcaacctggcgtcggaca

agctgcccaaggagttcggcgagctgatgaagaccaaggcgctgtga 

alsD 

 

atgaagcgcgagtcgaacatccaggtgctgtcgcgcggccagaaggaccagccggtcagccaaatctaccaggtgtcgaccat

gacctcgctgctggacggcgtgtacgacggcgacttcgagctgtcggagatcccgaagtacggcgatttcggcatcggcacctt

caacaagctggatggcgagctgatcggcttcgacggcgagttctaccgcctgcgctcggatggcaccgccacgccggtgcaga

acggcgatcgcagcccgttctgctcgttcaccttcttcaccccggacatgacccacaagatcgacgccaagatgacccgcgagga

cttcgagaaggaaatcaactcgatgctgccgtcgcgcaacctgttctacgccatccgcatcgacggcctgttcaagaaggtgcag

acccgcaccgtggaactgcaggaaaagccctacgtcccgatggtggaagccgtcaagacccagccgatcttcaacttcgacaac

gtgcgcggcaccatcgtgggcttcctgacgccggcctacgccaacggcatcgccgtgtcgggctaccatctgcacttcatcgacg



 
 
 

aaggccgcaacagcggcggccacgtgttcgactacgtgctggaagattgcaccgtgaccatctcgcagaagatgaacatgaac

ctgcgcctgccgaacaccgccgatttcttcaacgccaacctggacaacccggacttcgccaaggacatcgaaaccaccgagggc

tcgccggaatga 

adh 

 

atgaagggcttcgccatgctgggcatcaacaagctgggctggatcgagaaggaacgcccggtggccggcagctacgatgccat

cgtgcgcccgctggccgtgtcgccgtgcacctcggatatccacaccgtgttcgaaggcgccctgggcgaccgcaagaacatgat

cctgggccacgaggccgtgggcgaagtggtggaagtgggcagcgaggtgaaggacttcaagcccggcgaccgcgtgatcgt

gccgtgcacgaccccggactggcgctcgctggaagtgcaggccggcttccagcagcactcgaacggcatgctggccggctgga

agttctcgaacttcaaggacggcgtgttcggcgagtacttccacgtgaacgacgccgacatgaacctggccatcctgccgaagg

acatgccgctggaaaacgccgtgatgatcaccgacatgatgaccacgggcttccatggcgccgagctggccgacatccagatgg

gctcgtcggtggtggtgatcggcatcggcgccgtgggcctgatgggcatcgccggcgccaagctgcgcggcgccggccgcatc

atcggcgtgggctcgcgcccgatctgcgtggaagcggccaagttctatggcgccaccgacatcctgaactacaagaacggccac

atcgtggaccaggtgatgaagctgaccaacggcaagggcgtcgaccgcgtcatcatggccggcggcggctcggaaaccctgtc

gcaggccgtgagcatggtcaagcccggcggcatcatctcgaacatcaactaccacggctcgggcgacgccctgctgatcccgcg

cgtggaatggggctgcggcatggcccacaagaccatcaagggcggcctgtgcccgggcggccggctgcgcgccgaaatgctg

cgcgacatggtggtgtacaaccgcgtggacctgtcgaagctggtgacccacgtgtaccatggcttcgaccacatcgaagaggcc

ctgctgctgatgaaggacaagcccaaggacctgatcaaggccgtggtgatcctgtga 

ctfAB 

 

atgaacaaggtgatcacggacctggacaaggccctgtcgaccctgaaggacggcgacaccatcctggtcggcggctttggcctg

tgcggcatcccggaatacgccatcgactacatctacaagaagggcatcaaggacctgatcgtggtgtcgaacaactgcggcgtg

gacgacttcggcctgggcatcctgctggaaaagaagcagatcaagaagatcatcgccagctacgtgggcgagaacaaaatctt

cgagtcgcagatgctgaacggcgagatcgaggtggtgctgaccccgcagggcaccctggccgaaaatctgcgccccggcggc

gcgggcatccccgcctactacaccccgaccggcgtgggcacgctgatcgcccagggcaaggaatcgcgcgagttcaacggcaa

ggaatacatcctggaacgcgccatcaccggcgactacggcctgatcaaggcctacaagtcggacaccctgggcaacctggtgtt

ccgcaagaccgcgcgcaacttcaacccgctgtgcgccatggccgccaaaatctgcgtggccgaggtggaagagatcgtgccgg

cgggcgaactggacccggacgagatccatctgccgggcatctacgtgcagcatatctacaagggcgagaagttcgagaagcgc

atcgaaaagatcaccacgcgctcggccaaatgagggaagccatcatcaagcgcgccgccaaggaactgaaggaaggcatgta

cgtcaatctgggcatcggcctgccgacgctggtcgccaatgaggtgtcgggcatgaacatcgtgttccagtcggagaacggcct

gctgggcatcggcgcgtatccgctggaaggctcggtggacgccgacctgatcaatgccggcaaggaaaccgtgacggtcgtcc

cgggcgcctcgttcttcaactcggccgactcgttcgccatgatccgcggcggccatatcgacctggcgatcctgggcggcatgga

agtgtcgcagaacggcgacctggccaactggatgatcccgaagaagctgatcaagggcatgggcggcgccatggacctggtg

catggcgcgaagaaggtcatcgtgatcatggaacactgcaacaagtacggcgagagcaaggtgaagaaggaatgctcgctgc

cgctgaccggcaagggcgtcgtgcaccagctgatcaccgatctggccgtgttcgagttcagcaacaacgccatgaagctggtcg

agctgcaggaaggcgtcagcctggaccaggtgcgcgaaaagaccgaggccgagttcgaggtgcatctgtga 

adc atgctgaaggacgaggtgatcaagcagatctcgaccccgctgacctcgccggcgttcccgcgcggcccgtacaagttccacaac

cgcgagtacttcaacatcgtgtaccgcaccgacatggacgccctgcgcaaggtggtgccggaaccgctggaaatcgacgagcc

gctggtgcgcttcgagatcatggccatgcacgacaccagcggcctgggctgctacaccgaaagcggccaggcgatcccggtgt

cgttcaacggcgtgaagggcgactacctgcacatgatgtacctggacaacgaacccgcgatcgccgtgggccgcgaactgtcg

gcctatccgaagaagctgggctacccgaagctgttcgtggactcggacaccctggtgggcaccctggactacggcaagctgcgc

gtggccaccgccaccatgggctacaagcacaaggccctggacgccaacgaggccaaggaccagatctgccgcccgaactatat

gctgaagatcatcccgaactacgacggctcgccgcgcatctgcgagctgatcaacgccaagatcaccgacgtgaccgtgcacga

ggcctggacgggcccgacgcgcctgcagctgttcgatcatgccatggcgcccctgaacgacctgccggtgaaggaaatcgtgtc

gtcgtcgcacatcctggccgacatcatcctgccgcgcgccgaagtgatctacgactatctgaagtga 



 
 
 
Table S6. Flux Balance Analysis (FBA) systems biology prediction for autotrophic and 205 
heterotrophic synthesis of BDO using CO2 & H2 and guaiacol as sole energy and carbon sources 206 
respectively. The nominal experimental biomass growth rate of 0.0164 [h-1] was use for both FBA 207 
simulations. Related to Figure 6 and Table 2. 208 
 209 

Cell sources and 

sinks 

Unit Guaiacol as sole 

energy and carbon 

source 

CO2 and H2 as 

sole energy and 

carbon source 

 

Sources 

CO2  

 

 

[mmol/(gDCW·h)] 

 -3.0 

H2  -22.16 

Guaiacol -0.43  

O2 -2.03 -7.2 

Pi -0.04 -0.04 

SO4
2- -0.003 -0.003 

NH3 -0.17 -0.17 

 

Sinks 

BDOa  

[mmol/(gDCW·h)] 

 

0.091 0.582 

H2O 0.95 18.94 

CO2 1.974  

Biomass [h-1] 0.0164 0.0164 
aBDO is 2,3-butanediol. 210 

 211 
 212 
 213 
 214 
 215 
 216 
 217 
 218 
 219 
 220 
 221 
 222 
 223 
 224 
 225 
 226 
 227 
 228 



 
 
 
Table S7. Summary of ASPEN HYSYS process simulations using a  guaiacol feed basis of 1000 229 
[kg/h] for the process flowsheets of Figure 9 and Figure 8, scaling the bioreactors for the guaiacol 230 
and CO2 & H2 fermentations using a design O2 transfer rate of ~225 [mmol/(L·h)]. Related to Figures 231 
8 and 9. 232 
 233 

Sources and 

sinks 

Unit Guaiacol as 

sole energy and 

carbon source 

CO2 and H2 as sole 

energy and carbon 

source 

Guaiacol Feed 

Rate 

[kg/h] 
1000 1000 

Gas Uptake Rates 

    O2 [mmol/(L·h)] 223 227 

    CO2 [mmol/(L·h)]  82 

    H2 [mmol/(L·h)]  669 

Bioreactor 

Volume 

[m3] 
200 100 

2,3-butanediol Productivity 

    Specific 

Productivity 

[(kg 

BDO)/(m3·h)] 
0.79 1.48 

    

Concentration a 

[g/L] 

30 30 

Biomass 

Growth rate [h-1] 0.017 0.016 

Dry Cell 

Weight 

[g/L] 
102 27 

Operating costs 

Electricity 

demand 

[kW] 
2382 -566 

Cooling water [kW] 
7702 - 

a Controlled via microfiltration membrane. 234 

 235 



 
 
 

 236 
 237 

Figure S1. (A) BDO tolerance of C. necator H16 wild type, expressed as growth rate versus BDO 238 

concentration. Beyond a BDO concentration of 30 [g/L], the growth rate becomes significantly 239 

impaired. Related to Figure 1A. 240 

 241 

 242 

 243 

 244 

 245 



 
 
 

 246 
 247 

Figure S2. Methodology for calculating (1) gas uptake rates, (2) dilution rate at steady state and (3) 248 

product and by-product carbon flux for continuous, autotrophic fermentation. Related to Table 2 249 

and Figures 4 and 5. 250 

 251 

 252 



 
 
 

 253 

 254 

Figure S3. Monte Carlo simulations incorporating all sensor, analysis and calibration standard 255 

uncertainty into the respective calculated fermentation data. 90% confidence limits were 256 

determined from the cumulative probability curves. Related to Figure 4 and 5. 257 

 258 



 
 
 

 259 
 260 

Figure S4. Biochemical network outlining the synthesis of (R,R)-2,3-butanediol from the lignin 261 

model compound, guaiacol, in the microbial cell factory, C. necator H16. Genes overexpressed to 262 

allow (R,R)-2,3-butanediol synthesis are contained in grey text boxes, whilst attenuated genes are 263 

contained in red text boxes.  Guaiacol is demethylated to catechol and catabolised via the 3-264 

oxoadipate pathway to succinyl-CoA and acetyl-CoA. Pyruvate is produced from malate via malic 265 

enzyme as the metabolite precursor to BDO synthesis. Related to Figures 8 and 9. 266 

 267 

      268 

 269 
 270 
 271 
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