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Salviamiltiorrhiza is a traditional Chinesemedicinal herb used for treating cardiovascular diseases. Depside salt from S.miltiorrhiza
(DSSM) contains the following active components: magnesium lithospermate B, lithospermic acid, and rosmarinic acid.This study
aimed to reveal the mechanisms of action of DSSM. After searching for DSSM-associated genes in GeneCards, Search Tool for
Interacting Chemicals, SuperTarget, PubChem, and Comparative Toxicogenomics Database, they were subjected to enrichment
analysis using Multifaceted Analysis Tool for Human Transcriptome. A protein-protein interaction (PPI) network was visualised;
module analysis was conducted using the Cytoscape software. Finally, a transcriptional regulatory network was constructed using
the TRRUST database and Cytoscape. Seventy-three DSSM-associated genes were identified. JUN, TNF, NFKB1, and FOSwere hub
nodes in the PPI network. Modules 1 and 2 were identified from the PPI network, with pathway enrichment analysis, showing that
the presence of NFKB1 and BCL2 in module 1 was indicative of a particular association with the NF-𝜅B signalling pathway. JUN,
TNF, NFKB1, FOS, and BCL2 exhibited notable interactions among themselves in the PPI network. Several regulatory relationships
(such as JUN→TNF/FOS, FOS→NFKB1 andNFKB1→BCL2/TNF) were also found in the regulatory network.Thus, DSSM exerts
effects against cardiovascular diseases by targeting JUN, TNF, NFKB1, FOS, and BCL2.

1. Introduction

Salvia miltiorrhiza (also named Danshen) is widely used as
a traditional Chinese medicinal herb to prevent and treat
vascular diseases [1, 2]. Depside salt from S. miltiorrhiza
(DSSM) is a new medicine that contains the active compo-
nents magnesium lithospermate B (MLB), lithospermic acid
(LA), and rosmarinic acid (RA) [3]. MLB plays protective
roles in relieving atherosclerosis and combating myocardial
ischaemia-reperfusion injury [4]. RA and LA also have ben-
eficial effects on cardiovascular diseases, such as atheroscle-
rosis and neointimal hyperplasia [5, 6]. Thus, understanding
the mechanisms of action of DSSM is important for its better
utilisation in a clinical setting.

In patients with unstable angina, DSSM can suppress
platelet activation and aggregation as well as matrix met-
allopeptidase 9 (MMP-9) expression and secretion [7].
MLB protects against diabetic atherosclerosis by inducing
the nuclear factor erythroid 2-related factor-2-antioxidant
responsive element-NAD(P)H: quinone oxidoreductase-1
pathway [8]. Du et al. reported that MLB can be used
to treat ischaemic heart diseases as it specifically inhibits
transforming growth factor 𝛽-activated protein kinase 1-
binding protein 1-p38 apoptosis signalling [9]. Kim et al.
also demonstrated that RA inhibits adriamycin-induced car-
diotoxicity by suppressing reactive oxygen species generation
as well as extracellular signal-regulated kinase and c-Jun N-
terminal kinase (JNK) activation [10]. Moreover, LA inhibits
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foetal bovine serum-induced vascular smooth muscle cell
(VSMC) proliferation by arresting cell cycle progression and
suppressing cyclin D1 expression and lipopolysaccharide-
inducedVSMCmigration by downregulatingMMP-9 expres-
sion; thus, LA may be used for preventing neointimal
hyperplasia, restenosis, and atherosclerosis [11]. However, no
comprehensive survey of DSSM-associated genes has been
reported.

In this study, we searched for DSSM-associated genes
in several common databases. Subsequently, we applied
multiple bioinformatic methods to identify further DSSM-
associated key genes; these methods included enrichment
analysis, protein-protein interaction (PPI) network andmod-
ule analyses, and transcriptional regulatory network analysis.
This study may provide a better understanding of the mech-
anisms of action of DSSM.

2. Methods

2.1. Search for DSSM-Associated Genes. Several databases
were used in this study. The human genomic database
GeneCards (http://www.genecards.org/) was used [12],
which provides concise genome, transcriptome, proteome,
and function data of all predicted and known human genes.
Search Tool for Interacting Chemicals (STICH, version 5.0,
http://stitch.embl.de/) was also sued [13], which is a database
that integrates the interactions between chemicals and
proteins. SuperTarget (http://insilico.charite.de/supertarget/)
[14] was also used, which is a database that includes drug-
associated information correlated with drug metabolism,
adverse drug effects, medical indications, Gene Ontology
(GO) terms, and pathways for target proteins. The PubChem
(https://www.ncbi.nlm.nih.gov/pccompound/) [15] database
was also used, which provides information on chemical
substances and corresponding biological activities and is
linked to the National Institutes of Health PubMed Entrez.
Moreover, the study features the Comparative Toxicoge-
nomics Database (CTD, http://ctdbase.org/) [16], which is
a database associated with environmental chemical-gene
product interactions as well as the transportation and
accumulation of chemical substances in the human body.
In GeneCards [12], STICH (parameters set as organism =
human, score > 0.4) [13], SuperTarget [14], PubChem [15],
and CTD [16] databases, “magnesium lithospermate B”,
“lithospermic acid” and “rosmarinic acid” were used as
keywords to search for genes associated with them (which
were combined into a set of DSSM-associated genes).

2.2. Functional and Pathway Enrichment Analyses. The GO
(http://www.geneontology.org) database describes the asso-
ciations of gene products with the categories of biological
process (BP), molecular function (MF), and cellular compo-
nent (CC), as well as with more specific subcategories [17].
The Kyoto Encyclopedia of Genes and Genomes (KEGG,
http://www.genome.ad.jp/kegg) is a database used for anno-
tating the functions of genes or other molecules [18]. The
“BioCloud” online platform was developed for managing
problems encountered in the analysis of high-throughput
data. By applying the Multifaceted Analysis Tool for Human

Transcriptome (MATHT, http://www.biocloudservice.com)
in the “BioCloud” online platform, GO functional andKEGG
pathway enrichment analyses were conducted for DSSM-
associated genes, setting a threshold of <0.05 for the false
discovery rate (FDR).

2.3. PPI Network and Module Analyses. On combining the
Search Tool for the Retrieval of Interacting Genes (STRING,
version 10.0, http://www.string-db.org/, combined score >
0.4) [19], Biological General Repository for Interaction
Datasets (BioGRID, version 3.4, https://wiki.thebiogrid.org/)
[20] and Human Protein Reference Database (release 9,
http://www.hprd.org/) [21] interaction databases, PPI pairs
amongDSSM-associated geneswere predicted. Subsequently,
the PPI network was visualised for DSSM-associated genes
using the Cytoscape software (http://www.cytoscape.org)
[22]. Using the CytoNCA plug-in [23] (version 2.1.6,
http://apps.cytoscape.org/apps/cytonca) in Cytoscape, de-
gree centrality (DC), betweenness centrality (BC), and close-
ness centrality of the nodes were analysed to obtain the hub
proteins in the PPI network [24]. The parameter was set as
“without weight.”

Based on the MCODE plug-in [25] (version 1.4.2; http://
apps.cytoscape.org/apps/mcode; parameters set as degree
cut-off = 2, maximum depth = 100, node score cut-off = 0.2,
and𝐾-core = 2) inCytoscape,module analysiswas conducted
for the PPI network. Subsequently, KEGG pathway enrich-
ment analysis was performed for the nodes of significant
modules, with FDR < 0.05 as the cut-off criterion.

2.4. Transcriptional Regulatory Network Construction. Using
the transcriptional regulatory relationships unravelled by a
sentence-based text-mining (TRRUST, http://www.grnpedia
.org/trrust/) [26] database, transcription factors (TFs) among
DSSM-associated genes were searched and then their targets
were screened. Finally, a transcriptional regulatory network
was constructed using Cytoscape [22].

3. Results

3.1. Search for DSSM-Associated Genes. The numbers of
MLB-, RA-, and LA-associated genes identified from Gene-
Cards, STICH, SuperTarget, PubChem, and CTD databases
are listed in Table 1.TheMLB-, RA-, and LA-associated genes
were combined into a group of 73 DSSM-associated genes.

3.2. Functional and Pathway Enrichment Analyses. Themain
BP, CC, and MF terms, as well as KEGG pathways enriched
for DSSM-associated genes, are shown in Figure 1.The signif-
icantly enriched terms included inflammatory response (BP),
cytosol (CC), protein binding (MF), and tumour necrosis
factor (TNF) signalling pathway (KEGG pathway).

3.3. PPI Network and Module Analyses. The PPI network for
DSSM-associated genes comprised 65 nodes and 431 edges
(Figure 2). The 65 nodes included 21 MLB-associated genes,
56 RA-associated genes, and eight LA-associated genes.
Among them, two genes [nitric oxide synthase 2 (NOS2) and
nitric oxide synthase 3 (NOS3)] were associated with allMLB,
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Figure 1:Themain BP, CC, andMF terms as well as KEGG pathways enriched for DSSM-associated genes. BP, biological process; CC, cellular
component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes; DSSM, depside salt from Salvia miltiorrhiza.

RA, and LA; four genes (interleukin 2, interleukin 1 beta, cas-
pase 3, and v-rel avian reticuloendotheliosis viral oncogene
homologA)were associatedwith bothMLB andRA; and four
genes (xanthine dehydrogenase, aldo-keto reductase family
1 member B1, protein tyrosine phosphatase no-receptor type
1 and procollagen-lysine, and 2-oxoglutarate 5-dioxygenase)
were associated with both MLB and LA. Jun protooncogene
(JUN), TNF, nuclear factor kappa B subunit 1 (NFKB1), and
Fos protooncogene (FOS) were noted as particular hub nodes
according to their BC, closeness centrality, and DC scores
(Table 2). Moreover, two modules were also identified from
the PPI network: module 1 (21 nodes, score = 13.2) and mod-
ule 2 (12 nodes, score = 7.8) (Figure 3). In addition, pathway
enrichment analysis demonstrated that the nuclear factor
kappa B (NF-𝜅B) signalling pathway [Figure 4; 𝑝 = 3.14E−06;
involving NFKB1 and B-cell CLL/lymphoma 2 (BCL2)] and
leishmaniasis (𝑝= 4.72E−07) were particularly associatedwith
the nodes in modules 1 and 2, respectively (Table 3 and
Figure 5). JUN, TNF, NFKB1, FOS, and BCL2 also exhibited
notable interactions among themselves in the PPI network.

3.4. Transcriptional Regulatory Network Analysis. Based on
the TRRUST database, TFs among DSSM-associated genes

were searched for and their targets were screened. The
constructed transcriptional regulatory network had 37 nodes
(including eight TFs and 29 target genes) and 108 relationship
pairs (such as JUN→ TNF/FOS, FOS→ NFKB1, and NFKB1
→ BCL2/TNF) (Figure 6).

4. Discussion

In this study, a total of 73 DSSM-associated genes were
identified from various databases. In the PPI network con-
structed on the basis of these genes and their interactions,
JUN, TNF, NFKB1, and FOS were established as hub nodes
according to their BC, closeness centrality, and DC scores.
JUN, TNF, NFKB1, FOS, and BCL2 were also shown to
interact among themselves in the PPI network. Moreover,
two distinct modules (modules 1 and 2) of the PPI network
were identified. In addition, several regulatory relationships
(such as JUN → TNF/FOS, FOS → NFKB1, and NFKB1 →
BCL2/TNF) were found to be involved in the transcriptional
regulatory network.

Prolonged anti-TNF-𝛼 therapy has beneficial effects on
the signs of subclinical cardiovascular disease in patients with
severe psoriasis [27]. Studies have shown that, comparedwith
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Figure 2: The protein-protein interaction (PPI) network constructed for the depside salt from Salvia miltiorrhiza-associated genes. Green
squares, purple circles, and brown triangles represent magnesium lithospermate B-associated genes, rosmarinic acid-associated genes, and
lithospermic acid-associated genes, respectively. Red diamonds represent genes associated withmore than one drug.The larger nodes indicate
genes with higher degrees. The degree indicates the number of interactions with other proteins in the PPI network.

nonbiologic disease-modifying antirheumatic drugs, TNF-𝛼-
blocking agents may contribute to the reduction of the risk of
cardiovascular events in patients with rheumatoid arthritis
[28, 29]. TNF-𝛼 plays a critical role in vascular dysfunc-
tion in cardiovascular diseases, which may be exploited to
treat inflammation in a clinical setting [30]. TNF-𝛼 boosts
atherosclerosis development by promoting the transcytosis of
low-density lipoprotein (LDL) across endothelial cells, thus
contributing to the reservoir of LDL in vascular walls [31].
These findings indicate that TNF may be associated with the
functions of DSSM in cardiovascular diseases.

Blocking the JNK pathway may provide a new strategy
for treating the cardiomyocyte death induced by myocardial
ischaemia/reperfusion [32, 33]. Dominant negative c-Jun
(DN-c-Jun) gene transfer inhibits VSMC proliferation, and

JUN is associated with the intimal hyperplasia induced by
balloon injury [34]. Saliques et al. considered that FOS is a
novel factor that determines the severity and development of
atherosclerosis and is thus involved in tobacco toxicity in
coronary artery disease (CAD) patients [35]. Palomer et al.
also demonstrated thatmiR-146a-targeting FOS is a potential
tool for treating enhanced inflammation-associated cardiac
disorders [36]. Thus, JUN and FOS may also be targets of
DSSM in cardiovascular diseases.

Studies involving Uygur and Han women in China
have demonstrated that the DD genotype of NFKB1 poly-
morphism (rs28362491) may be a genetic marker of CAD
[37, 38]. The NFKB1-94ins/del ATTG polymorphism may
reduce the susceptibility to myocardial infarction by decreas-
ing activated NF-𝜅B, which is in turn correlated with
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Table 1: MLB-associated genes, RA-associated genes, and LA-associated genes searched from the GeneCards, STICH, SuperTarget,
PubChem, and CTD databases.

Database MLB RA LA
Count Symbol Count Symbol Count Symbol

GeneCards 6 NOS2, NOS3, AKR1B1,
XDH, PLOD1, PTPN1 33

SLC16A1, PTGS2, TNF, ALOX5,
IL1B, TAT, JUN, BCL2, CXCL8,
CCL11, LCK, FOS, CCL2, CREB1,

ERVK-6, PIK3CG, NFKB1,
PLCG1, IKBKB, SHC1, MAP2K1,

CCL3, RELA, GRB2, XIAP,
EEF1A1, CCR3, CXCL2, BIRC2,
ZAP70, BIRC3, ITK, MIR155

8

NOS2, NOS3,
AKR1B1, XDH,
PLOD1, PTPN1,
SPTLC1, SPTLC2

STICH 8
IL15, IL2, IL4, KCNMA1,
KCNU1, MAPK8, RRAGA,

RRAGB
7 CCR3, FOS, IKBKB, IL2, LCK,

PARG, PROCR 0 /

SuperTarget 0 / 5 ALDR, C1R, HYAL1, LCK, TYRO 0 /

PubChem 0 / 10
PROCR, PARG, TNF, ADAM17,
SERPINE1, MAOB, MAOA,
IL1B, DNMT1, COL1A1

0 /

CTD 7
IFNG, IL1B, CASP3,
NFE2L2, SIRT1, CAT,

RELA
21

PROCR, ADAM17, IL1B, CXCL1,
IL6, TNF, SERPINE1, AIFM1,
CASP3, COL1A1, COMT,

DNMT1, FN1, GPT, MAOA,
MAOB, NOS2, NOS3, OGG1,

PARG, RELA

1 XDH

MLB, magnesium lithospermate B; RA, rosmarinic acid; LA, lithospermic acid, STICH, Search Tool for Interacting Chemicals; CTD, Comparative
Toxicogenomics Database.
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Figure 3: Modules 1 and 2 identified from the protein-protein interaction network. Green squares and purple circles represent magnesium
lithospermate B-associated genes and rosmarinic acid-associated genes, respectively. Red diamonds represent genes associated with more
than one drug. The larger nodes indicate genes with higher degrees.

the reduction of plasma inflammatory markers [39]. By
increasing BCL2 expression, miR-21 promotes heart failure
progression with preserved left ventricular ejection fraction
and subsequently inhibits cardiac fibrosis [40]. Moreover,

Tang et al. reported that miR-1 targets BCL2 functions in
mediating cardiomyocyte apoptosis [41]. In this study, path-
way enrichment analysis showing the presence ofNFKB1 and
BCL2 in module 1 indicated a particular association with
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Table 2: Top 10 nodes in the PPI network according to DC, BC, and CC scores.

DC BC CC
Gene Score Gene Score Gene Score
JUN 37 CAT 577.2475 JUN 0.186047
TNF 34 FOS 309.3704 TNF 0.184438
NFKB1 34 TNF 256.2388 NFKB1 0.184438
FOS 33 JUN 251.4059 FOS 0.183908
IL6 33 CCL2 205.0727 IL6 0.183381
BCL2 31 NFKB1 186.0261 BCL2 0.181303
MAPK8 29 IL6 185.3155 MAPK8 0.181303
CREB1 28 BCL2 166.0571 CREB1 0.179775
NOS3 25 CREB1 164.3064 NOS3 0.178771
IL1B 24 CASP3 147.608 IL1B 0.178273
PPI, protein-protein interaction; DC, degree centrality; BC, betweenness centrality; CC, closeness centrality.
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Table 3: Pathways enriched for the genes separately involved in module 1 and module 2 (top 10 listed).

Module Term Count Genes FDR

Module 1

hsa04668:TNF signaling pathway 12
PIK3CG, FOS, IL6, CCL2,

MAP2K1, JUN, CREB1, NFKB1,
MAPK8, BIRC3, IKBKB, BIRC2

1.18𝐸 − 12

hsa05161:Hepatitis B 11
PIK3CG, FOS, IL6, MAP2K1,
GRB2, JUN, BCL2, CREB1,
NFKB1, MAPK8, IKBKB

2.20𝐸 − 09

hsa04660:T cell receptor
signaling pathway 10

PIK3CG, FOS, MAP2K1, GRB2,
JUN, LCK, ZAP70, NFKB1,

IKBKB, IL2
4.40𝐸 − 09

hsa04380:Osteoclast
differentiation 10

PIK3CG, FOS, MAP2K1, GRB2,
JUN, CREB1, LCK, NFKB1,

MAPK8, IKBKB
3.98𝐸 − 08

hsa05200:Pathways in cancer 13

PIK3CG, FOS, IL6, XIAP,
MAP2K1, GRB2, JUN, BCL2,

NFKB1, MAPK8, BIRC3, IKBKB,
BIRC2

9.52𝐸 − 08

hsa05142:Chagas disease
(American trypanosomiasis) 9 PIK3CG, FOS, IL6, CCL2, JUN,

NFKB1, MAPK8, IKBKB, IL2 2.56𝐸 − 07

hsa04722:Neurotrophin
signaling pathway 9

PIK3CG, MAP2K1, GRB2, JUN,
BCL2, NFKB1, MAPK8, SHC1,

IKBKB
8.15𝐸 − 07

hsa04510:Focal adhesion 10
PIK3CG, XIAP, MAP2K1, GRB2,
JUN, BCL2, MAPK8, SHC1,

BIRC3, BIRC2
2.33𝐸 − 06

hsa04064:NF-kappa B signaling
pathway 8 XIAP, BCL2, LCK, ZAP70,

NFKB1, BIRC3, IKBKB, BIRC2 3.14𝐸 − 06

hsa04621:NOD-like receptor
signaling pathway 7 IL6, CCL2, NFKB1, MAPK8,

BIRC3, IKBKB, BIRC2 8.05𝐸 − 06

Module 2

hsa05140:Leishmaniasis 7 IL4, TNF, PTGS2, RELA, IFNG,
IL1B, NOS2 4.72𝐸 − 07

hsa05142:Chagas disease
(American trypanosomiasis) 7 CCL3, TNF, RELA, SERPINE1,

IFNG, IL1B, NOS2 4.90𝐸 − 06

hsa05146:Amoebiasis 6 CASP3, TNF, RELA, IFNG, IL1B,
NOS2 3.72𝐸 − 04

hsa05321:Inflammatory bowel
disease (IBD) 5 IL4, TNF, RELA, IFNG, IL1B 2.36𝐸 − 03

hsa05133:Pertussis 5 CASP3, TNF, RELA, IL1B, NOS2 4.47𝐸 − 03

hsa05152:Tuberculosis 6 CASP3, TNF, RELA, IFNG, IL1B,
NOS2 4.76𝐸 − 03

hsa05132:Salmonella infection 5 CCL3, RELA, IFNG, IL1B, NOS2 6.71𝐸 − 03

hsa04066:HIF-1 signaling
pathway 5 RELA, SERPINE1, IFNG, NOS3,

NOS2 1.30𝐸 − 02

hsa04668:TNF signaling pathway 5 CASP3, TNF, PTGS2, RELA, IL1B 1.78𝐸 − 02

hsa05145:Toxoplasmosis 5 CASP3, TNF, RELA, IFNG, NOS2 2.72𝐸 − 02

the NF-𝜅B signalling pathway, indicating that NFKB1 and
BCL2 may be correlated with the effects of DSSM against
cardiovascular diseases through this pathway.

5. Conclusion

In conclusion, a total of 73 DSSM-associated genes were
identified by conducting a search of public databases. JUN,

TNF, NFKB1, FOS, and BCL2 were also revealed as potential
targets of DSSM for treating cardiovascular diseases. How-
ever, further experimental research should be performed to
confirm these findings obtained by bioinformatic analysis.
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[27] E. Herédi, J. Végh, L. Pogácsás et al., “Subclinical cardiovascular
disease and it’s improvement after long-term TNF-𝛼 inhibitor
therapy in severe psoriatic patients,” Journal of the European
Academy of Dermatology and Venereology, vol. 30, no. 9, pp.
1531–1536, 2016.

[28] D. H. Solomon, J. R. Curtis, K. G. Saag et al., “Cardiovascular
risk in rheumatoid arthritis: comparing tnf-𝛼 blockade with
nonbiologic DMARDs,” American Journal of Medicine, vol. 126,
no. 8, pp. 730.e9–730.e17, 2013.

[29] S. L. Westlake, A. N. Colebatch, J. Baird et al., “Tumour necro-
sis factor antagonists and the risk of cardiovascular disease
in patients with rheumatoid arthritis: a systematic literature
review,” Rheumatology, vol. 50, no. 3, pp. 518–531, 2011.

[30] H. Zhang, Y. Park, J. Wu et al., “Role of TNF-𝛼 in vascular
dysfunction,” Clinical Science, vol. 116, no. 3, pp. 219–230, 2009.

[31] Y. Zhang, X. Yang, F. Bian, and et al., “TNF-𝛼 promotes
early atherosclerosis by increasing transcytosis of LDL across
endothelial cells: Crosstalk between NF-𝜅B and PPAR-𝛾,” Jour-
nal of Molecular and Cellular Cardiology, vol. 72, pp. 85–94,
2014.

[32] C. Ferrandi, R. Ballerio, P. Gaillard et al., “Inhibition of c-JunN-
terminal kinase decreases cardiomyocyte apoptosis and infarct
size after myocardial ischemia and reperfusion in anaesthetized
rats,” British Journal of Pharmacology, vol. 142, no. 6, pp. 953–
960, 2004.

[33] G. Milano, S. Morel, C. Bonny, and et al., “A peptide inhibitor
of c-Jun NH2-terminal kinase reduces myocardial ischemia-
reperfusion injury and infarct size in vivo,” American Lournal
of Physiology, Heart and Circulatory Physiology, vol. 292, no. 4,
pp. H1828–H1835, 2007.

[34] H. Yasumoto, S. Kim, Y. Zhan et al., “Dominant negative c-Jun
gene transfer inhibits vascular smooth muscle cell proliferation
and neointimal hyperplasia in rats,”GeneTherapy, vol. 8, no. 22,
pp. 1682–1689, 2001.

[35] S. Saliques, J.-R. Teyssier, C. Vergely et al., “Smoking and FOS
expression from blood leukocyte transcripts in patients with
coronary artery disease,” Atherosclerosis, vol. 219, no. 2, pp. 931–
936, 2011.

[36] X. Palomer, E. Capdevila-Busquets, G. Botteri, and et al., “miR-
146a targets Fos expression in human cardiac cells,” Disease
Models and Mechanisms, vol. 8, no. 9, pp. 1081–1091, 2015.

[37] Y. N. Yang, J. Y. Zhang, and Y. T. Ma, “GW25-e3074 94
ATTG Insertion/Deletion Polymorphism of the NFKB1 Gene
Is Associated with Coronary Artery Disease in Han and Uygur
Women in China,” Genetic Testing and Molecular Biomarkers,
vol. 18, no. 6, pp. 430–438, 2014.

[38] H. Lai, Q. Chen, X. Li et al., “Association between genetic
polymorphism in NFKB1 and NFKBIA and coronary artery
disease in a Chinese Han population,” International Journal of
Clinical and Experimental Medicine, vol. 8, no. 11, pp. 21487–
21496, 2015.

[39] V. Boccardi, M. R. Rizzo, R. Marfella et al., “-94 ins/del ATTG
NFKB1 gene variant is associated with lower susceptibility to
myocardial infarction,”Nutrition,Metabolism and Cardiovascu-
lar Diseases, vol. 21, no. 9, pp. 679–684, 2011.

[40] S. Dong, W. Ma, B. Hao, and et al., “microRNA-21 promotes
cardiac fibrosis and development of heart failure with preserved
left ventricular ejection fraction by up-regulating Bcl-2,” Inter-
national Journal of Clinical and Experimental Pathology, vol. 7,
no. 2, pp. 565–574, 2014.

[41] Y. Tang, J. Zheng, Y. Sun, Z. Wu, Z. Liu, and G. Huang,
“MicroRNA-1 regulates cardiomyocyte apoptosis by targeting
Bcl-2,” International Heart Journal, vol. 50, no. 3, pp. 377–387,
2009.


