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Urothelial Cancer - Genomic Analysis to Improve Patient Outcomes and
Research (NCT02643043), UC-GENOME, is a genomic analysis and biospeci-
men repository study in 218 patients with metastatic urothelial carcinoma.
Herewe report on theprimary outcomeof theUC-GENOME—the proportionof
subjects who received next generation sequencing (NGS) with treatment
options—andpresent the initial genomic analyses and clinical correlates. 69.3%
of subjects had potential treatment options, however only 5.0% received
therapybasedonNGS.We foundan increased frequencyofTP53E285Kmutations
as compared to non-metastatic cohorts and identified features associatedwith
benefit to chemotherapy and immune checkpoint inhibition, including: Ba/Sq
and Stroma-rich subtypes, APOBEC mutational signature (SBS13), and
inflamed tumor immune phenotype. Finally, we derive a computational model
incorporating both genomic and clinical features predictive of immune
checkpoint inhibitor response. Future work will utilize the biospecimens
alongside these foundational analyses toward a better understanding of uro-
thelial carcinoma biology.

Substantial progress has been made in understanding the molecular
landscape of urothelial carcinoma (UC) over the past several years.
Since The Cancer Genome Atlas’ (TCGA) first molecular characteriza-
tion of muscle-invasive bladder cancers in 20141, additional efforts
have identified specific subtypes associatedwithpatient outcomes and
response to treatments2–9. At present, in spite of these efforts, there is
only one targeted agent that has been FDA approved for the man-
agement of patients with advanced disease. Additional efforts,
including the current study andongoing andplanned clinical trials, will
help to better define the role for targeted therapy in UC. Additionally,
the use of biomarkers to select treatment is infrequently used with the
exception of programmed death-ligand 1 (PD-L1) protein expression
for first line immune checkpoint inhibitors (ICI) and FGFR2/3

alterations for erdafitinib10,11. There is an unmet need to identify bio-
markers with clinical utility.

Most biomarker research has been performed as retrospective
efforts in clinical trials. In an attempt to leverage “real world” experi-
ence to build a clinical database and biospecimen repository to
develop and validate biomarkers, the Bladder Cancer Advocacy Net-
work (BCAN) aligned efforts with academic institutions to design the
Urothelial Cancer – Genomic Analysis to Improve Patient Outcomes
and Research (UC-GENOME) study. The overarching goal was to pro-
vide every patient with metastatic UC the opportunity to become an
exceptional responderwithmolecular analyses for the identification of
predictive as well as prognostic biomarkers. The project launched in
2016 with two co-equal aims: (1) to provide a comprehensive next
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generation sequencing report including DNAmutations, copy number
alterations (CNA), fusions, and tumor mutational burden (TMB), with
potential therapeutic options including clinical trials, at no cost to
patients; and (2) to create a biorepository and clinical database to
perform foundational analyses including DNA andRNA sequencing for
future collaborative research efforts.

Here, we present the foundational molecular characterization of
the UC-GENOME dataset including DNA and RNA sequencing with
analyses incorporating the clinical data elements to provide an over-
arching view of the tumor and the tumor microenvironment in this
real-world population of patients with metastatic UC.

Results
Patient characteristics/data description
218 patients with metastatic UC were accrued (Table 1), of which,
primary tumors were collected for themajority of patients (87%) with
the remaining samples collected from metastatic sites (13%). Most
patients were current/former smokers (67.9%) and had a bladder
primary tumor at initial diagnosis with high grade and/or invasive
disease (83.5%). The most common histologic variants were squa-
mous (15.9%), micropapillary (11%), and adenocarcinoma (5.3%). All
other histologic variants occurred at <5% (Supplementary Fig. 1a).
Systemic therapy for metastatic UC was administered in 85.8% of
patients (chemotherapy (49.1%), ICI (72.9%), targeted therapy (6.9%),
and antibody-drug conjugates (11.9%)). With amedian follow up from
metastatic disease diagnosis of 21.6 months, 127 of 218 (58.3%)
patients died (89.8% related to UC). Next generation sequencing
(NGS) suggested potential treatment options for 69.3% of patients,
however only 5.0% of patients received a targeted therapy based on
the results (2.7% received treatment on a clinical trial based on the
NGS). DNA and RNA sequencing was successful for 191 and 176
patients, respectively, including 147 samples with complete mole-
cular profiling plus clinical data (Fig. 1a).

Transcriptional profiling reveals enrichment of Stroma-rich
primary tumors in metastatic datasets
The Kamoun et al.3 consensus molecular subtypes (Fig. 1b) and the
underlying expanded subtyping classifications (Supplementary Fig. 1b)
were observed in our UC-GENOME cohort with gene expression pat-
terns prototypical of each subtype. Ba/Sq subtype showed increased
expression of basal and squamous markers. The luminal subtypes
(Luminal papillary [LumP], Luminal unstable [LumU], and Luminal non-
specified [LumNS]) shared expression of luminal markers. The stroma-
rich subtype had elevated expression of extracellular matrix and
smooth muscle genes as well as epithelial to mesenchymal transition
associated genes. Increased expression of immune related genes was
observed in Ba/Sq and Stroma-rich tumors. The four NE-like tumors
highly expressed neuroendocrine-related genes. As previously
described2,12, femaleswerenumerically, butnot significantly, enriched in
Ba/Sq (17/53, 32%) versusother subtypes (23/117, 19.6%;p=0.08, Fig. 1c).
Of the histologic variants, samples with squamous differentiation were
significantly enriched in the Ba/Sq subtype (p<0.0001; Supplementary
Fig. 1c). We next evaluated if either ECOG or age was associated with
subtype. There was no significant association between ECOG and age,
nor either variable with subtype (Supplementary Fig. 1d–f).

We compared the subtype specific gene expression patterns of
UC-GENOME to a cohort of patients with non-metastatic UC, TCGA
BLCA12, and a metastatic cohort, IMvigor21013. We observed high
correlation of gene expression (UC-GENOME versus IMvigor210,
mean correlation 0.79 and UC-GENOME versus TCGA, mean corre-
lation 0.72; Supplementary Fig. 1g). While the subtype expression
patterns were similar, the subtype distribution differed between
non-metastatic and metastatic cohorts (Fig. 1d). A significant

Table 1 | Demographic, clinical characteristics and NGS-
based treatment (n = 218)

Age at diagnosis

Mean (range) – years 65.5 (28–85)

Sex – no. (%)

Male 163 (74.8)

Female 55 (25.2)

Race – no. (%)

White 172 (78.9)

Black 20 (9.2)

Asian 6 (2.8)

American Indian/Alaska Native 0

Other 0

Unknown 20 (9.2)

ECOG PS – no. (%)

0 87 (39.9)

1 96 (44.0)

2 28 (12.8)

3 7 (3.2)

Smoking status – no. (%)

Current 18 (8.3)

Former 130 (59.6)

Never 69 (31.7)

Unknown 1 (0.5)

Tumor origin at initial diagnosis - no. (%)

Bladder 182 (83.5)

Ureter 12 (5.5)

Renal pelvis 11 (5.0)

Urethra 1 (0.5)

>1 site 12 (5.5)

Primary surgery – no. (%)

Radical cystectomy 104 (47.7)

TURBT only 52 (23.9)

Radical nephroureterectomy 25 (11.5)

Other 10 (4.6)

No primary surgery 27 (12.4)

Time from initial diagnosisa to metastatic disease

Median (range) – years 0.8 (0.0–9.8)

Systemic therapy – no. (%)

Perioperative chemotherapy 100 (45.9)

Neoadjuvant 73 (33.5)

Adjuvant 31 (14.2)

Any systemic therapy for metastatic disease 187 (85.8)

Chemotherapy 107 (49.1)

Immunotherapy 159 (72.9)

Targeted therapy 15 (6.9)

Antibody-drug conjugate therapy 26 (11.9)

Unknown 4 (1.8)

Survivalb - no. (%)

Alive 91 (41.7)

Dead 127 (58.3)

Cause of death – no. (%)

Disease-related 114 (89.8)

Treatment-related 4 (3.2)

Other 6 (4.7)

Unknown 3 (2.4)

NGS-based treatment decisions – no. (%)

NGS provided treatment options

Yes 151 (69.3)

No 63 (28.9)

No response 4 (1.8)

Any targeted therapy received per NGS 11 (5.0)

Targeted therapy on clinical trial per NGS 7 (3.2)

aInitial diagnosis with high grade or invasive disease.
bSurvival status at last followup.Median time frommetastatic diseasediagnosis to last followup:
1.8 year (0.1–17.7).
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increase in proportion of stroma-rich tumors was observed in the
metastatic datasets, IMvigor210 and UC-GENOME, compared to
non-metastatic cohorts, TCGA and Kamoun (Fig. 1e, f and Supple-
mentary Data 1).

To determine if this was due to bias from the specimen site (i.e.
tissue from a primary tumor -vs- tissue from a metastasis), we

performed principle component analysis (PCA; Supplementary Fig. 2a,
b) and hierarchical clustering (HC; Supplementary Fig. 2c), pseudo-
coloring by consensus subtype either primary/met tissue (PCA) or the
collection site (HC). Whereas the PC1 and PC2 separate samples into
their indicated subtypes, all the metastatic tissue samples fall within
the variance range of the primary tissue. Furthermore, with
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hierarchical clustering, the metastatic tissue samples do not group by
eithermetastatic tissue normetastatic site, indicating that tissue origin
does not confound the gene expression analysis. Additionally, when
performing the analysis with primary samples only (Supplementary
Fig. 2d, e), the significant enrichment of Stroma-rich tumorswithin the
metastatic UC-GENOME and IMvigor210 cohorts persists (Supple-
mentary Fig. 2f).

Targeted DNA sequencing demonstrates a high prevalence of
TP53 E285K mutations in UC
DNA sequencing of 591 genes was performed on 191 patients
including 166 patients with RNA data (Fig. 1a and Supplementary
Data 1). At least one non-silent variant was observed in 552 of the 591
genes sequenced. Similar to TCGA12, we observed a high prevalence
of non-silent variants in TP53 and RB1 and the chromatin modifying
genes KMT2D, ARID1A, KDM6A, KMT2C, EP300, KMT2A, CREBBP, and
SMARCA4, and DNA damage repair genes BRCA2, PRKDC, ATM,
ERCC2, and FANCA (Fig. 2a). We observed frequent hotspot variants
in genes associated with aberrant kinase signaling including FGFR3
(S249C) and PIK3CA (E545K) (Supplementary Fig. 3a, b). As previously
described, FGFR3 mutations were enriched in LumP tumors (OR 7.2,
p-val 6.1e-5)5,12 (Fig. 2a). FGFR3-TACC3 gene fusions were found in 4% of
evaluable samples (Fig. 2a) includingone tumorwhich alsohad a FGFR3
S373C mutation. Analysis of CNVs identified amplifications of CCND1
(10%), MDM2 (9%), ERBB2 (7%), CCNE1 (2%), and EGFR (3%) at similar
frequency as in TCGA12.

The most frequently mutated gene, TP53, had an increased fre-
quency of mutation in Ba/Sq and LumU tumors with a corresponding
increase in an expression-based signature of p53 pathway dysfunction
(Supplementary Fig. 3c). The most frequent TP53 variant was E285K
(11%) (Fig. 2b and Supplementary Fig. 3d). The E285 variant was
observed at a higher frequency in the metastatic cohorts (UC-GEN-
OME, 10.8%, and IMvigor210, 6.9%) than in the primary TCGA cohort
(5.9%) (Fig. 2b–d). Of all TP53 mutations across the PanCancer cohort
from TCGA, which consists of >10,500 tumors (>4,250 TP53 muta-
tions), the TP53 E285K variant was the 30th most frequently mutated
amino acid (0.83%), with bladder cancers accounting for 39% (15/38) of
the total E285 variants (Fig. 2e).

Mutational signature profiling reaffirms the importance of
APOBEC in UC
Mutational signatures and shared patterns of single nucleotide var-
iants (SNVs) can identify potential sources of mutagenic pressure,
either intrinsic (mutations in DNA repair genes) or extrinsic (carcino-
gen exposure)14. By performing consensus clustering of theper-sample
cosine similarity (CS) to the publishedCOSMICv3mutation signatures,
we identified two distinct sample clusters (Fig. 3a, Supplementary
Fig. 4a). Cluster 1 (K1) had high CSwith defective DNAmismatch repair
(MMR) signatures, while Cluster 2 (K2) had a high CS with APOBEC
activity signatures (SBS2 and SBS13) (Fig. 3a). Independently, highTMB
tumors were associated with increased APOBEC activity signatures
SBS2 and SBS13 (Fig. 3b, c), this was represented in our clustering as
K2, which in addition to having increased APOBEC, had increased TMB
(p = 0.002). Cluster 2was numerically, but not statistically enriched for
TP53 mutations (K1 = 46/87 [53% mutant], K2 = 46/75 [61% mutant],
p =0.34). TMB (p =0.002) and both APOBEC mutational signatures

(SBS2 [p = 0.02] and SBS13 [p = 0.002])were also significantly higher in
the TP53 mutant samples (Supplementary Fig. 4b–d).

The CS for SBS2, but not SBS13, was significantly elevated in
micropapillary histology compared to tumors with squamous differ-
entiation (p =0.002) or all other UC tumors (p =0.018) (Fig. 3e and
Supplementary Fig. 4e). Micropapillary tumors were also significantly
associated with increase POLE mutation signature versus squamous
(p = 0.026) and other UC tumors (0.02; Supplementary Fig. 4f). In
contrast, tumors with squamous differentiation had a significantly
increased cosine similarity to mismatch repair defect signatures, such
as SBS44, as compared to micropapillary (p = 2.3e-5) but not other UC
tumors (Fig. 3f).

To evaluate the relationship between APOBEC activity and survi-
val following either chemotherapy or ICI, samples were subdivided
into 3 groups according to the CS to SBS2 and SBS13. Having a low CS
to SBS13, but not SBS2, was associated with decreased survival as
calculated from the initiation of treatment for both chemotherapy
(p = 0.013) and ICIs (p = 0.011) (Fig. 3g, h and Supplementary Fig. 5a, b).
Overall survival from the time of diagnosis, however, was not sig-
nificantly different among the CS group for SBS2/SBS13 (Supplemen-
tary Fig. 5c, d), suggesting that CS levels of SBS2 and SBS13 are not
merely prognostic.

Ba/Sq tumors are T cell inflamed but luminal tumors are enri-
ched in memory B cells and plasma cells
Prior studies have described differential levels of T cell inflammation
associated with the UC molecular subtypes3,9,15. The tumor micro-
environment (TME) of UC-GENOME was characterized through
immune gene expression signatures (IGS) curated from the
literature13,16–19. As a whole, IGS scores were elevated in Ba/Sq and
Stroma-rich subtypes as compared to the luminal subtypes (LumP,
LumU, LumNS; Fig. 4a). The Ba/Sq subtype had significantly higher
expression of genes within the T cell inflamed and IFNG signatures
(Fig. 4b) while LumP and LumUhad the lowestmedian expression. The
Stroma-rich subtype had significantly higher scores, as compared to
the other subtypes, for IGS related to the presence of stromal infil-
tration, namely, Fibroblast-TGF-β Response Signature [FTBRS] and
EMT_Stroma_core_18 (Fig. 4c). These two signatures have previously
been associated with resistance to ICI18,19.

We next used MiXCR to infer TCR clonality of tumor infiltrating
T cells (Fig. 4d).We identified high abundance of TCR-alpha (TRA) and
TCR-beta (TRB), while TCR-gamma (TRG) and TCR-delta (TRD) chains
didnot have adequate abundanceandwereexcluded fromsubsequent
analyses. There were no differences in evenness (inverse of clonality)
across consensus subtypes for TRA or TRB chains (Fig. 4d).

Immune cell proportions were estimated by CIBERSORTx. Using
the UNC two subtype classification, most immune cell types were
enriched in the UNC basal subtype as previously described15, with the
exception that luminal tumors were high for plasma cells, activated
mast cells,memory B cells, and activated dendritic cells (Fig. 4e). Using
the consensus subtypes, memory B cells and activated dendritic cells
were also significantly differentially enriched in LumP (Fig. 4f). No
correlations were observed between IGS and TMB20 or TMB and sub-
type (Supplementary Fig. 6a–d).

We next performed histologic immune phenotyping by dual
staining FFPE slides with an antibody against CD8 and Masson’s

Fig. 1 | UC-GENOME study design and molecular subtyping shows enrichment
of Stroma-rich primary tumors in metastatic datasets. a Consort diagram
showing enrollment and sample banking along with downstream sample attrition
and available data. b Subtype calls were made on the UC Genome data for the
consensus subtypes. Log2median centeredmRNA expression for selected bladder
specific markers were sorted by the Consensus subtype call. c Gender distribution
by subtype. Y-axis represents the number of patients. The frequency of gender
within each subtype is shown within their respective portion of the barplot.

d Subtype distribution across non-metastatic (TCGA/Kamoun) and metastatic
(IMvigor210/UC-GENOME) cohorts. e Comparison of Stroma-rich subtypes
between all the cohorts. For d and e the number of samples within each group is
shownwithin their respective portion of the barplot, with theMantel-Haenszel χ2 p-
value is indicated above. f Heatmap visualization of the χ2 p-values comparing the
proportionof Stroma-rich tumorswithineach cohort. Sourcedata areprovidedasa
Source Data file.
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Trichrome. Tumors were either called “Desert” if lacking CD8 + cells,
“Excluded” if CD8 + cells were restricted to the stroma, or “Inflamed” if
CD8 + cells were seen in both the stromaand infiltrating the tumor (see
Methods section, Fig. 5a). 155 tumorswere suitable tomake phenotype
calls, of which 93 (60%) were determined to be Excluded, 61 (39.4%)
were labeled as Inflamed, and 1 (0.6%) called Desert (Fig. 5b). Inflamed
tumors had significantly elevated IGS scores for multiple T cell sig-
natures, including: Ayers T cell inflamed (p = 9.3e-13), Bindea T cell
(p = 1.8e-7) and Ayers IFNG (p = 1.5e-12) (Fig. 5c–e). Since we had seen
these aforementioned signatures are elevated in the Ba/Sq subtype
(Fig. 4a, b), we asked whether there was an immune phenotype bias in

any of the consensus subtypes. Indeed, the Ba/Sq subtype was sig-
nificantly enriched in the Inflamed phenotype as compared to the
Stroma-rich (p =0.005), LumP (p = 0.01), and LumNS (p =0.0009;
Fig. 5f). This Ba/Sq enrichment was also present within the IMvigor210
dataset (Supplementary Fig. 6e). We next assessed the relationship
between the histologic immune phenotype and clinical benefit (CR +
PR+ stable disease [SD]). Patients who experience benefit from ICI
were split, 28/27 between Excluded and Inflamed, however patients
whodid nothave any clinical benefit were significantly enriched for the
Excluded phenotype (p = 0.0126) (Fig. 5g). Among Excluded tumors,
those with response (complete response [CR] + partial response [PR])
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to ICI also had, albeit not significantly, increased levels of Ayers T cell
inflamed signature score (p =0.19; Fig. 5h). Our analysis confirms the
important role of stroma in promoting resistance to ICI13,18 in addition
to the association between IHC subtype and molecular subtype, the
enrichment of IHC Inflamed and IHC Excluded tumors in the Ba/Sq,
and Stroma-rich tumors respectively.

Clinical response to chemotherapy and ICI: an exploratory
analysis
Previous studies have interrogated the predictive and prognostic value
of UC subtypes4. UC-GENOME patients, stratified by consensus sub-
type were assessed for correlations to response and clinical benefit to
chemotherapy or ICI. Overall, 55% of patients (33/60) responded to
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chemotherapy, however, within subtype analysis identified Stroma-
rich (17/26) and LumU (7/9) as having >50% response (Supplementary
Fig. 6f). In contrast, clinical benefit with chemotherapywas seen in 75%
of tumors, with only LumNS (1/3) andNE-like (0/2) having aminority of
patients derive clinical benefit (Fig. 6a). The response rate to ICI within
UC-GENOME was 36% (34/93), with no subtype having greater than a
50% response (Supplementary Fig. 6g). In contrast to response, at least
50% of patients within all subtypes derived clinical benefit to ICI (with
the exception of LumNS), with an overall clinical benefit rate of 65%
(60/93; Fig. 6b).

ICI clinical benefit was associated with increased TMB (Fig. 6c), T
cell inflamed, and IFNG IGS scores (Fig. 6d). IncreasedB cell abundance
and signaling (Fig. 6e) along with an increase in the percentage of T
follicular helper (Tfh) and M1 macrophage and decreased percentage
of naïve CD4 T cells, were also associated with increased clinical ben-
efit to ICI (Fig. 6e, f). However, immune infiltration signatures, FTBRS
and EMT Stroma, were not associated with ICI response either within
the cohort as a whole or solely within IHC Excluded tumors as docu-
mented previously13 (Supplementary Fig. 6h, i).

Somatic mutations in ERRC2 or a mutation in FANCC, ATM, or RB1
have been previously shown to predict response to neoadjuvant
cisplatin-based chemotherapy21,22. In UC-GENOME, ERCC2 mutations
were associated with a significantly higher response to chemotherapy,
validating this biomarker in a metastatic setting; however, it was not
associated with ICI response nor improved overall survival with che-
motherapy or ICI (Fig. 6g, h). There was no association with clinical
benefit or response between chemotherapy and RB1, ATM, or FANCC
mutations. However, patients with these alterations did have an
improvement in survival from the time of initiation of treatment as
compared to patients without these alterations. Patients with RB1,
ATM, or FANCC mutations who received ICI showed an increased
clinical benefit, but not response, along with an improved overall
survival (Fig. 6i, j).

An integrated model of clinical and genomic features predicts
response to ICI
The potential to better predict benefit from ICI has important impli-
cations for optimizing patient care.While several potential biomarkers
have been examined in isolation, few studies have integrated clinical
and genomic features to develop predictive models23–27. We used
clinical and immunogenomic data (Supplementary Data 2) from a
discovery set of ICI treated patients with metastatic UC (IMvigor210)
and applied elastic net (EN) logistic regressionmodeling to develop an
integrated predictive model of ICI response. From 50-fold cross-vali-
dationon the discovery set, features ofworse response included: B cell
gene signature, stroma-rich consensus subtype, and claudin signature
(Supplementary Fig. 7a), while features of better response were:
baseline ECOG performance score 0, TMB, and M1 macrophage sig-
nature. The final EN model consisted of 25 predictors, similar to the
cross-validation results (Fig. 7a).

The performanceof thefinal EN ICI predictormodelwas tested on
the validation portion of the IMvigor210 dataset (n = 51), UC-GENOME,
and an additional independent dataset (UNC-108)28 (Fig. 7b). This
model accurately predicted ICI response in the IMvigor210 validation
set (AUC =0.84) and in UNC-108 (AUC=0.82) datasets. While the
model did not perform as well in the UC-GENOME cohort, it did

perform significantly better then random chance (AUC=0.65,
p =0.009). Elevated model prediction scores were significantly asso-
ciated with ICI response in the IMvigor210 validation set (Supple-
mentaryFig. 7b), and inUNC-108 (Supplementary Fig. 7c). Importantly,
the final EN ICI predictor was significantly better at predicting ICI
response than a model using TMB alone (AUC =0.84 vs. 0.68,
p =0.038) as well as other modeling approaches (Supplementary
Fig. 7d, e). The final EN model was not predictive of response to che-
motherapy (AUC=0.536, p =0.345) (Supplementary Fig. 7f) demon-
strating its specificity to ICI as well as arguing that it does not merely
model for favorable prognosis.

Discussion
We present the results of the foundational analyses of the BCAN-led
UC-GENOME project including the integration of DNA and RNA
sequencing data with clinical variables to describe the molecular
landscape of UC. The UC-GENOME cohort and associated data allowed
us to uncover a number ofmetastatic related features aswe compared
our results with non-metastatic datasets (TCGA and Kamoun et al.)3,9

such as: a higher proportion of Stroma-rich molecular subtype and
enrichment of the TP53 E285K hotspot mutation in primary tumors
from metastatic patients. Additionally, we present and validate an
integrated model of clinical and genomic factors associated with ICI
outcome in this “real world”population of patients withmetastatic UC.

Of the >4,000 TP53 mutations in Pan-TCGA tumors, the TP53
E285K mutation accounted for only 0.83% (n = 38). However, of the
TP53 E285K mutations, 39% (n = 15) were from bladder tumors, even
though the bladder samples only account for 5.6% of all TP53 muta-
tions. Notably, this mutation is an APOBEC-attributable hotspot
mutation29 and was enriched in metastatic UC cohorts. One possible
explanation is that upregulated APOBEC activity promotes tumor
progression and TP53 E285K mutations are merely a manifestation of
elevated APOBEC activity but do not promote metastases. Arguing
against this, however, is that APOBEC-high tumors have longer overall
survival. Moreover, of the top 10 most frequent APOBEC-associated
hotspotmutations29 only the TP53 E285Kmutation was enriched in our
metastatic UC-GENOME cohort relative to the non-metastatic cohort
(TCGA-BLCA). These findings are consistent with a putative model
whereby elevated APOBEC activity cultivates the APOBEC-associated
TP53 E285K hotspot mutation, which actively promotes tumor pro-
gression. This model would account for the enrichment of TP53 E285K
in patients with metastatic UC.

We examined previously reported putative biomarkers (ERCC2,
ATM, FANCC, or RB1) associated with response to neoadjuvant che-
motherapy (NAC)21,22. In UC-GENOME, ERCC2 mutations were sig-
nificantly enriched in chemotherapy responders while mutations in
ATM, FANCC, and RB1were not; neither biomarker was associated with
prolonged OS. The lack of association between ATM, FANCC, or RB1
mutation and response may be secondary to the use of carboplatin
(rather than cisplatin) in a significant proportion of patients as these
biomarkers were developed in cohorts uniformly treated with
cisplatin-based NAC. Alternatively, ATM, FANCC, and RB1 mutations
may have different biological consequences in different disease states
(MIBC -vs- metastatic). While Teo and colleagues have shown that
patients with mutations in DNA damage and repair (DDR) genes have
enhanced response to platinum-based chemotherapy30, we present

Fig. 3 | Mutational signature clustering and analysis reaffirms the importance
of APOBEC in UC. a Heatmap of mutational signatures with cosine similarity
(CS) > 0.25 in at least 10% of samples. The samples (n = 191 samples) were sorted by
the consensus cluster plus (CCP) clusters and clustered by signature. b, c Boxplots
were generated for the CS of SBS13 (b) and CS of SBS2 (c) for patients divided into
TMB tertiles (n = 191 samples). d Boxplot of TMB by K1 and K2 CCP cluster
(n = 191 samples). e SBS2 and f SBS44 were plotted by variant histology for those
samples with annotated histology (n = 147 samples). All boxplots are shown with

boxes representing the IQR and midline at the median. Error bars represent Q1/
Q3 ± 1.5*IQR. Two-sided Wilcoxon test p-values are shown above the given com-
parison. Kaplan-Meier curveswereused to visualize survival from timeof treatment
initiation for g chemotherapy and h immunotherapy. Samples were split into high,
medium, and low APOBEC activity based on the tertiles of the rank order CS for
SBS13. Cox proportional-hazard modeling was performed with the high group as
reference,HazardRatio (95%CI) and adjustedp-value for each comparisonare inset
with risk tables below. Source data are provided as a Source Data file.
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Fig. 4 | Ba/Sq tumors are T cell inflamed but luminal tumors are enriched in
memory B cells and plasma cells. a Tumor samples (n = 176 samples) were clus-
tered by samples and Immune Gene Signature (IGS) z-scores. IGS were clustered
within their respective immune group (right of dashed line). Boxplots for sig-
natures related to ICI response and b T-cells or c stroma/EMT were plotted by z-
score and consensus subtype (n = 176 samples). d TCR family abundance and
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boxplot (n = 176). Wilcoxon p-values are shown above plot. All boxplots are shown
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Q1/Q3 ± 1.5 × IQR. Source data are provided as a Source Data file.
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that ERCC2mutations specifically may serve as a biomarker associated
with platinum-based chemotherapy response in themetastatic setting.

We and others have documented subtype-specific differences in
the tumor microenvironment and in general have concluded that
tumors of the Ba/Sq subtype express higher levels of IGS. Other sub-
types with relatively high IGS expression include UNC Claudin-low15

and Consensus Stroma-rich tumors3. We were therefore struck by the
increased proportion of CIBERSORTx cell types: plasma cells, memory
B cells, and activated dendritic cells in UNC Luminal tumors. These cell
types are associated with tertiary lymphoid structures (TLS) and
accumulating evidence correlates the presence of TLS with ICI
response31. In this context, the correlation between the proportion of
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CIBERSORTx defined CD4 +Tfh cells and B cell IGS with ICI response
are also consistent with TLS playing an important role in ICI response
in the UC-GENOME cohort as multiple reports in breast cancer have
shown that CD4 +Tfh cells lie in close proximity to germinal center B
cells and are important regulators of antigen specific B cell
responses19,32.

Recent observations have underscored the importance of spatial
biology of tumors as it relates to ICI13,33. Additionally in bladder cancer,
the importance of tumor stroma (i.e. cancer associated fibroblasts
[CAFs]) as a negative predictor of ICI response has been demonstrated
by multiple groups13,18,28. Herein, we performed a similar analysis,
staining for CD8 and trichome on FFPE sections with assignment of
immune phenotype (Inflamed, Excluded, and Desert) by a GU pathol-
ogist.We report that the relationship between immunephenotype and
molecular subtype finding that Ba/Sq tumors are enriched in the
Inflamed immune phenotype while Stroma-rich, LumP, and LumU
tumors have a higher proportion of Excluded tumors. Moreover, our
work validates the negative impact of stroma on ICI response as there
was a significant enrichment of Excluded tumors in UC-GENOME
patients without clinical benefit to ICI. Nonetheless, much work on the
spatial biology of bladder cancer remains to be performed.

We developed an elastic net model that integrates both clinical
and immunogenomic variables to predict ICI response. Our EN ICI
predictive model performs better then random chance or TMB alone
in all validation datasets examined but had a higher degree of accuracy
in IMvigor210 and UNC-108 than UC-GENOME (Fig. 7b). Drawing from
prior published work from Jialu et al., one potential factor for the
performance disparity between the cohorts could relate to the dif-
ferent methods used for generating the transcriptomic data (used in
downstream IGS)34. While IMvigor210 and UNC-108 were generated
through capture-based RNA sequencing, the UC-GENOME tran-
scriptome data were generated using total RNAseq. Indeed, when we
calculated univariate regressions of each immune signature versus ICI
response for each data set, we found that the regression of β-
coefficients were strongly correlated between IMvigor210 and UNC-
108 (R = 0.73) but weakly correlated between UC-GENOME and IMvi-
gor210 (R =0.36) and between UC-GENOME and UNC-108 (R =0.36;
Supplementary Fig. 7g–i).

Several challenges and limitations of the current study deserve
attention. Although targeted DNA sequencing was employed rather
than whole exome or whole genome sequencing, the significantly
mutated genes detected were consistent with prior sequencing stu-
dies. While the study achieved its goal of providing NGS at no cost to
the patient with reported treatment options including potential clin-
ical trials for most patients (69%), only 5.0% of patients received a
targeted therapy and 2.7% receiving targeted therapy on a clinical trial
based on the NGS results. The likely reasons for the low utilization of
NGS results to guide treatment include the absence of FDA approved
targeted therapies along with the development and FDA approval of
immune checkpoint inhibitors during the accrual period (July
2016–May 2019). As the goal of the studywas to collect samples within
a real-world experience, response was reported based on investigator
assessment without the use of formal response criteria, this also lim-
ited the number of patients with fully annotated response data.

Regular updates to cBioPortal will occur to provide the research
communitywith themost up todate information for futureanalyses. In
terms of the predictive modeling, the ENmodel can only be applied to
the BLCA cohorts since it incorporates UC specificmolecular subtypes
(i.e. Consensus Stroma-rich). Finally, our analyses are correlative in
nature and functional validation will be required to impart causality.

The UC-GENOME project provides a rich biobank (FFPE, plasma,
PBMCs) of clinically annotated specimens and their associated mole-
cular data, as described here. The overarching goal of this studywas to
provide researchers a resource for future collaborative translational
research efforts, which can utilize the clinical data, foundational ana-
lyses, and bio-banked specimens of this project to advance the
development of biomarkers and new treatments for patients with UC.
To achieve this goal, The Bladder Cancer Advocacy Network (BCAN)
will engage the research community by creating a novel request for
proposal mechanism to utilize the UC-GENOME data and specimens
toward its mission to advance bladder cancer research and support
those impacted by the disease.

Methods
IRB approvals
UC-GENOME (ClinicalTrials.gov identifier: NCT02643043) was sup-
ported by the Bladder Cancer Advocacy Network (BCAN) and con-
ducted atUniversity ofNorthCarolina at Chapel Hill, FoxChaseCancer
Center, Icahn School of Medicine at Mount Sinai, University of
Washington/ Fred Hutchinson Cancer Research Center, Johns Hopkins
University, University of Chicago, Memorial Sloan Kettering Cancer
Center, and University of Southern California. The study was coordi-
nated by the Hoosier Cancer Research Network (HCRN). The protocol
was approved by all of the participating institutional review boards:
University of North Carolina Institutional Review Board, Fox Chase
Cancer Center Institutional Review Board, Icahn School of Medicine at
Mount Sinai Institutional Review Board, Fred Hutch
Institutional Review Board, Johns Hopkins Medicine Institutional
Review Board, University of Chicago Institutional Review Board,
Memorial Sloan Kettering Institutional Review Board, and USC Health
Sciences Campus Institutional Review Board. All patients provided
written informed consent. The study protocol is available as part of the
Source Data file.

Eligible patients had histologically confirmed UC with metastatic
disease at the time of registration and tumor tissue available/suitable
for molecular analyses. Tumor tissue was obtained from the primary
tumor site or in a minority of cases a metastatic site (Table 1). Tumor
tissue and bloodwas collected and banked for future research (Fig. 1a).

As detailed in the trial protocol, the studies primary objectives
included: (1) Estimate the proportion of subjects with metastatic UC
enrolled who receive NGS and have a personalized report generated
with potential treatment options. (2) Create a biospecimen and data
repository by collecting and storing blood and archival tumor tissue
(biospecimens) from subjects and linking molecular and biological
information from those biospecimens to clinical data in order to
promote future translational research in metastatic UC. Secondary
objectives included (1) Estimate the proportion of subjects whose
personalized report includes targeted therapy options (approved or

Fig. 5 | Immune phenotyping demonstrates enrichment of Inflamed tumors in
Ba/Sq subtype. a FFPE slides were stained with anti-CD8 and Masson’s Trichrome
and the pattern of CD8 + cells were evaluated. Samples were either called as
“Desert”, “Excluded”, or “Inflamed”. Representative images of the three phenotypes
are shown at a total magnification of ×40 (left) and ×200 (right). The area shown at
×200 is boxed within the ×40 image (Desert = yellow, Excluded = green,
Inflamed = blue). The area within the box on left is the tumor portion at right. b the
distribution of immune phenotypes within UC-GENOME (n = 155 samples).
c Boxplots of Ayer’s T cells inflamed, d Bindea T cells, and e Ayer’s INFG signatures
by immunephenotype.Wilcoxonp-values are shownabove the comparisongroups

(n = 155 samples). All boxplots are shown with boxes representing the IQR and
midline at themedian. Error bars represent Q1/Q3 ± 1.5 × IQR. f Stackedbarplots of
the immune phenotype distribution across the consensus subtypes and g clinical
benefit to ICI are shownwith the number of sampleswithin each bar at center. Lines
at top represent the comparison groups, with p-values calculated using fisher’s
exact test. h Group boxplot of the Ayer’s T cells inflamed z-score by immune
phenotype and response status (n = 84 samples). Two-sided Wilcoxon p-values for
responders versus non-responders for each phenotype is shownat top. Source data
are provided as a Source Data file.
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investigational drugs). (2) Estimate the proportion of subjects who
enroll in a clinical trial of targeted therapy based on NGS results. (3)
Estimate the proportion of subjects who receive targeted therapy
(outside of a clinical trial) based on NGS results. (4) Describe the
demographics, treatment history and outcomes for subjects enrolled
in the study. (5) Document the number and type of clinical trials and

basic/translational science or other research projects based on the
biospecimen and data repository.

RNA/DNA
A single block per patient was selected and 4–25 slides (5 and 10 um)
from that corresponding block were submitted for processing along
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with an H&E stained slide. The H&E slide was reviewed, tumor circled,
and an estimate of percentage tumor was made by a research patholo-
gist. The pathologist determined how many slides for assay input and
requested either full scrape of slide or macrodissection for each slide.

RNA sequencing
Total RNA sequencing libraries were generated from 500ng of total
RNA isolated from formalin-fixed paraffin-embedded (FFPE) tissue,
using the Illumina TruSeq RiboZero Gold protocol (https://support.
illumina.com/) and sequenced 75 bp paired-end on an Illumina HiSeq
4000. Reads were aligned to the hg38 genome using STAR35 and genes
were quantified using Salmon36.

Molecular subtyping was performed on log2 transformed upper-
quartile normalized expression data using the BLCAsubtyping3 and
consensusMIBC3 R package. Gene annotation conversions were made
using biomaRt37,38. RNAmarkerswere extracted fromRobertson et al.9.
and visualized using ComplexHeatmaps39. To calculate the inter-
cohort gene expression correlation, the TCGA BLCA dataset was fil-
tered, retaining genes that were highly (median log2 expression ≥ 5)
and variably expressed (STDEV ≥ 1; n = 4357 genes); this gene list was
then used to filter the UC-GENOME, IMvigo210 and Kamoun datasets.
The Spearman correlation was calculated using themedian expression
(within the indicated subtype/cohort) for each gene retained after
filtering.

DNA sequencing
Tumor only targeted DNA sequencing was performed by Caris Life
Sciences (Irving, Texas) on genomic DNA isolated from FFPE tumor

samples using a minimum of 50ng of DNA, of which >20% was
required to be of tumor origin, as assessed by H&E staining. The DNA
was sequenced via the Agilent custom designed SureSelect XT assay
(Caris MI TumorSeek 592-Gene NGS Panel, details at www.
carislifesciences.com) on the Illumina NextSeq platform. Copy num-
ber variation was determined by comparing the depth of sequencing
of genomic loci to a diploid control as well as the known performance
of these genomic loci. Gene fusion and variant transcript detection
were performed on mRNA isolated from FFPE tumor samples using
the Archer FusionPlex Solid Tumor Panel and sequenced on
Illumina MiSeq.

Variants were analyzed withmaftools40. For visualization, only the
most disruptive variant based on SIFT and PolyPhen classifications was
chosen when a sample had multiple variants per gene. TCGA variant
data was obtained from cBioPortal41.

Mutational signatures
The R package SomaticSignatures42 was used to identify mutational
signatures in the UC-GENOME cohort (n = 191). Signatures were com-
pared to 49 Single Base Substitution (SBS) signatures from COSMIC
version 314 with cosine similarity (CS). To determine the optimal
number of somatic signature clusters we chose COSMIC signatures in
which 10% of samples have greater than >0.25 cosine similarity (CS)
and clustered samples using Consensus Cluster Plus (CCP)43 for all
samples. The CS signature heatmap was visualized with Complex
Heatmaps39. For boxplots and survival curves using the mutational
signatures, the dataset was reduced to samples with both RNA and
DNA sequencing data available (n = 176). Samples were binned into

TMB.Numeric
ECOG.0

Martinez_Gordon_M1
Bindea_Th2_cells

age
TMB.HighTRUE

Bindea_Tgd
Bindea_NK_CD56bright_cells

Ayers_IFNG
Tobacco.Use.History.PREVIOUS

Consensus_subtype_LumP
McDermott_T_eff

Vincent_IPRES_Responder
Bindea_aDC

Consensus_subtype_LumU
Iglesia_IGG_Cluster

EMT_DOWN
Bindea_iDC

Bindea_Eosinophils
Murray_M2

Bindea_pDC
Claudin

Bindea_DC
BCell_60gene

Consensus_subtype_StromaRich

0.00 0.25 0.50
Mean Beta Coefficient

M
od

el
 F

ea
tu

re
s

Response
Worse
Better

Final Model Coefficients

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

IMvigor210 (AUC = 0.844)
UNC (AUC = 0.820)
UC−GENOME (AUC = 0.657)

ICB response prediction
a b

Fig. 7 |An integrated elasticnetmodelof clinical andgenomic featurespredicts
response to ICI. a The predictor coefficients are shown for the final model trained
on the entire discovery set. b The receiver operating characteristic curves are

shown for the model performance on the validation portion of the IMvigor210
dataset (n = 51), and the entire UNC-108 (n = 88), and UC-GENOME (n = 166) inde-
pendent datasets. Source data are provided as a Source Data file.

Fig. 6 | Molecular associations with clinical benefit and response. a Clinical
benefit to chemotherapy andb immunotherapy are shownas stackedbarplotswith
No-Benefit (progressive disease) (black) and clinical benefit (complete response,
partial response, and stable disease) (red) displayed by subtype. Bars are the pro-
portion of patients within each subtype, n represents the absolute number in the
group. Clinical benefit to ICI plotted by c TMB (n = 157 samples) and IGS scores
(n = 176 samples) for d Ayers T cell inflamed GEP and Ayers IFNG, e Bindea B-cells,
GO BCR signaling, Iglesia B cell cluster, and f CIBERSORTx proportions of follicular

helper T cells, naïve CD4 T cells, andM1macrophages. All boxplots are shown with
boxes representing the IQR and midline at the median. Error bars represent Q1/
Q3 ± 1.5 × IQR. Two-sided Wilcoxon p-values are shown above the comparison.
Clinical benefit and response, along with KM plots for overall survival to che-
motherapy or immunotherapy are shown for patients who had tumors with either
g, h ERCC2 mutations or i, j FANCC, ATM, and RB1mutations. Source data are
provided as a Source Data file.
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APOBEC High/Mid/Low by rank ordering the samples by the CS to the
indicated APOBEC signature and splitting by tertiles.

Characterization of the tumor microenvironment and immune
signatures
Z-scores were calculated based on all genes within previously pub-
lished immune gene signatures on a per sample basis13,16–19. Immune
cell fractions were calculated by CIBERSORTx using the default
parameters44.

TCR clonality was analyzed via MiXCR from RNAseq data to gen-
erate TCR clonotype expression matrices for each sample. Data was
analyzed with custom scripts as well as the tcR package.

CD8 (Cell Marque, catalog #108R-16, clone: SP16, dilution:
1:400)/Masson’s trichrome (Fisher Scientific, catalog #22-110-648)
stained slides were reviewed by a fellowship trained genitourinary
pathologist to determine immune phenotype. Slides were scanned at
×100 magnification to evaluate for overall tumor cellularity and
staining quality. In areas of invasive tumor, slides were then eval-
uated at ×200 for CD8 + immune cell infiltrates (brown chromogen).
As per Mariathasan13, “Desert” categorization required less than or
equal to 10CD8 + T-cells identified in the specimen, averaged over 20
fields (i.e., less than 100CD8 + in 10 fields). “Excluded” categorization
required localization of immune infiltrates to the stroma without
extension into the tumor nests. These immune infiltrates were pre-
sent in both the stroma located between nests in an invasive focus
(intra-tumoral), and at the interface between invasive tumor and
deeper stroma (peri-tumoral). “Inflamed” categorization required
infiltration of CD8 + T cells into the tumor nestswith direct contact of
immune cells and tumor cells. Scattered CD8 + T cells seen within
tumor, without overt stroma infiltrates, were identified in some cases
and were not considered sufficient for “Inflamed” and were called
“Exluded.

Elastic net
Eight clinical variables (TMB, TMB high [>10 mutations/Mb], ECOG
performance status, age, sex, tobacco use, prior platinum, and prior
BCG), consensus subtype, and 61 immune gene signature scores were
evaluated as potential predictors of response to ICI. Three datasets,
IMvigor21013, UNC-10828, and UC-GENOME were used for discovery
and validation. Within each dataset, continuous variables were stan-
dardized (mean=0.5, SD = 0.5) and samples with any NA values were
omitted. The IMvigor210 dataset was divided into discovery (n = 104)
and validation (n = 51) sets with balanced immunotherapy response. In
the discovery set, elastic net regression with 50-fold cross-validation
was used to build an optimal logistic model for response using the R
package caret (tuneLength = 15). The β-coefficient mean and 95%
confidence interval for eachpredictorwerecalculated separately using
50-fold cross-validation with the tuning parameters from the optimal
logistic model. Performance of the final model was evaluated in the
validation portion of IMvigor210, UNC-108, and UC-GENOME. Perfor-
mance of the final model in IMvigor210 was compared with the per-
formance of random forest and gradient tree boosting using the R
package caret.

Statistical analysis
Categorical variables were compared using Fisher’s exact or chi-
square test. Continuous variable comparisons were made using t-
test or Wilcoxon rank sum (in cases of non-normal distribution). All
boxplots are shown with boxes representing the IQR and midline at
the median. Error bars represent Q1/Q3 ± 1.5 × IQR. Correlations
were performed using Pearson correlation unless otherwise stated.
Multiple comparison correction was performed using Bonferroni
correction. Survival analyses were performed using Kaplan–Meier
with log-rank tests. Statistical analyses were performed using R
unless otherwise noted.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The UC-GENOME mutation annotation file (MAF), gene expression
matrix and clinical data generated in this study have been deposited in
the cBioPortal database under “Urothelial Carcinoma, Nature Com-
munications (BCAN/HCRN 2022)” [https://www.cbioportal.org/study/
summary?id=blca_bcan_hcrn_2022]. All RNA and DNA FASTQ files are
available on dbGaP, phs003066.v1.p1 [https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?study_id=phs003066.v1.p1] under
restricted access for disease specific research, with the exception of
samples obtained from Johns Hopkins University (JHU). The JHU
samples are only available to investigators from non-profit entities
with an IRB conducting disease specific research, under dbGaP study
ID phs003094,v1.p1 [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs003094.v1.p1]. The data used to generate
the figures in this study as well as the code for the elastic net classifier
are provided in the Supplementary Information/Source Data file and
also via FigShare.com [https://figshare.com/articles/journal_
contribution/UC-GENOME/19491287]. Upper quartile normalized
RSEM gene expression data and DNA sequencing data for TCGA were
downloaded from the GDC legacy archive [https://portal.gdc.cancer.
gov/legacy-archive/]. IMvigor210 data were downloaded from the
European Genome-Phenome Archive, EGAS00001004343 [https://
ega-archive.org/studies/EGAS00001004343]. UNC-108 RNA sequen-
cing data were obtained fromGEO, GSE176307 [https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE176307] and DNA sequencing data
were obtained through request of the authors. Source data are pro-
vided as a Source Data file.

Code availability
The elastic net modeling code has been provided in the Source Data
file and via .
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