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Abstract

During the COVID-19 pandemic, West Virginia developed an aggressive SARS-CoV-2 test-

ing strategy which included utilizing pop-up mobile testing in locations anticipated to have

near-term increases in SARS-CoV-2 infections. This study describes and compares two

methods for predicting near-term SARS-CoV-2 incidence in West Virginia counties. The first

method, Rt Only, is solely based on producing forecasts for each county using the daily

instantaneous reproductive numbers, Rt. The second method, ML+Rt, is a machine learning

approach that uses a Long Short-Term Memory network to predict the near-term number of

cases for each county using epidemiological statistics such as Rt, county population infor-

mation, and time series trends including information on major holidays, as well as leveraging

statewide COVID-19 trends across counties and county population size. Both approaches

used daily county-level SARS-CoV-2 incidence data provided by the West Virginia Depart-

ment Health and Human Resources beginning April 2020. The methods are compared on

the accuracy of near-term SARS-CoV-2 increases predictions by county over 17 weeks

from January 1, 2021- April 30, 2021. Both methods performed well (correlation between

forecasted number of cases and the actual number of cases week over week is 0.872 for

the ML+Rt method and 0.867 for the Rt Only method) but differ in performance at various

time points. Over the 17-week assessment period, the ML+Rt method outperforms the Rt

Only method in identifying larger spikes. Results show that both methods perform ade-

quately in both rural and non-rural predictions. Finally, a detailed discussion on practical

issues regarding implementing forecasting models for public health action based on Rt is

provided, and the potential for further development of machine learning methods that are

enhanced by Rt.
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Introduction

The novel coronavirus (SARS-CoV-2) pandemic has had a large impact on health systems and

prior to vaccines being available public health measures such as testing, contact tracing and

social distancing were the prevention methods available [1, 2]. Rural communities in the

United States (US) have also been heavily impacted by the pandemic. SARS-CoV-2 related

deaths have occurred disproportionately among rural areas of the US, and negative impacts on

health and economic well-being have been described to be more severe among rural popula-

tions [3, 4]. Persons living in rural communities often have multiple barriers to health care and

laboratory diagnostic testing due to geographic, transportation, and cost [5]. Early in the

COVID-19 pandemic, the state of West Virginia (WV) provided county-specific data on

SARS-CoV-2 testing results so that daily instantaneous reproductive numbers (Rt) could be

calculated for each WV county to indicate viral transmission dynamics. An aggressive SARS-

CoV-2 testing strategy was implemented that included static as well as mobile testing units.

The Rapid Acceleration of Diagnostics in Underserved Populations (RADx-UP), funded by

the National Institutes of Health, provided the opportunity to deliver pop-up mobile testing in

those areas predicted to have the greatest increases in SARS-CoV-2 incidence. The objective of

RADx-Up was to increase testing in those communities most likely to have a near-term

(within 7–10 days) increase in COVID-19 cases, thereby potentially providing early identifica-

tion of SARS-CoV-2 infected persons who may then quarantine more rapidly in an effort to

blunt the anticipated increase in new cases.

Two strategies to predict near-term increases in SARS-CoV-2 cases were developed using

recent county-specific incidence of infections and Rt−one method is a dynamical algorithm-

based prediction using Rt and the serial interval while the second method uses a Long Short-

Term Memory (LSTM) machine learning strategy. The objective of this study, in support of

RADx-Up, was to recommend counties of outbreak for targeted testing. The accuracy of the

two methods to predict short-term increases in county-specific SARS-CoV-2 incidence is

compared and a discussion on conditions favoring one method or the other is also provided.

This study was conducted prior to the emergence of the new Delta SARS-CoV-2 variant which

has proven to be more transmissible and with increased mortality than the original strain that

prevailed over the study period [6, 7].

Data and methods

Data

To obtain estimates of near-term increases in SARS-CoV-2 cases, a likelihood-based model

underlying the EpiEstim package in R and developed in Cori et al. [8] and Thompson et al. [9]

was deployed. using software provided by Imperial College London [10] Two methods were

employed: 1) the Rt Only method, a forecast based on the reproduction number and associated

serial interval that predicts the future Rt that is then extrapolated to estimate the number of

future cases; 2) a LSTM machine learning model (ML+Rt) that utilizes the reproduction num-

ber from the Rt Only method as an input, but also utilizes total cases and population, among

other inputs, to predict the total number of cases for a given period of time.

The data in this study is based on daily reports of all daily COVID-19 polymerase chain

reaction (PCR) and antigen testing results conducted in WV since March 2020 directly from

the WV Department of Health and Human Resources (WVDHHR). Noteworthy is that all

SARS-COV-2 testing data are required to be reported to WVDHHR. Information for each

unique patient is collected and contains test procurement date, test result date, patient zip

code, patient county of residence, testing site name, county where the test is obtained, and test
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result. As patients who test positive may be tested multiple times, only the first positive tests on

a patient is considered. When applying this filter, data obtained from all testing sites is used

(i.e., hospital, clinic, pharmacy, drive-through, mobile van). The number of daily cases for

each county is calculated by adding the lab confirmed cases and clinical confirmed cases after

filtering out repeated tests or COVID-19 diagnoses. This daily incidence data on first diag-

nosed infection is the basis for calculation of Rt.

Rt Only method: Producing short term predictions

Our Rt Only method relies on the methodology used in the EpiEstim package and the underly-

ing modeling approach of Cori et al. [8] and Thompson et al. [9]. This approach relates the

daily incidence (number of new cases) to past cases through an instantaneous reproduction

number Rt which characterizes the daily dynamics of transmission reflects a multitude of fac-

tors relating to individual and group behavior in the community of interest.

As a brief review, daily infections within a community occur as independent random events

drawn from a Poisson distribution. The probability that exactly k cases occur is pk ¼ Gk

k! e
� G,

and the rate parameter Γ coincides with the average daily incidence, hki = Γ. In the instanta-

neous Rt framework, the expected incidence on day t is a product of two quantities, the infec-

tion potential and the reproduction number, Γt = ΛtRt. The infection potential Λt summarizes

the record of past cases in the community and the typical variation of the infectiousness of an

individual over time.

The infection potential Λt is determined by the incidence It−s on prior days s = 1,2,. . . and

the serial interval distribution ws.

Lt ¼
XSmax

s¼1

It� sws

The serial interval distribution ws reflects the time course of infectiousness of one infected

individual at s = 1,2,. . . days from the primary infection. It encapsulates the relative increase

and decrease of infectiousness of an individual, assuming all other conditions in the commu-

nity remain unchanged. In practice, the serial interval is typically obtained as the normalized

(
Psmax

s¼1
wðsÞ ¼ 1) distribution of time intervals between known infector-infected pairs. Based

on studies done by Gostic et al. [11] and Challen et al. [12], a serial distribution extending over

100 days was used. The infection potential can be understood as the sum of the expected num-

ber of infections on day t, due to past cases in the community, under ideal “steady state” condi-

tions, such that over time, each primary case causes exactly one secondary case.

The time varying reproduction number, Rt, captures conditions of transmission that are

external to the infected individuals and reflect community behavior. In this framework, Rt is a

random variable with a Gamma distribution f Rð Þ ¼ 1

baGðaÞR
a� 1e� R=b. The parameters at, bt are

determined for each day through Bayesian (maximum a posteriori probability) estimation.

The parameters of interest are estimated using incidence data up to and including the current

day, I1, I2,� � �It as follows:

at ¼
Pt� 1

s¼0
It� s þ aprior;

1

bt
¼
Pt� 1

s¼0
Lt� s þ

1

bprior
; Lt ¼

PSmax
s¼1

It� sws

This estimated Rt distribution applies to the most recent τ days, but it requires the values of

It0 for t0�t going back to t0 = t−smax where smax is the length of the serial interval distribution.

For the serial interval ws a discretized gamma distribution was used with mean and standard

deviation of t_s = 7.0 ± 4 days, provided in the software similar to Cori [8].
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For the serial interval ws a gamma distribution was used with mean and standard deviation

of τs = 6.99±4.02 days, as given by Flaxman et al. [13]. Following Cori and Thompson’s

method, a prior distribution was used with mean and standard deviation equal to 5 (aprior = 1,

bprior = 5) [8, 9].

The semi-deterministic model for future incidence, based on Cori’s method regards the

daily distributions of Rt (values of at, bt) as inputs that summarize the current conditions for

disease transmission within the community of interest. The serial interval distribution ws,
which is fixed with regard to time, is also an input. Thus, on day t the distribution of Rt is

known and applies to this day (assessed using the most recent τ days, similar to a trailing mov-

ing average).

Next day prediction. Assuming time series of past daily incidences {Iu}u = 0,1,..t ending on

day t is observed, the number of infections on the next day t+1 follows a Poisson distribution,

with parameter Γt+1 = Λt+1Rt+1, where Rt+1 is also a random variable. Assuming the parameters

a,b of f(Rt+1|a,b) are known, the probability of exactly k new infections on day t+1 is:

P kjRtþ1;Lt

� �
¼
ðLtþ1Rtþ1Þ

k

k!
e� Ltþ1Rtþ1 ! P kjLtþ1; a; b

� �
¼
R1

0
PðkjR;Ltþ1Þf ðRja; bÞ dR

¼
ðbLtþ1Þ

k

ðbLtþ1 þ 1Þ
aþk

Qk
j¼1

ðaþ jÞ
j

The expected number of new infections coincides with the infection potential multiplied by

the expected R.

hItþ1iRtþ1
¼ Ltþ1Rtþ1 ! hhItþ1iRtþ1

ia;b ¼ Ltþ1hRtþ1ia;b ¼ Ltþ1ab

For the purpose of predicting a likelihood range for the daily incidence, CDF of Rt+1 is

defined as:

P �I t 2 ½I1; I2�ja; b;Lð Þ ¼ gamcdf
I2
L
ja; b

� �

� gamcdf
I1
L
ja; b

� �

¼
1

baGðaÞ
R I2=L
I1=L

Ra� 1e� RbdR

A [5% - 95%] credibility interval is obtained for the daily incidence using the inverse CDF

for Rand multiplying by the corresponding infection potential. This provides a smaller vari-

ance than the discrete distribution P(k) but is a more practical indication of the incidence rate.

Extrapolation over multiple days. To go beyond the “next” day, the one-day prediction

is iterated, using predicted values to expand the incidence data. One can reasonably extrapolate

the current distribution of Rt to t+1 and any number of days in the future. For the short term

(7 day) predictions discussed here, the value of the most recent available Rt remains the same

over the prediction interval, �Rtþk ¼ Rt .
The estimated incidence for day t+1 requires the infection potential on that day Λt+1, which

is computed based on incidence up to the preceding day t.

�Itþ1jt ¼ Ltþ1
�Rtþ1 ¼ Ltþ1Rt; Ltþ1 ¼

Psmax
s¼1
Iðtþ1Þ� sws ¼ Itw1 þ It� 1w2 þ � � � Iðtþ1Þ� smax

wsmax

Predictions for day t+2 and beyond can be obtained using the predictions for preceding

days for the incidence and iteratively applying the approach for any number of k days into the
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future.

�I tþ1jt ¼ Ltþ1Rt �Ltþ2jt ¼
Xsmax

s¼2

Itþ1� sws þ
�I tþ1jtw1

�I tþ2jt ¼
�Ltþ2Rt �Ltþ3jt ¼

Xsmax

s¼3

Itþ2� sws þ
X2

s¼1

�I tþ2� sws

�I tþkjt ¼ �LtþkRt �Ltþkjt ¼
Xsmax

s¼k

Itþk� sws þ
Xk

s¼1

�I tþk� sws

The estimate of the credibility intervals are similar to the one-day case, using only the corre-

sponding range for the reproduction number Rt, and not compounding with uncertainty for

each estimated incidence �I tþk or with the additional uncertainty due to the Poisson distribu-

tion of the daily (integer) incidence. While this provides a narrower range, the credible interval

serves as a relative measure of the uncertainty affecting the prediction.

Correction for imported cases. Not accounting for imported SARS-CoV-2 cases into a

county will lead to over estimation of Rt. In practice, imported cases are not able to be directly

identified, so an adjustment must be made to identify them. Assuming the daily incidence It
can be separated into imported and community-spread parts:

It ¼ IðlocalÞt þ IðimportedÞ
t

Then, imported cases are an additional input to the model. Imported cases are included in

the infection potential because they contribute to new local infections, but are not included in

the number of new cases when estimating the reproduction number:

at ¼
Ps� 1

s¼0
IðlocalÞt� s þ aprior;

1

bt
¼
Ps� 1

s¼0
Lt� s þ

1

bprior
;Lt ¼

Psmax
s¼1
It� sws

Turning to predictions, the reproduction number and infection potential computed in the

standard framework can only predict the local cases:

Rt � gampdf ðat; btÞ; I
ðlocalÞ
t � poisspdf ðRtLtÞ ! hI

ðlocalÞ
t i ¼ LthRti ¼ Ltatbt

By definition, imported cases cannot be predicted in the Rt model; however, events when

the observed number of new cases vastly exceeds the expectation from local transmission can

be identified. This hindsight is used to improve the estimate of the reproduction number as

follows.

The likely number of imported cases on a given day is estimated by comparing the actual

incidence to the Bayesian credible interval for new local cases estimated from the previous

days. This estimated past incidence is then incorporated in a corrected estimate for Rt.

In an initial pass the at, bt parameters are computed for time point t based on the incidence

time series {Iτ}τ = 0,1,� � �t−1. The one-day predicted incidence on day t is computed as described

above, using the infection potential Λt and the distribution of �Rt � Rt� 1. The value corre-

sponding to the upper θ = 95% credible interval is used as a cutoff and identify the part of the

incidence that exceeds the cutoff with imported cases.

Iðlocal;highÞt ¼ Lt gaminvðy; at� 1; bt� 1Þ; I
ðimported;estÞ
t ¼ maxðIt � I

ðlocal;highÞ
t ; 0Þ

The estimated local incidence Iðlocal;estÞt is used to provide revised estimates for the reproduc-

tion number as described above (also consistent with Cori and Thompson’s approach). Finally,
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the resulting Rt parameters are used for the most recent day and the full incidence to provide

revised estimates for days t+1, t+2,. . .t+k.

ML+Rt method: Using long short-term memory network to forecast

outbreaks

As previously mentioned, the LSTM method implemented in this project is meant to build on

the widely used Rt Only approach described in the previous section. The novelty of this LSTM

approach is that it provides for the input of epidemiological modeling while taking advantage

of cutting-edge machine learning techniques. The combination of the two allows the LSTM

model to incorporate the epidemiological principles used to produce the Rt estimate while

adding additional information such as temporal and demographic information that can be lev-

eraged with traditional machine learning models. Further, the calculation of Rt using the Rt

Only method uses independent data sets for each county in turn creating a unique model for

each county that does not consider the impact of possible relationships between counties. By

contrast, the ML+Rt approach uses global trends across counties. By training on all the data,

the model is not only able to take advantage of global trends, but by including spatial informa-

tion, the model is also able to show how these trends impact specific counties.

Daily county-specific Rt, summary statistic information on the estimated Rt such as stan-

dard deviation, confidence intervals, and the probability of Rt >1 are also provided. Rt values

computed using both 7 and 14 day intervals are included. All these factors along with temporal

information such as daily information on whether it is a weekend or not, holiday or not, days

passed from last major holiday, days to the next major holiday were utilized as inputs for our

model.

As mentioned previously, due to the length of time it takes to receive a test result (lag time),

the deflated effect on the positive cases when considering test procurement date must be con-

sidered. An average lag of 3 days for results to achieve close to actual levels was observed. To

mitigate the effect of the testing lag day t, t-1, t-2 are imputed with the actual SARS-CoV-2

cases for days t-3, t-4, t-5 respectively.

A LSTM recurrent neural network [14] was implemented in Python with an Adam opti-

mizer, as our model of interest for this analysis, permitting consideration of all available

county-specific input information for the past 7 days with a prediction of the number of posi-

tive cases for the county as an output. Other advantages of the LSTM approach are the ability

to exploit autocorrelation between time points and the utilization of dropout layers to remove

redundant information.

In general, the LSTM models are more complex versions of recursive neural networks

(RNNs). The multi-layer LSTM method deployed here follows the framework described in Fig

1 where the input layer is defined by a matrix combining the number of positive cases for

county c at time point t, Yc,t, and all inputs for county c at time point t. The inputs then move

their way through the network (i.e., through the LSTM layer and dense layer) to obtain an out-

put. The output is defined as, Ŷ c;tþ7, the predicted daily number of cases for county c at time

point t+7. LSTM can be viewed as a network where information between time points is shared.

Each LSTM cell, diagramed in Fig 1, shares two pieces of information with other LSTM cells;

the current state of the cell, Ct, and output of the cell, ht, is calculated with the following formu-

las given input data, xt:

~Ct ¼ s
0ðWc:½ht� 1; xt� þ bcÞ

git ¼ it � ~Ct
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gft ¼ ft � Ct� 1

Ct ¼ gft þ g
i
t

ht ¼ ot � s
0Ct

Where, w are the weight variables (traditionally thought of like regression coefficients), and

b are the bias variables (traditionally thought of as intercept terms). Activation functions, σ
and σ0 are non-linear transformation functions such as, sigmoid and hyperbolic tangent. A fea-

ture of each cell is input, output, and forget gates. These gates are what give the LSTM, the

memory property which allows it to account and adjust for auto correlation. Define:

ft ¼ sðWf :½ht� 1; xt� þ bf Þ

it ¼ sðWi:½ht� 1; xt� þ biÞ

ot ¼ sðWo:½ht� 1; xt� þ boÞ

The above are gates that define the memory of the LSTM cell and are distinct linear combi-

nations of inputs and outputs from the previous LSTM cell with specific activations functions.

In addition, the importance of the inputs is not guaranteed (including Rt and associated

summary statistics), thus dropout layers were added to allow for the identification of impor-

tant inputs. The drop out layers filtered out inputs that would be considered insignificant in

order to detect the important signals coming from the input data and also protect against

overfitting.

Once predictions for a given week were determined, the summary statistics of the results

were produced. Summary statistics included: 1) predicted number of positive cases by county,

2) predicted percent change in cases per 100,000 persons by county compared to the previous

week, 3) predicted increase in number of cases compared to the previous week, and 4) pre-

dicted number of cases relative to the population size.

Fig 1. The LSTM framework deployed for the proposed ML+Rt method on right, and structure of each LSTM cell

on left.

https://doi.org/10.1371/journal.pone.0259538.g001
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Evaluations of models in deployment

Metrics and evaluation

To evaluate performance of the two methods, the predicted values for new SARS-CoV-2 cases

were benchmarked against the actual number of positive cases recorded for each week from

January 1, 2021 through April 30, 2021. As a main goal of these new case forecasts was to target

areas for diagnostic testing, each week’s prediction is used as a recommendation. These recom-

mendations were ranked on many several metrics but most predominately on the percentage

increase in cases over the previous week. To evaluate the recommendations, the total dis-

counted cumulative gain (DCG) of each method is measured [15]. DCG is a commonly used

metric in page ranking calculations and is suitable here as the information shared was used

similar to page ranking calculations. As a reminder the goal of this analysis is to recommend

counties of increased incidences for intervention (i.e., increased SARS-CoV-2 testing), not to

predict the actual number of incidence. DCG provides a metric for comparison of differing

recommendation methods, which is how both the ML+Rt and Rt Only are being used. Unlike

most metrics used in machine learning such as squared error or absolute error, larger DCG

values indicate better performance.

To better study performance of the ML+Rt and Rt Only methods, two separate DCG met-

rics are used to consider the cost of poor recommendations. The first is on the ability to iden-

tify the top counties of increase regardless of the level of increase, while the second metric

considers the size of the increase (percentage) in the comparison.

To define the first metric let ŷc;t and yc,t represent the number of predicted cases and actual

cases over a 7-day period for the cth county at time point t respectively. To keep from biasing

the evaluation towards rural areas with a low incidence, only consider those with yc,t+1>10 are

considered. Define St to be the set of indices, the largest 10 values of
yc;tþ1

yc;t
for a given time point.

The Binary Discounted Cumulative Gain (Binary DCG) of a set of rankings at time point t is

defined as:

Xq

i¼1

Iði 2 StÞ
lnðiþ 1Þ

where I(i2St) is an indicator of a correct identification of a top 10 ranking in the actual per-

centage increases, and q is the number of rankings used in the calculation. For example, if

q = 10, then BDCGt would only evaluate the top 10 rankings, in our setting this would be the

top 10 counties, returned by a method. One may view B-DCG as a weighted identifier to mea-

sure the quality of the rankings for purposes of identifying case increases (or spikes) of the top

q recommendations.

As the closeness of the predicted number of cases to the actual case number, i.e., the “qual-

ity” of the prediction, a second metric was used to consider the quality of the prediction rather

than just considering a binary outcome. To accomplish this, Spike DCG is defined as:

Xq

i¼1

yi;tþ1

yi;tlnðiþ 1Þ
:

Spike DCG considers the relative size of the spike for the top q recommendations. While

Binary DCG investigates the ability of a method to correctly identify the top 10 counties, Spike

DCG places value on the recommendations that are produced by identification of larger

spikes. This comparison is of great importance as targeted interventions may only have finite
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resources to deploy so understanding the level of trust and impact expected by the two meth-

ods is of importance.

As both the Rt Only and ML+Rt methods are used to recommend county level locations for

testing, it is important to investigate the quality of the top recommendations, disregarding the

order and quality of the ranked predictions. This evaluation gives a sense of the quality of the

recommendations produced by the methods, relative to others.

Finally, as this study is being deployed in a state with many rural areas, differences in meth-

ods between rural and non-rural areas were also analyzed. This study uses the 2013 Rural-

Urban Continuum Codes (RUCC) to define rurality [16], which define a rural area as a non-

metro area with population under 20,000 and is not adjacent to an urban metro area. To asses

quality of the predictions provided by each method, we examined correlations between pre-

dicted and actual 7-day positive case totals. The quality of Binary DCG and Spike DCG in both

rural and non-rural areas is assessed by investigating the performance of ML+Rt and Rt Only

methods among lower population communities with less access to large healthcare systems.

Both Rt Only and ML+Rt methods were deployed each week from January 1, 2021 through

April 30,2021 using all available training data beginning in April 2002 for each of the 55 coun-

ties in the state of WV, and resulting county recommendations were retained for comparison

against the actual number of cases. The code for fitting and deploying the models is publicly

available [17].

Results

The daily number of tests from April 2020-April 2021 were highly variable (Fig 2 with some

weeks having very low testing rates as illustrated by Fig 3). Each of the two prediction methods

utilized all available data and was updated weekly to obtain county level predictions. Note that

this study specifically focuses on evaluating predictions in the latter part of this time frame, and

coincided with vaccinations becoming available to different demographics of residents of West

Virginia residents, though data from the entire study was used to train each of the methods.

The correlation between forecasted number of cases and the actual number of cases week

over week is 0.872 for the ML+Rt method and 0.867 for the Rt Only method. Fig 4 shows a

scatter plot of the relationship between forecasted cases and the actual corresponding cases.

Fig 2. Number of SARS-COV-2 tests in the state of West Virginia from April 2020-April 2021.

https://doi.org/10.1371/journal.pone.0259538.g002
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Fig 5 compares Binary and Spike DCG for the case of recommending 10 counties (q = 10)

and 55 counties (q = 55). Both the Rt Only and ML+Rt methods perform well overall but differ

in performance at various time points. In the case of Binary DCG the Rt Only method has better

performance, and in the case of Spike DCG the ML+Rt method performs better. Over the

17-week assessment period, the ML+Rt method outperforms the Rt Only method in recommen-

dations with regard to all measures except Binary DCG for q = 10 (Table 1). These results show

that if users are interested in mitigating outbreaks by identifying larger spikes in the Top 10 rec-

ommendations, as was the goal of this implementation, the ML+Rt method should be used.

A more concerning result is the decrease in both DCG metrics that are seen with regard to

both methods over time. Further investigation and analysis showed that during deployment

the focus of providers shifted from active testing and contact tracing to vaccination.

Fig 3. Number of SARS-COV-2 tests in the state West Virginia from May 2020- July 2020.

https://doi.org/10.1371/journal.pone.0259538.g003

Fig 4. A comparison of actual 7-day case totals and predicted 7-day cases totals for the ML+Rt methods.

https://doi.org/10.1371/journal.pone.0259538.g004
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Assessing rural vs non-rural results

Critically important is analysis on the performance of the two forecasting strategies in rural

compared with more urban counties in WV. Correlations between predicted 7-day positive

case totals and actual 7-day positive case totals are higher for non-rural counties than rural

counties for both methods (Table 2).

For rural areas, the two methods perform similarly with the ML+Rt method slightly outper-

forming Rt Only in regard to Spike DCG (Fig 6). For non-rural areas, ML+Rt outperforms Rt

Only for both DCG metrics (Table 2). The Rt Only Method performs well when identifying

counties in the top 10, but ML+Rt method identifies larger spikes in the top 10

recommendations.

A secondary analysis shows that the ML+Rt method recommends for enhanced SARS-

CoV-2 testing more non-rural counties than rural counties in the top 10 rankings during Janu-

ary and February when compared to the Rt Only method. The opposite occurs during the

March and April time period during which the Rt Only method recommends more non-rural

counties in the top 10 compared to the ML+Rt methods. When coupled with decreasing num-

ber of tests, leading to lower daily incidence this alleviates any concern of bias of the ML

method on rural counties.

Discussion

In this study, two methods to predict short term incidence of SARS-CoV-2 infection were

deployed for purposes of identifying West Virginia counties that might benefit from enhanced

Fig 5. A comparison of the ML+Rt and Rt Only methods with respect to Binary DCG and Spike DCG over the

17-week evaluation period for both 10 and 55 county recommendations.

https://doi.org/10.1371/journal.pone.0259538.g005

Table 1. A comparison of total both DCG metrics for recommendations of 10 counties and 55 counties for the

ML+Rt methods implemented.

Binary DCG Spike DCG

55 Counties ML+Rt 42.50 22.90

Rt Only 41.83 21.18

10 Counties ML+Rt 11.88 7.87

Rt Only 12.59 4.26

https://doi.org/10.1371/journal.pone.0259538.t001
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SARS-CoV-2 testing. One method, Rt Only, utilizes the Cori model [8], assuming that all posi-

tive cases are known. In contrast, the ML+Rt method utilizes Rt as an input value, but bases

predictions on an LSTM framework that utilizes other factors such as population size.

Our results demonstrate that both methods perform well. The ML+Rt out performs the Rt

only method when it comes to recommending larger spikes in the top recommendations. The

implementation of the ML+Rt method is novel as it is utilizing epidemiological underpinnings

while exploiting other information such as county population, minimum and maximum val-

ues of Rt, variability in Rt, and other information that may, or may not be useful in predicting

out breaks.

Each of the methods for incidence prediction have strengths and weaknesses. The Rt Only

method only assumes that all positive cases are known. However, in practice, this assumption

is unreasonable and highlights some of the problems with applying the standard Cori Rt model

to SARS-CoV-2 data. The Rt Only approach relies on the most recent testing data available,

and our daily incidence It represents the number of positive test results from tests performed

on day t. Publicly reported case numbers [18] typically represent the number of positive test

results reported on the respective day, but the lag time from test procurement varies. Using the

day tests were procured eliminates one additional source of variability and brings our proxy

for the “serial interval” closer to the relevant distribution (which would be the infectivity pro-

file–see [11, 12, 19]). However, this raises a practical issue in that data for day t is typically

incomplete on day t and is reported gradually over several days. To address this issue,

Table 2. A comparison correlation of 7-day positive case totals and 7-day actual case, and both DCG metrics

(total) for the ML+Rt methods implemented when viewed by rural and non-rural counties.

Correlation Binary DCG Spike DCG

Rural ML+Rt 0.690 4.12 0.84

Rt Only 0.710 6.07 0.76

Non-Rural ML+Rt 0.867 7.77 7.03

Rt Only 0.862 6.52 3.50

https://doi.org/10.1371/journal.pone.0259538.t002

Fig 6. A comparison of Spike DCG for both rural and non-rural counties.

https://doi.org/10.1371/journal.pone.0259538.g006
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SARS-CoV-2 incidence are estimated using data from 3 days prior (τreport = incidence at t−3

days). For example, the weekly total reported on day t = May 12, 2021 represents the week end-

ing on May 9, 2021, and it is this incidence that is used to predict SARS-C0V-2 incidence for

the subsequent 7 days.

A second issue with the Rt Only method is that a reliable record of imported cases is not

available as they are a theoretical concept in this model. In practical settings, the term

“imported” is to be taken in a (very) broad sense. There are a number of situations that have a

similar effect.

1. True “exogenous” cases likely occurred due to county residents traveling for school or holi-

days [3, 4]. There are numerous anecdotal instances in the media but no consistent method-

ology or documentation of such cases. Commuters from one county to another or out of

state could be susceptible to outbreaks outside of their “home” geographic area.

2. “Institutional” or “congregate setting” cases, occur (rather, are identified) over a short time

in closed or limited access facilities. Congregate setting outbreaks have somewhat similar

features; however, it is not obvious whether individuals infected in congregate settings (e.g.,

nursing homes) cause new infections in the community as these individuals have limited

community access.

3. Finally, significant variability over time of test availability and policies (e.g., limited test

availability early in the pandemic, prioritizing resources for vaccine rollout to the detriment

of testing availability) complicates the role of the observed incidence as an estimator of the

true number of infections.

4. Severity of a disease leading to hospitalization or other interventions that allows for insight

into a group that was not previously being tested.

To address these issues, a Bayesian credible interval is used to better define the number of

imported cases in the Rt Only method. The proposed iterative fitting technique provides a bet-

ter estimate of the number of imported cases that will be observed.

The ML+Rt value suffers from issues with practical implementation as well. The same issues

with data quality from testing lags can be found when using any data driven method to forecast

cases. In addition, there are known problem of using neural networks and deep learning meth-

ods when sample sizes are not extremely large. Our approach which predicts using a model that

is trained from all combinations of counties and time points takes advantage of the 55 counties

over the 365+ days of observed data. Early on in a pandemic it would be unreasonable to think

an LSTM or many data driven methods could be used and would be reliable due to a limited

number of data point. Therefore, early in the pandemic, our results show the stability of the

dynamical model underlying the Rt Only method is reliable once the serial interval could be

constructed as the Bayesian approach of the Rt Only method utilizes the serial interval to create

an informed prior distribution of spread. For this reason, the LSTM method was not incorpo-

rated until October 2020 and only presented in this study from January through April 2021, a

time period at which the SARS-CoV-2 epidemic in West Virginia was well established and just

before the new Delta variant became established (only one case of Delta was identified during

the study period). As the ML+Rt method utilizes all data available, it is less predictive during

times that diagnostic testing is erratic (e.g., school breaks, testing supply shortages, etc) (Fig 2).

The Rt Only method is able to adjust predictions in a quicker time frame Figs 4 and 5 demon-

strate a sharp decrease in performance of the ML+Rt method in February at which time there

was a sharp decrease is SARS-CoV-2 diagnostic testing. Again, the Rt Only method is the rec-

ommended approach when drastic changes in testing occur and doing so until testing stabilizes.
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As seen during the SARS-COV-2 pandemic, situations are dynamic and models must be

built to account for the changing landscape of the data and inputs available. With this in mind,

extensions of this work should consider vaccination rates, population distributions, vaccine

hesitancy, and baseline testing access to better predict outbreaks and target testing. A combi-

nation of vaccine information could account for decrease testing and smaller number of cases

in models such as the ML+Rt method can adjust for this new input and do so in ways that can-

not be accounted for using the Rt Only method. Furthermore, this could lead to interesting

results in both identification of not only outbreaks but areas for potential variants and the pos-

sibility to use model averaging techniques to create an optimized rule that utilizes both meth-

ods. If observed, clinical data on patients (e.g. symptomatic/asymptomatic as percentages)

could also be recorded and utilized as an input in the model. Note, that anything utilized in the

model must be known during the forecast period, thus information that is dynamic would also

have to be forecasted.

The approaches proposed in this work provide a framework for forecasting outbreaks at a

local level that utilizes two different approaches. The first is a model based on epidemiological

theory, while the second is a machine learning approach that simultaneously considers historic

trends and other inputs. Both methods are useful specifically the Rt Only method when data is

limited, while the ML+Rt method performs well when data has been collected and a historic

perspective can be presented.

Limitations

This study addressed the West Virginia SARS-CoV-2 epidemic from January–April 2021. At

that time, only one case of the Delta variant had been detected, therefore, our models do not

address prediction of new SARS-CoV-2 incidence when Delta is the prevalent variant. As the

Delta variant has unique epidemiologic characteristics compared to earlier SARS-CoV-2 vari-

ants such as a shortened serial interval which influences calculation of Rt, models must be

adjusted as new more virulent strains of SARS-CoV-2 appear in the population [7]. This study

also looks at West Virginia specifically, though the techniques could be applied broadly. As the

data in this study is specifically from WVDHHR, it is unable to be compared directly to pub-

licly available sources from other states, limiting the implications of this specific model.

Conclusion

This study provides important information on strategies for predicting near-term increases in

SARS-CoV-2 incidence, and hence, for targeting SARS-CoV-2 testing. A new approach is pro-

posed, Rt Only, that utilizes the estimation of the reproduction number to provide recommen-

dations on county-specific areas where outbreaks will likely occur. A second approach is also

proposed, ML+Rt, utilizing LSTM models that consider epidemiological statistics such as Rt,

county population information, and time series trends including information on major holi-

days to forecast outbreaks and create county recommendations. Comparison of the two

approaches shows the top 10 recommendations produced by the ML+Rt method outperform

the Rt Only method over the period of this study. Our data suggest that traditional epidemio-

logical modeling can be enhanced by modern machine learning tools to inform decisions on

where to target SARS-CoV2 testing.
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