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Transcranial magnetic stimulation (TMS) has been employed in multiple sclerosis (MS)

to assess the integrity of the corticospinal tract and the corpus callosum and to explore

some physiological properties of the motor cortex. Specific alterations of TMS measures

have been strongly associated to different pathophysiological mechanisms, particularly

to demyelination and neuronal loss. Moreover, TMS has contributed to investigate

the neurophysiological basis of MS symptoms, particularly those not completely

explained by conventional structural damage, such as fatigue. However, variability

existing between studies suggests that alternative mechanisms should be involved.

Knowledge of MS pathophysiology has been enriched by experimental studies in

animal models (i.e., experimental autoimmune encephalomyelitis) demonstrating that

inflammation alters synaptic transmission, promoting hyperexcitability and neuronal

damage. Accordingly, TMS studies have demonstrated an imbalance between cortical

excitation and inhibition in MS. In particular, cerebrospinal fluid concentrations of different

proinflammatory and anti-inflammatory molecules have been associated to corticospinal

hyperexcitability, highlighting that inflammatory synaptopathy may represent a key

pathophysiological mechanism in MS. In this perspective article, we discuss whether

corticospinal excitability alterations assessed with TMS in MS patients could be useful

to explain the pathophysiological correlates and their relationships with specific MS

clinical characteristics and symptoms. Furthermore, we discuss evidence indicating that,

in MS patients, inflammatory synaptopathy could be present since the early phases,

could specifically characterize relapses, and could progressively increase during the

disease course.

Keywords: Transcranial magnetic stimulation (TMS), multiple sclerosis (MS), inflammation, synaptic transmission,

cytokines

INTRODUCTION

Multiple sclerosis (MS) is an inflammatory immune-mediated disease of the central nervous system
(CNS) with white matter demyelinating lesions and chronic diffuse neuronal degeneration, causing
variable and unpredictable clinical manifestations and disease course.

Transcranial magnetic stimulation (TMS) is a neurophysiological technique that exploits the
principles of electromagnetic induction. A coil of wire, connected to an electric pulse generator
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and placed over the scalp, produces a strong magnetic pulse
of very short duration able to penetrate through the intact
skull, inducing an electric current in the underlying neural
tissue noninvasively and almost painlessly (1). The induced
electric current mainly flows tangentially to the brain surface,
preferentially activating cortical fibers oriented in parallel to the
electric field (2). When applied over the primary motor cortex
(M1), TMS excites the corticospinal system, eliciting multiple
descending volleys, which reflect both the direct activation
of cortical motor axons (D-waves) and the indirect, trans-
synaptic activation of motor cortical neurons (I-waves) (3, 4).
The recruitment of different combinations of D- and I-waves
depends on the stimulus intensity, pulse configuration, coil
shape, and orientation (5–9). In particular, with a posterior-to-
anterior induced current flow, TMS at lower intensities evokes
I-waves, whereas at higher intensities also D-waves occur (10).
These descending activities can be recorded in contralateral
target muscles as motor-evoked potentials (MEPs).

TMS is used in the clinical context of MS together with
multimodal evoked potentials (i.e., visual and somatosensory)
as a useful tool to detect subclinical involvement of the
corresponding functional system with the aim to help early
diagnosis (11). TMS alterations have also been correlated to
demyelinating damage and neuronal degeneration in different
MS phenotypes. For example, slowed central motor conduction
time (CMTC) and reduced MEP amplitude can indicate axonal
depletion or even extreme asynchrony of the multiple descending
volleys to spinal motoneurons due to conduction blocks in the
myelinated fibers along the corticospinal tracts (12, 13).

Experimental evidence from studies in animal models and
in patients with MS suggests that inflammation critically affects
synaptic functioning (14). Accordingly, neurophysiological
alterations have been detected even in the absence ofmacroscopic
damage, suggesting a role of additional pathological mechanisms
(15). In particular, different proinflammatory and anti-
inflammatory molecules can influence cortical excitability
in MS (16) representing an additional cause of impaired
synaptic functioning.

In this perspective article, we provide an overview of the main
TMS studies exploring corticospinal excitability and connectivity
alterations in MS, their pathophysiological correlates, and
their relationship to clinical characteristics and symptoms. In
addition, evidence from preclinical data and TMS studies, which
highlight the role of inflammatory synaptopathy as a relevant
pathophysiological mechanism that acts since the early phases of
MS, is discussed.

TMS as a Tool to Investigate Cortical
Excitability in MS
TMS can be used to assess the functionality of the corticospinal
tract and the corpus callosum (CC) and to explore some
physiological properties of M1. Various TMS paradigms have
been designed to investigate corticospinal excitability to test
excitatory and inhibitory interactions in M1 and to probe M1
connectivity (Table 1). Single-pulse TMS can be used to assess
simple cortical excitability measures, such as motor thresholds,

to study MEP characteristics, to estimate CMCT, and to test
cortical inhibition. With paired-pulse TMS, it is possible to
explore specific inhibitory and excitatory circuits in M1. During
paired-pulse TMS, two stimulators are connected to the same
coil that delivers two consecutive pulses at variable interstimulus
intervals (ISIs). In addition, TMS has been used to investigate
interhemispheric effective connectivity of M1 by exploring
transcallosal connections with either single or double-coil (d-c)
approaches. In d-c TMS, two stimulation units, each connected
to a corresponding coil, are used to target different motor cortical
regions at various ISIs.

TMS as a Tool to Investigate Different

Pathophysiological Mechanisms in MS
Considering the clinical impact of corticospinal system lesions,
different TMS studies have shown several alterations of M1
excitability and corticospinal tract conduction in MS patients.
In particular, reduced MEP amplitude (54–56), increased MEP
latency (57), and duration (58) have been reported in MS
patients compared with control subjects. In addition, increased
RMT (55, 59) and prolonged CMCT (54, 59–62) have been
frequently evidenced in patients with MS. Overall, these
findings have been interpreted in the light of demyelinating
conduction block and axonal damage. In fact, demyelination and
conduction blocks could lead to a greater temporal dispersion
of the corticospinal volleys, resulting in reduced amplitude and
increased MEP duration, prolonged MEP latency, and increased
CMCT. Conversely, axonal loss could be more relevant in
progressive MS, being associated with higher RMT, reducedMEP
amplitude, and longer CMCT (55).

Cortical inhibition tested with single-pulse TMS has
documented prolonged CSP duration in RR-MS patients
(57, 63). One study has shown that, in remitting patients, CSP
prolongation was correlated with white matter lesion volume
but not with cortical thickness (57). In progressive MS patients,
reduced CSP duration correlated with lower whole-brain cortical
magnetization transfer ratio (MTR), suggesting a role of cortical
damage (56). Altered GABA transmission could explain the CSP
alteration although alternative mechanisms have been suggested,
including changes in spinal motoneuron excitability (23, 24),
attentional processes (64, 65), and altered voluntary motor drive
(66). In addition, reduced CSP duration after a fatiguing motor
task has been reported in MS patients compared to controls (67),
suggesting that additional mechanisms could also be involved.

Various studies have explored SICI in MS patients (55, 56,
68). Although some authors reported comparable SICI between
RR-MS and controls (55, 57, 69), in one study it has been
found that lower SICI in patients with RR-MS was correlated
with reduced MTR in the hand motor cortex (56). In addition,
reduced SICI and increased ICF have been reported in SP-
MS patients compared with RR-MS and controls (55, 69). It
has been proposed that the clinical course of progressive MS
phenotypes could be characterized by a deterioration of SICI
over time (70). These alterationsmay reflect hyperexcitability due
to enhanced glutamatergic transmission and reduced inhibition,
which could be particularly noticeable in progressive patients,
being associated with higher disability and cortical atrophy (55).
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TABLE 1 | Main TMS protocols used to explore motor cortex pathophysiology in MS patients.

SINGLE-

PULSE

TMS

Motor thresholds Resting and active motor thresholds (RMT and AMT), tested with single-pulse TMS in resting

and contracted muscles respectively, represent simple measures of the excitability of the whole

corticospinal system, including the fluctuating excitability of both M1 pyramidal cells and spinal

motoneurons (9) MTs are defined as the minimum intensity of M1 stimulation able to elicit MEPs

in the target muscles (9) and MTs likely depend on the axonal excitability regulated by

voltage-gated sodium channels and on the activity of AMPA receptors (17).

MEP amplitude Commonly used for testing the excitability of the whole corticospinal system. TMS activates

along the corticospinal tracts a series of descending volleys with different thresholds, different

conduction velocities, and intrinsic asynchrony of propagation (8, 10). Temporal dispersion is

further enhanced by peripheral nerve conduction, leading to phase cancellation of motor unit

action potentials (18, 19). MEP amplitude can be influenced by excitability changes occurring

at cortical level, representing an important marker of synaptic activity in the motor cortex (20).

Spinal motoneurons excitability also contributes to MEP amplitude. (8, 21).

Central motor

conduction time

(CMCT)

Represents the time interval elapsing between the cortical stimulus and the arrival of the

excitatory input to the spinal motoneurons, being a useful tool to assess the integrity of

fast-conducting motor pathways in the corticospinal tract (9). CMCT evaluated with TMS

includes the trans-synaptic activation of cortical motoneurons through the chain of cortical

interneurons responsible for the I-waves generation. CMCT is commonly calculated by

subtracting the peripheral motor conduction time from the MEPs latency (9).

Cortical silent period

(CSP)

Inhibitory phenomenon measured in contracting muscles as an interruption of the ongoing

voluntary electromyographic activity. Spinal inhibitory mechanisms contribute to the first part of

CSP, whereas the late part originates at cortical level (22–24) and expresses GABA-B mediated

inhibition in M1 (25–27). The role of GABA-A receptors has also been suggested. In particular,

GABA-A receptors could be activated by low stimulus intensity, whereas GABA-B receptors

are engaged with stronger pulses (28).

PAIRED-

PULSE

TMS

Short-interval

intracortical inhibition

(SICI)

SICI is tested with a subthreshold conditioning stimulus followed by a suprathreshold test

stimulus at an ISI of 2-5ms (29). The conditioning stimulus suppresses the excitatory response

to the subsequent suprathreshold stimulus (29, 30) depending on GABA-A receptor activity

(30–32).

Intracortical facilitation

(ICF)

ICF is evaluated with a similar protocol used for SICI with longer interstimulus intervals at

7–20ms (29, 33). ICF engages M1 circuits different from those involved in SICI with a resulting

excitatory effect that combines a weak GABA-A-mediated inhibition and a predominant

NMDA-mediated facilitation (33, 34).

Short-interval

intracortical facilitation

(SICF)

SICF is measured with a particular paired-pulse TMS protocol that uses at very short ISIs either

a conditioning suprathreshold stimulus followed by a test subthreshold stimulus (34, 35) or two

near threshold pulses (36, 37) and reflects facilitatory I-wave interaction within M1 (35).

Pharmacological studies have suggested that SICF is modulated by a number of

neurotransmitter systems, including GABA, dopamine, noradrenaline [for reviews, see (35, 38)].

TRANSCALLOSAL

CONNECTIVITY

Ipsilateral silent period

(iSP)

Tests the inhibitory influences existing between the two M1s and is mediated by fibers passing

across the corpus callosum (39–41). Refers to the suppression of ongoing voluntary

electromyographic activity in hand muscles in response to a single suprathreshold pulse over

the ipsilateral M1 likely mediated by GABAergic transcallosal projections (42–44).

Interhemispheric

connectivity

Interhemispheric inhibition (IHI) studied with d-c TMS, refers to the suppression of MEPs

following suprathreshold conditioning stimuli given over the contralateral M1 (43, 45). IHI is

mediated by excitatory inputs coming from the conditioned M1, traveling across the corpus

callosum, and reaching local inhibitory synapses in the contralateral target M1 (43, 46, 47) are

mediated by GABA-B (48–50). Facilitatory interhemispheric connections have also been

studied between dorsal premotor cortex and contralateral M1 (51–53).

As the CC involvement represents a hallmark of MS, TMS
has been specifically used to test interhemispheric connectivity
in these patients. Increased iSP latency and duration have been
reported in MS patients compared to controls (60–62, 71). In
particular, iSP alterations found in MS have been associated
to CC volume (62). One study in MS patients, combining
TMS and fMRI, has demonstrated that increased ipsilateral M1
activation during the execution of a motor task was correlated
with reduced iSP duration and with ultrastructural damage
of the CC (61). However, prolonged iSP duration has also
been associated with CMCT prolongation without significant

correlations with CC abnormalities, suggesting that transcallosal
inhibition could be affected by demyelination of the contralateral
corticospinal tract (72). Notably, reduced IHI has also been
observed in early RR-MS patients in the absence of macroscopic
damage of the CC or CMCT alterations (73). Finally, one TMS
study has shown that excitatory interhemispheric connectivity
between premotor cortex and contralateral M1 could be reduced,
irrespective of CC lesion load and in the absence of disability (53).
Although the pathophysiological mechanisms underlying altered
interhemispheric connectivity in MS are not fully understood,
it is likely that, alternatively to CC structural damage, other
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mechanisms could be involved, including reduced excitatory
projections from the conditioning cortex or defective GABAergic
signaling in target M1 inhibitory interneurons (48, 74).

TMS Alterations Could Be Associated With Specific

MS Clinical Characteristics
Alterations of various TMS measures have been related to MS
clinical characteristics. Expanded disability status scale (EDSS)
score has been associated with increased RMT, altered MEPs,
and prolonged CMCT and iSP duration (55, 58, 60). A positive
correlation between these TMS measures and clinical scores
could reflect the prevalent role of white matter lesions in the
pathogenesis of these alterations, particularly of the corticospinal
tract and the CC. The role of whitematter disconnection has been
specifically involved in cerebellar symptoms. Cerebellar tremor
in MS has been associated with lacking cerebellar-M1 inhibitory
connectivity tested with d-c TMS (75). In addition, cerebellar
dysfunction in MS has also been associated with increased CSP
duration, likely resulting from impaired cerebellar projections to
M1 (63).

Altered balance between cortical excitation and inhibition
in MS has been correlated with clinical severity. One study
showed that prolonged CSP duration was correlated with clinical
disability and predicted greater motor impairment, suggesting
that increased inhibition could lessen clinical compensation,
possibly interfering with plasticity (57). Moreover, one study
has demonstrated that defective SICF was correlated with
increased EDSS in MS patients (76). Alterations involving both
inhibitory and excitatory circuits would suggest a specific role
of synaptic dysfunction in addition to demyelination of white
matter tracts. The finding that steroid administration in relapsing
RR-MS led to motor improvement, along with reduced SICI
and enhanced ICF (77), supports this hypothesis, suggesting a
restored synaptic functioning within M1. Finally, it has been
proposed that corticospinal excitability asymmetry between the
two hemispheres could represent a marker of clinical disability,
whose mechanisms are not completely elucidated and possibly
involving neurodegenerative and inflammatory processes (78).

Fatigue represents a frequent and severely disabling symptom
in MS patients (79). Different mechanisms have been postulated,
including whitematter and cortical lesions, endocrine alterations,
and the influence of neuroinflammation on brain functioning
(80, 81). Enhanced GABAergic activity tested with SICI and
CSP has been specifically implicated in MS fatigue (82, 83). In
line with the hypothesis of increased M1 inhibition in fatigued
MS patients, one study has demonstrated that a fatiguing motor
task was associated with increased CSP duration. Notably, unlike
healthy controls, CSP alteration also involved untrained adjacent
muscles, suggesting that mechanisms of cortical spreading could
intervene in generating fatigue in MS (67).

Cognitive dysfunction represents an important symptom
frequently underestimated inMS patients, which involves various
domains, including executive functions, processing speed, and
working memory. In addition to demyelination and gray matter
atrophy, different pathophysiological mechanisms, including the
presence of cortical lesions, impaired brain network organization,

and altered synaptic functioning, have been proposed (84). Short-
latency afferent inhibition (SAI), a TMS protocol exploring the
efficiency of cortical cholinergic inhibitory activity mediated by
peripheral somatosensory afferent inputs to M1 (85), has been
used to investigate cognitive dysfunction in MS. In particular,
verbal memory impairment was associated with reduced SAI
that could be partly reversed by rivastigmine administration (86).
Notably, these results are in line with studies demonstrating
altered SAI in patients with Alzheimer’s disease (87). Although
mood disturbances are frequently observed in MS, correlations
with TMS alterations have been scarcely investigated. One study
showed that anxiety in MS patients was associated with altered
inhibitory interhemispheric connectivity, highlighting the role of
increased transcallosal transfer (88).

INFLAMMATORY SYNAPTOPATHY AS A
LINK BETWEEN AUTOIMMUNITY AND
DISEASE MANIFESTATIONS IN MS

In MS, auto-reactive T lymphocyte infiltration into the CNS
and activation of resident immune cells lead to demyelinating
lesions and axonal damage. Inflammatory cytokines released by
immune cells play a crucial role in inducing and maintaining
the inflammatory response in MS. Proinflammatory molecules
promote T-helper 1 (Th1) and Th17 differentiation and
lymphocyte activation and migration across the blood brain
barrier (89). Accordingly, enhanced expression of various
cytokines, including interleukin (IL)-1β, tumor necrosis
factor (TNF), IL-6, IL-17, and interferon (IFN)-γ has been
reported in animal models (i.e., experimental autoimmune
encephalomyelitis, EAE) and in the perivascular infiltrates and
cerebrospinal fluid (CSF) of MS patients (90–94).

In addition to their immunomodulatory activity, cytokines
modulate the function of oligodendrocytes, astrocytes,
and neurons (95, 96). Experimental studies have shown
that inflammatory molecules specifically influence synaptic
functioning, suggesting that chemokines and cytokines may
represent an important communicating system in the CNS.
In turn, astrocytes, endothelial cells, and neurons participate
in cytokine production (97, 98), generating a neuro-immune
crosstalk with crucial roles in physiological and pathological
conditions (99, 100).

Preclinical Studies and Translational Models
Experimental studies have contributed to demonstrate that
inflammation alters synaptic functioning (14, 101). In
the striatum of EAE mice, electrophysiological recordings
revealed enhanced glutamatergic transmission and excitotoxic
neurodegeneration occurring since the early phases, before
the onset of symptoms, and independently of demyelinating
damage (14). These excitotoxic alterations were mainly caused by
increased activity and expression of the a-amino-3-hydroxy-5-
methyl-4-isoxazolepropionicacid (AMPA) receptor; accordingly,
the administration of inhibitors of glutamate AMPA receptors
ameliorated the course of EAE and reduced loss of dendritic
spines (14). In the same study, TNF released by activated
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microglial cells was identified as mainly responsible for
these alterations as incubation of this molecule reproduced
in vitro both altered AMPA activity and neuronal damage.
Other inflammatory cytokines have been associated with
synaptic hyperexcitability in EAE. The proinflammatory
cytokine IL-1β induced pathologically enhanced glutamatergic
transmission in the cerebellum of EAE mice, reducing
glutamate reuptake by altering the expression of the glutamate-
aspartate transporter/excitatory amino acid transporter 1
(GLAST/EAAT1) (102). Notably, the administration of the
GLAST/EAAT1 inhibitor reproduced the synaptic modifications
observed in symptomatic EAE mice (103). In addition,
administration of the IL-1 receptor antagonist, a physiological
inhibitor of IL-1β (104), ameliorated the course of EAE by
reducing astroglia activation and restoring GLAST/EAAT1
expression (102, 105). Proinflammatory cytokines have also
been consistently associated with altered inhibitory transmission
in EAE mice. It has been evidenced that incubating IL-1β and
TNF in mice brain slices impaired GABAergic transmission and
promoted excitotoxic neuronal damage (106, 107). Accordingly,
enhancing GABA signaling significantly improved the clinical
symptoms of EAE, likely as a result of a direct neuroprotective
effect and inhibition of inflammatory response (108).

Translational experiments confirmed that a similar subset
of proinflammatory molecules mediates synaptic alterations
in human MS. One study has demonstrated that the CSF
collected from patients with active MRI lesions pathologically
enhanced excitatory postsynaptic currents when incubated on
mice brain slices, inducing glutamate-mediated neuronal damage
(109). IL-1β has been identified as mainly responsible for these
alterations by increasing AMPA receptor activity. Inflammation-
induced synaptic alterations in MS have also been investigated
using a heterologous chimeric model. T-lymphocytes isolated
from the peripheral blood of RR-MS patients exacerbated
the glutamatergic transmission when incubated on mice brain
slices (110). In particular, only lymphocytes from patients
with acute inflammation, as evidenced by the presence of
gadolinium-enhancing lesions at MRI, were able to induce
synaptic alterations. Notably, co-incubation with etanercept, a
TNF antagonist, prevented these alterations, confirming that
TNF was mainly responsible for these findings (110).

Inflammation and Corticospinal Excitability in MS
The role of inflammation on synaptic dysfunction in MS has
been specifically addressed by some TMS studies. In relapsing
MS patients, it has been shown to both reduce CSP duration and
impair SICI compared to remitting patients (111). These results
demonstrate that the relapsing phases could be characterized
by cortical hyperexcitability, suggesting reduced GABAergic
transmission similarly to as evidenced in animal models (106,
107). To explore the role of CSF inflammation on cortical
excitability, different TMS measures have been correlated with
the levels of specific proinflammatory molecules. In relapsing
MS patients, elevated IL-1β signaling has been associated with
increased ICF without effect on SICI (109). This finding has
confirmed the main role of this molecule in altering synaptic
functioning also in human MS by enhancing glutamatergic

transmission (109). The involvement of this molecule in the
excitotoxic degeneration has also been suggested by clinical
studies, showing that CSF IL-1β detectability during remissions
predicted greater prospective disability and neurodegeneration
(112). Other inflammatory mediators have also been associated
to altered synaptic transmission in relapsing MS patients.
Regulated upon activation, normal T-cell expressed and secreted
(RANTES) is a proinflammatory molecule regulating the
leukocyte chemotaxis (113). Increased RANTES concentrations
have been found in the CSF of MS patients with acute
inflammation and correlated with both reduced SICI and
increased ICF (114). Finally, incubating this molecule on mice
hippocampal slices promoted hyperexcitability and excitotoxicity
(114), confirming the role of RANTES as a central regulator of
glutamatergic transmission (113).

Overall, these results indicate that exacerbated CSF
inflammation negatively influences the disease course of
MS, promoting synaptic hyperexcitability and neuronal damage.
It has been proposed that neurodegeneration in progressive MS
phenotypes could also result from inflammation-driven synaptic
alterations. In fact, reduced SICI and enhanced ICF have been
reported in SP-MS patients and have been related to enhanced
disability (55). These findings suggest that glutamatergic
excitotoxic damage could characterize the progressive MS
phenotypes as demonstrated by in vitro studies showing
hyperexcitability and enhanced neuronal damage induced by
CSF collected from progressive MS patients, mediated by TNF
(115). Conversely, anti-inflammatory cytokines, including IL-10
and IL-13, and neurotrophic factors may exert protective effects,
reducing neurodegeneration and promoting a better disease
course in EAE and MS (116–119). TMS studies have confirmed
that anti-inflammatory molecules could reduce the synaptic
alterations in MS. Accordingly, in RR-MS patients, the CSF levels
of the anti-inflammatory molecule IL-13 have been associated
with increased SICI, possibly contributing to restored inhibitory
synaptic activity and limiting the impact of excitotoxicity.
Notably, IL-13 CSF levels were also associated with reduced
measures of neuronal and axonal damage and with increased
amyloid-beta CSF concentrations, suggesting a protective role of
this cytokine in MS (120).

CONCLUSIONS AND
FUTURE PERSPECTIVES

Various TMS protocols have been used to characterize the
neurophysiological correlates of specific pathophysiological
mechanisms, such as demyelination and neuronal loss, in
different disease phases and phenotypes. These studies have
contributed to better defining the neurophysiological basis
of specific MS symptoms, particularly those not completely
explained by conventional structural damage measures, such
as fatigue and cognitive deficits. Alterations of corticospinal
excitability and corticospinal tract conduction have been clearly
linked to both demyelinating blocks and axonal damage.
MEP latency and amplitude are the most frequently altered
TMS measures in MS and have been consistently associated
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with disability, representing useful tools in clinical settings.
Although TMS studies investigating intracortical excitability
and effective connectivity have shown some association with
specific pathophysiological mechanisms or disease phenotypes,
some discrepancies suggest that alternative mechanisms should
be involved.

Evidence from experimental studies suggests that
inflammatory synaptopathy could represent an independent
cause of synaptic dysfunction with important implications
on disease course and prognosis. Inflammation, altering
corticospinal excitability and connectivity in MS patients, could
contribute to better explain the variability of TMS findings.
Experimental models have clearly shown that inflammation
exacerbates synaptic hyperexcitability, and TMS studies have
confirmed an imbalance between excitatory and inhibitory
transmission in MS patients. Hence, inflammation-driven
synaptic hyperexcitability could be present since the early
phases, could specifically characterize MS relapses, and could
progressively increase during the disease course.

Having in mind that TMS measures represent the resulting
effect of different anatomic and physiological factors, it is
difficult to identify the contribution of specific mechanisms to
TMS alterations seen in MS patients. Therefore, when cortical
excitability measures are used to investigate MS pathophysiology,
the role of specific confounding factors, including disease

activity and phenotypes, ongoing therapies, and symptoms,
such as fatigue, should be carefully considered. Further studies
conducted in specific populations, such as patients with clinically
isolated syndrome or with progressive MS, or combining TMS
with structural and/or functional imaging data, could help
to shed light on the specific role of demyelination, atrophy,
and inflammation.
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