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Background. To form a radiomic model on the basis of noncontrast computed tomography (CT) to distinguish hepatic
hemangioma (HH) and hepatocellular carcinoma (HCC). Methods. In this retrospective study, a total of 110 patients were
reviewed, including 72 HCC and 38 HH. We accomplished feature selection with the least absolute shrinkage and operator
(LASSO) and built a radiomics signature. Another improved model (radiomics index) was established using forward
conditional multivariate logistic regression. Both models were tested in an internal validation group (38 HCC and 21 HH).
Results. -e radiomic signature we built including 5 radiomic features demonstrated significant differences between the
hepatic HH and HCC groups (P< 0.05). -e improved model demonstrated a higher net benefit based on only 2 radiomic
features. In the validation group, radiomics signature and radiomics index achieved great diagnostic performance with AUC
values of 0.716 (95% confidence interval (CI): 0.581, 0.850) and 0.870 (95% CI: 0.782, 0.957), respectively. Conclusions. Our
developed radiomics-based model can successfully distinguish HH and HCC patients, which can help clinical decision-
making with lower cost.

1. Introduction

Hepatocellular carcinoma (HCC) is the second greatest threat
that leads to cancer deaths all over the world, accounting for
approximately 70% of primary liver cancers [1].-e incidence
of HCC in the United States has almost tripled over the past
40 years [2, 3]. Even with appropriate treatments such as
ablation and surgical resection, 50–60% of HCC patients still

undergo tumor recurrence within a five-year period [4, 5].
Hepatic hemangioma is a regenerative neoplasm that rarely
grows in volume, with a relatively lower risk of complications
and favorable outcomes. Hematomas in small and medium
sizes (0–3 cm, 3 cm–10 cm) usually do not require treatment
[6, 7]. -erefore, classification via noninvasive methods be-
tween hepatic hemangioma (HH) and hepatocellular carci-
noma (HCC) should be discovered and applied.
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-e differential diagnosis of HH and HCC is mainly
based on serological tests, tumor markers, and imaging
studies involving liver ultrasound (US), computed tomog-
raphy (CT), and magnetic resonance imaging (MRI).
Clinically, a contrast-enhanced CT scan is typically applied
to distinguish HH from HCC. For instance, HH appears on
scans as one or more clear nodules with low density on CT.
After injecting contrast agents, an enhancement is present in
nodule peripheral and homogeneous centripetal filling [8]. A
rapid enhancement of hepatic artery and transient washout
show a relatively high specificity with the diagnosis of HCC
[9]. However, previous studies showed low sensitivity (al-
most 50%) especially for the lesion’s diameter smaller than
1 cm [10]. Moreover, alpha fetoprotein (AFP), the most
remarkable diagnostic serological marker, could also be at
high levels in acute hepatitis, cirrhosis, colitis, etc. -ese lead
to the challenges of the precise diagnosis of small-size HH or
HCC [9, 11].

Radiomics, a new algorithm designed to extract and
analyze image features, has experienced rapid develop-
ment in cancer diagnosis in recent years [12]. Image
analysis tools of radiomics come to aid in the precise and
personalized diagnosis and treatment [13]. A retro-
spective study in 2019 that established a radiomics-based
model to predict biliary tract cancers was found im-
pressive in this field [14]. Despite its powerful instructive
functions, how to improve the interpretability of radio-
mic features requires further research before a pervasive
standard is set to distinguish HH from HCC patients [15].
-e aim of this study is to build radiomics-based methods
on noncontrast CT scans for distinguishing between HH
and HCC.

2. Methods

-is retrospective study was approved by the institutional
review board of our hospital and the requirement for written
informed consent was waived. All methods involved were
performed in terms of relevant guidelines and regulations.

2.1. Patients. We searched our institution’s medical records
and obtained 291 cases of hepatic lesions preliminarily
between January 1, 2016, and October 1, 2020. -e exclusion
criteria were as follows: (1) lack of exact HH or HCC
pathological evidence (n� 20); (2) lack of standard ab-
dominal noncontrast CT images (n� 17); (3) time spans
between CT scans and the operation over three months
(n� 33); and (4) lack of complete clinical information
(n� 52). A total of 169 patients including HCC (110/169)
and HH (59/169) were finally included in this study
(Figure 1).

-ese patients all had clear pathological diagnoses after
hepatectomy with postoperative care. We randomly (2 :1
ratio) set up a training group by selecting 110 patients (72
HCC and 38 HH), and the remaining 59 patients (38 HCC
and 21 HH) were in the validation group. All patients un-
derwent noncontrast CT scans before the therapeutic
schedules.

Relevant information was obtained from the patients’
medical records. Clinical characteristics included age, sex,
size of the lesion, number of lumps, and histological grade.

2.2. Pathological Analysis and CT Acquisition. Liver samples
were analyzed by two pathologists with diverse clinical
experience (2.5 and 5 years, respectively). Both of them were
blinded to the medical details of the study cohort.

-e workflow is displayed in Figure 2. All CT exami-
nations were performed on the same model CT scanner
(Lightspeed, VCT, or Discovery HD 750, GE Health Care,
US). -e parameters were unified (tube voltage 120 kVp,
tube current 250–350mA, collimating slice thickness of
5mm, reconstruction slice thickness of 1.25mm, slice in-
terval 5mm, rotation time 0.6 s, helical pitch 1.375, the field
of view between 35 and 40 cm, and matrix 512× 512) and the
same reconstruction algorithm was applied.

2.3. Image Segmentation and Radiomic Features Extraction.
Two radiologists reviewed the noncontrast CT images of all
patients and extracted radiomic features. -ey evaluated the
shape and size of lesions and drew along the tumor contour
(region of interest (ROI)) on each layer (volume of interest
(VOI)) with the 3D slicer software (version 4.10.2; https://
www.slicer.org). -e preprocessing and image feature ex-
traction were performed using the Pyradiomics package
(https://www.radiomics.io/pyradiomics.html). Eight hun-
dred forty radiomics features including 18 first-order sta-
tistics, 74 textural ones, and 758 wavelet-based
transformations, were calculated based on every VOI.
Z-scores were applied to normalize the values of features in
both the training and validation groups. To measure each
feature’s reproducibility, intraobserver and interobserver
intraclass correlation coefficient (ICC) were applied in this
process, adopting 50 randomly picked cases. To assess
intraobserver reliability, Reader 1 accomplished image
segmentation independently and Reader 2 repeated the
similar process twice a week.

-e selection of significant radiomic features was per-
formed in the following steps. Features with high stability
(intraobserver and interobserver ICC> 0.8) were kept. Next,
the least absolute shrinkage and operator (LASSO) logistic
regression was conducted with 10-fold cross-validation. A
radiomics signature was formed as a linear composition of
independent features due to respective coefficients.

2.4. Establishment of the Radiomics-Based Model. -e for-
ward conditional multivariate logistic regression was also
involved. -is reduces coefficients through penalizing cor-
related features to cope with multicollinearity problems.
Independent features were selected to constitute the more
precise radiomic index model.

2.5. StatisticalAnalysis. Categorical and continuous variables
were compared with the χ2 test and Student’s t-test, re-
spectively. R software (version 3.6.2, https://www.r-project.
org) was used for statistical analysis. -e ROC curve and the
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area under the curve (AUC) value were applied to evaluate the
performance of two different radiomics models (the radio-
mics signature and radiomics index). -e calibration curves
were computed via bootstrapping with 1000 resamples to
evaluate the deviation between the predicted and actual value,
accompanied by the Hosmer–Lemeshow test. -e decision
curve analysis (DCA) was applied in evaluating the net
benefits provided by the radiomics-based models. P< 0.05
was indicative of statistical significance.

3. Results

3.1.Baseline Information. According to Table 1, no statistical
differences were shown in patients between the training and
validation groups. -e training group included a total of 110
patients (72 HCC and 38 HH), and the validation group
included 59 patients (38 HCC and 21 HH).

3.2. Performance of the Radiomics Signature. Five radiomic
features (original-shape-volume, wavelet-LLL-first-order-
median, wavelet-LLL-gldm-small-dependence-low-gray-
level-emphasis, wavelet-LHL-glszm-zone-entropy, and
wavelet-LLH-glszm-zone-entropy) with nonzero coeffi-
cients were chosen (Figure 3). Our radiomics signature was
constituted with a formula based on selected radiomic
features. -e radiomics signature demonstrated perfor-
mance with AUC values of 0.792 (95% confidence interval
(CI): 0.703, 0.882) in the training group and 0.716 (95% CI:
0.581, 0.850) in the validation group (Table 2).

3.3. Establishment and Performance of the Radiomics Index.
To elevate the predictive accuracy, we eliminated three
features through the forward conditional multivariate lo-
gistic regression (Table 3). Only two features were further

All obtained data of patients with hepatic
lesions who underwent non-contrast CT

between January 1,2016 and October 1, 2020
at our institution

n = 291

�e integrity of basic
information

-Lack of pathological records of HH or HCC
(n = 20) 
-Lack of abdominal non-contrast CT images 
at 1.5mm thickness
(n = 17)

-Time spans of more than 3 months 
between the CT scans and the operation
(n = 33) 

Appropriate time span

Non-contrast CT available
n = 221

�e integrity of complete
clinical information

-Lack of complete clinical information
(n = 52)

Patients enrolled in this retrospective research

Training cohort
n = 110

Validation cohort
n = 59

Figure 1: Patient selection flowchart.
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used to construct the radiomics index in the following
formula. Radiomics index� 1.218 + 0.687 ∗ wavelet-LLL-
first-order-median-2.165 ∗ wavelet-LHL-glszm-zone-en-
tropy, in which first order represents the histogram of voxel
intensity values, and glszm (gray level size zone) describes the
linked voxels with identical gray-level intensity. Lower glszm
zone entropy and higher median values of voxel intensity
values might indicate more uniform pixels in the region of
interest.

Boxplots of two models are shown in Figures 4(a) and
4(b). -e radiomics index demonstrated greater perfor-
mance with higher AUCs of 0.880 (95% CI: 0.817, 0.943) and
0.870 (95% CI: 0.782, 0.957) in the training and validation
groups. -e radiomics index achieved a sensitivity of 80.6%
and 60.5%, with a specificity of 81.6% and 100%, a positive
predictive value of 89.2% and 100%, and a negative pre-
dictive value of 68.9% and 58.3% in two groups, respectively
(Table 2).

-e calibration curve of models revealed consistency
between the prediction and pathological outcomes,

especially in the radiomics index (Figures 4(c) and4(d)). -e
DCA for the radiomics signature and radiomics index is
shown in Figure 5. According to this figure, the radiomics
index provided more clinical benefit for distinguishing HH
andHCC than the radiomic signatures across themajority of
the range of threshold probabilities in the validation cohort.

4. Discussion

With the increasing applications of radiomics, we aimed to
develop radiomic-based models to assist clinical differen-
tiation of HH and HCC. -is study built up a radiological
model to distinguish HH and HCC based on noncontrast
CT-extracted features. -e radiomics index included 2 main
radiomic features, which were screened out through several
steps and showed great performance to differentiate HH and
HCC.

Pathologically, HCC evolves from dysplastic lesions
(dysplastic foci/dysplastic nodules) with bleeding, calcifi-
cation, and necrosis tissue [16, 17]. In contrast, HH stems

Import non-contrast CT images

Manual Delineation

Calibration curve

Decision curve analysis

High producibility

Lasso regression

First-order statistics

Textural features

Wavelet transforms

Radiomics models using formula

Boxplot

(a) Segmentation (b) Feature extraction (c) Feature filtration (d) Model establishment & analysis (e) Clinical use

Figure 2: Main working procedures in this research. (a) Volume of interest was individually depicted on CT images at each transverse. (b)
Radiomic features include first-order statistics, textural ones, and wavelet transformations. (c) Intraobserver and interobserver repro-
ducibility analysis and LASSO regression were applied in feature selection. (d) Radiomics-based models were established on the basis of
selected features. (e) Calibration curves and decision curve analysis were used to evaluate diagnostic performance of two models.

Table 1: Baseline characteristics.

Parameter Training (n� 110) Validation (n� 59) P value
Sex 0.32
No. of men 72 (65.5) 34 (57.6)
No. of women 38 (34.5) 25 (42.4)

Age (years) 0.15
<60 47 (42.7) 32 (54.2)
≥60 63 (57.3) 27 (45.8)

Laboratory findings
ALT (IU/mL) 29.8 (23.0–42.3) 27.1 (22.1–37.8) 0.37
Total bilirubin (ng/mL) 12.4 (8.2–16.4) 12.3 (9.2–15.5) 0.21
Platelet count (109/L) 137.4 (92.6–179.3) 142.5 (96.4–185.5) 0.72

Size of lesion (maximum diameter, cm) 3.7 (1.4–4.8) 3.3 (1.7–4.6) 0.31
HCC 72 (65.5) 38 (64.4) 0.89
Note. Except where indicated, data are numbers of patients, with percentages in parentheses. aData are medians, with interquartile range in parentheses.
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from vascular malformation and contains rich sinusoids
[18]. In noncontrast CT images, both the HCC and HH
show similar low-density mass. -e use of spectral CT can
increase the sensitivity for differentiating small HHs from
HCCs in the late arterial phase and portal venous phase
[19, 20]. -e status of clear boundaries distinguished HH
from HCC. However, in clinical practice, the small lesions
are indistinguishable according to macroscopic image

findings. Previous studies investigated radiomics-based
differentiation of HH and HCC through MRI-extracted
features [21–23]. Moreover, these MRI studies applied
machine learning techniques to the development of pre-
diction models that made the model structure hard to
understand. Although MRI and contrast CT images could
offer more information, noncontrast CT images are more
commonly performed in clinics. -is study provided the
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Figure 3: Statistical selection process of radiomic features with LASSO regression. (a) Optimal λ value was calculated by LASSOmodel with
10-fold cross-validation. -e binomial deviance curves were drawn versus log (λ). (b) Respective coefficient details were depicted. (c) Five
features related to the optimal value were further reserved with respective coefficients to build the radiomics signature model.

Table 2: Diagnostic performances of radiomic signature and index for distinguishing HH and HCC in the training and validation group.

Training group Validation group
Radiomic signature Radiomic index Radiomic signature Radiomic index

AUROC 0.792 0.88 0.716 0.87
CI (0.703, 0.882) (0.817, 0.943) (0.581, 0.85) (0.782, 0.957)
Cutoff −0.267 0.608 0.026 1.942
Sensitivity 0.764 0.806 0.579 0.605
Specificity 0.737 0.816 0.857 1
Positive predictive value 0.846 0.892 0.88 1
Negative predictive value 0.622 0.689 0.529 0.583
Correctly classified 0.755 0.809 0.678 0.746
Comparison of AUROC P� 0.014 P� 0.003
Note. AUROC: area under the receiver operating characteristics; CI: confidence interval.
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first evidence for the discrimination ability of noncontrast
CTfeatures, and we used a simple formula that can be easily
validated.

-e reproducibility of radiomics features remained a
worried issue due to the adverse effects of radiation dosage
and CT reconstruction [24]. In order to solve this issue, we
set up a reproducibility examination. Only 88 reproduc-
ibility features (intraobserver and interobserver ICC> 0.8)
met the criteria among 840 radiomic features (18 first-order
statistics, 74 textural ones, and 758 wavelet-based trans-
formations). -is might be explained by the different VOIs
(ROI selection and growth or shrinkage of margin) sketched
by two radiologists [25].

Jacob Sosna et al. suggested that fewer reproducible
radiomic features illustrated better reproducibility [26].
-ese two radiomic features selected with the forward
conditional multivariate logistic regression are wavelet-LLL-
first-order-median and wavelet-LHL-glszm-zone-entropy.
Both of them indicate uniform pixels of the gray level zones.
-ese results might be highly consistent with the patho-
logical differences between HH and HCC, in which HH
consists of vascular malformation and HCC contains mainly
cytological atypia.

Several limitations should be noted in this study. First, all
the study information came from one single medical center
and validation in multiple centers is necessary in further

Table 3: Multivariate analysis of radiomic features for discriminate HH and HCC.

Variables b coefficient Hazard ratio P value
Original-shape-volume NA NA 0.371
Wavelet-LLL-first-order-median 0.687 1.987 (1.039–3.799) 0.038
Wavelet-LLL-gldm-small-dependence-low-gray-level-emphasis NA NA 0.720
Wavelet-LHL-glszm-zone-entropy −2.165 0.115 (0.042–0.311) <0.001
Wavelet-LLH-glszm-zone-entropy NA NA 0.888
Note. b coefficients are from multivariable logistic regression. HH, hepatic hemangioma; HCC, hepatocellular carcinoma.
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Figure 4: Two models-radiomics signature and radiomics index were established using selected features. Comparisons of boxplots between
the HH and HCC in radiomics signature (a) and radiomics index (b). Calibration curves of radiomics signature (c) and radiomics index (d).
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research. Second, due to the retrospective nature of our
study, selection bias could not be avoided. -ird, the lim-
itations of clinical significance exist only in noncontrast CT
scans. -e application of ultrasound and other radiological
images is worthy to be studied in the future.

In conclusion, we developed radiomics models to dis-
tinguish HH and HCC on the basis of radiomic features
derived from noncontrast CT images. -ese radiomics-
based models have the potential to assist clinical diagnosis
and offer more radiological information with a noninvasive
method.
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