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Hierarchical dinucleotide distribution in genome along
evolution and its effect on chromatin packing
Zhicheng Cai1,2,3, Yueying He1,2,3, Sirui Liu1,2,3, Yue Xue1,2,3, Hui Quan1,2,3, Ling Zhang1,2 , Yi Qin Gao1,2,3

Dinucleotide densities and their distribution patterns vary sig-
nificantly among species. Previous studies revealed that CpG is
susceptible to methylation, enriched at topologically associating
domain boundaries and its distribution along the genome corre-
lates with chromatin compartmentalization. However, the multi-
scale organizations of CpG in the linear genome, their role in
chromatin organization, and how they change along the evolution
are only partially understood. By comparing the CpG distribution at
different genomic length scales, we quantify the difference be-
tween the CpG distributions of different species and evaluate how
the hierarchical uneven CpG distribution appears in evolution. The
clustering of species based on the CpG distribution is consistent
with the phylogenetic tree. Interestingly, we found the CpG dis-
tribution and chromatin structure to be correlated in many dif-
ferent length scales, especially formammals and avians, consistent
with the mosaic CpG distribution in the genomes of these species.
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Introduction

The genome composition and organization play important roles in
various cellular processes. To adapt to the environment, the ge-
nomes of organisms undergo drastic mutations, leading to de-
velopmental complexity in organisms (Suzuki & Nijhout, 2006; Liu
et al, 2014). Many studies were conducted to explore the rela-
tionship between genome organizations and diverse phenotypes
of organisms (Kim et al, 2004; Pigliucci, 2010; Kulminski et al, 2013;
Rinker et al, 2019).

Owing to the development of next-generation sequencing, the
genomes of a large number of species are now available. They are
different in sizes, karyotypes and base compositions. Particularly, it
has been long known that the proportion of nucleotides varies
significantly among species. For example, there is a substantial
variation in average G+C contents among different species. In
prokaryotes, G+C contents were reported to be positively correlated
to the optimal growing temperature (Musto et al, 2004). Accordingly,

thermal stability of DNA double helix was reported to be influenced
by G+C contents (Yakovchuk et al, 2006), although thermophilic
archaea with extreme low G+C contents also exist. Besides, the
nucleotide composition also influences gene functions and regu-
lation. The GC-rich genes in grass are usually related to basic
metabolic processes and biotic stress responses (Tatarinova et al,
2010). In yeast, the AT-rich sequences are ubiquitous in promoter
regions and incorporate poorly into nucleosomes, and are thus
important for transcription initiation. Besides, human promoters
are divided into two classes according to the CpG density (Saxonov
et al, 2006). Genes with high CpG density promoters are generally
expressed in more tissues than those with low CpG density
promoters.

Moreover, the nucleotides and dinucleotides are not uniformly
distributed along the genome. The proportions of C and G vary
along the chromosomes over a large genomic length scale. The
chromosomes of warm-blooded vertebrates are divided into iso-
chores (Bernardi et al, 1985; Bernardi, 1993), which are different DNA
segments with homogeneous G+C content and are separated by the
sharp content transition. Isochores correlate with genome features
such as gene density and replication timing (Costantini et al, 2006;
Costantini & Musto, 2017). Among dinucleotides, CpG distribution is
the most thoroughly studied, for its biological significance. CpG is
deficient in the genomes of vertebrates, probably because DNA
methylation occurs predominantly at CpG. Besides, CpG is enriched
at many human promoters, and high gene densities are often found
in the CpG-rich regions in the human genome. Accordingly, CpG has
a higher tendency to be unevenly and hierarchically distributed,
that is, CpG aggregates to form the CpG islands (CGIs), the distri-
bution of which is also heterogeneous and correlated with gene
density on the genome. Based on the distribution of CGIs, the
human and mouse genomes can be divided into two types of Mb-
sized domains: CGI (gene) forest domains with high CGI (gene)
density and CGI (gene) prairie domains with low CGI (gene) density
(Liu et al, 2018). Consistent with such multi-scale uneven CpG
distributions, long-range correlations have been found to exist in
the distributions of nucleotides and dinucleotides bymethods such
as power spectrum (Voss, 1992; Buldyrev, 2006), detrended fluctuation
analysis (Peng et al, 1992), and wavelet transform (Audit et al, 2001;
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Arneodo et al, 2011). However, studies are yet to be expanded beyond
limited number of model species and to cover the entire genomes
but not limited DNA regions such as exons and introns. To find out
how multi-scale CpG distributions change along evolution and its
connection to gene regulation in different species, a comprehensive
study of CpG distributions in the genomes covering species from
different taxa is strongly desired.

It becomes increasingly accepted that the chromatin 3D struc-
ture plays an important role in gene regulation and cellular
functions (Lieberman-Aiden et al, 2009; Bickmore & van Steensel,
2013). In the meantime, many factors contributing to the chromatin
structure formation have been explored. For example, it was
suggested that compartments are fine-scale structures of chro-
matin which are correlated with transcription states (Rowley et al,
2017). Topologically associating domains (TADs) are highly
conserved structures among cell types in mammals, the bound-
aries of which often correspond to CTCF loop anchors (Dixon et al,
2012; Rowley & Corces, 2016). Recent studies have revealed the
influence of linear DNA sequence on 3D chromatin organizations.
TAD boundaries often correlate with the presence of CGI, and the
CGI distribution along the genome is correlated with compart-
mentalization in human and mouse cells (Liu et al, 2018). A unified
and quantitative analysis on how the linear CpG distribution affects
the 3D chromatin organizations at various length scales is expected
to shed more light on the mechanism of chromatin structure
formation as revealed by Hi-C and imaging studies.

A sequence-based model (Liu et al, 2018) was proposed to ex-
plain the chromatin structure formation from the domain segre-
gation perspective, which provides a framework for the exploration
of chromatin structure formation, especially compartmentalization,
in various cellular processes. To verify and generalize this model,
different species besides human needs to be examined. It is also
interesting to interrogate how this sequence–structure relation
affects the different phenotypes of species.

In this study, we use quantitative methods to analyze the multi-
scale CpG distributions on the genomes of a number of species
from different taxa. We showed that using the disparity of CpG local
density fluctuation one can effectively cluster species into different
groups, consistent with their positions on the phylogenetic tree. The
distribution of CpG is also characterized by the multi-scale entropy
(SE) and the Pearson correlation in a scale-continuous manner.
More importantly, we quantified the relation between CpG distri-
bution, 3D chromatin organizations, and gene expression activity
for a number of exemplary species. Our results also show that the
CpG distribution profile correlates well with the degree of a species’
chromatin structural segregation and body temperature control.

Results

CpG has many special properties among the 16 dinucleotides, such
as its often low density in the genome (Cooper & Gerber-Huber,
1985) and richness in many human promoters in the form of CpG
islands (CGIs) (Saxonov et al, 2006). We therefore first focused on
the CpG dinucleotide because of these known relation to biological
functions. Next, we extended our analysis to all dinucleotides.

Distribution of CpG along the genomes of different species

We compared the CpG density heterogeneity of different species
based on the amplitude variation of its density fluctuation along
the DNA sequence. Here the CpG density was averaged using a
1,000-bp window which is close to the average length of CGI. Next,
we decomposed CpG density data series of different species along
the DNA sequence into fluctuations at different frequencies by
Hilbert-Huang transform (HHT) (see the Materials and Methods
section and Supplemental Data 1). We then defined and calculated
the variability (see the Materials and Methods section) of the CpG
density fluctuation at the highest frequency, a large value of which
corresponds to a large amplitude difference in CpG density fluc-
tuation along the DNA sequence.

As shown in Figs 1 and S4, the CpG variability can be used to
effectively cluster species into different groups. Among the species
investigated, birds possess the highest variability, and bacteria
have the lowest. The variabilities of mammals, reptiles, fishes,
plants, and invertebrates are intermediate. Such an order approxi-
mately follows the phylogenetic tree. From the ranking of variability,
alligator is close to mammals, and is thus closer to those of birds
than to other reptiles (especially, lizards). Interestingly, according
to the phylogenetic tree, birds did evolve from reptiles and alli-
gators are more closely related to birds than to other reptiles
(Crawford et al, 2012). The ranking of reptile variabilities also fits to
their positions in the phylogenetic tree. In addition, platypuses
have the lowest variability among mammals, again consistent with
its position in the phylogenetic tree.

As a different measure, we also analyzed the multi-SE and
Pearson correlation for CpG density of the genomes of different
species to compare their CpG distribution in a scale-continuous
manner. Consistently, mammals and birds have larger multi-SE
than bacteria, plants, invertebrates, and fishes at large genome
length scales (Fig S2A–H). Besides, Pearson correlation of the CpG
density of mammals and birds decay with the increase in genomic
distance roughly in a form of power law (Fig S3A–D), whereas in
bacteria, plants, invertebrates, and fishes this power law decay only
persists to a short distance if it does exist. These results all indicate
amore heterogeneous CpG distribution in mammals and birds than
in bacteria, plants, invertebrates and fishes.

Division of CGI-rich and CGI-poor domains in different species

In our previous study, CGI forest and prairie domains were defined
in mouse and human based on the unevenness of CGI distribution
along the DNA sequence (Liu et al, 2018). These two sequential
domains effectively reflect the linear segregation in the genome of
not only CGI densities but also genetic, epigenetic, and structural
properties. In this study, we generalize the definition of CGI forest
and prairie domains to all species termed CGI-rich and CGI-poor
domains.

Because for genomes of most species traditionally, defined CGIs
cannot be identified because of high CpG density or a largely even
distribution of CpG, amethod is needed to generalize the CGI forest-
prairie domain definition (see the Materials and Methods section).
We make use of properties of the prairie domains of human and
mouse to define the “CGI-poor clusters,” and the generalized CGI-rich

Hierarchical CpG distribution in evolution Cai et al. https://doi.org/10.26508/lsa.202101028 vol 4 | no 8 | e202101028 2 of 12

https://doi.org/10.26508/lsa.202101028


and CGI-poor domains are defined so that CGI-rich domains are the
longest possible domains that possess little “CGI-poor clusters.” The
generalized CGI-rich domains are regions in which high CpG density
loci cluster, whereas the generalized CGI-poor domains have low CpG
density and are deficient in CGIs. The newly defined domains are in
good accordance with previous definition (the CGI-rich domains
overlap ratio with the CGI forest domains is 94% for human and 87%
for mouse). For representative species, we evaluated their sequence
properties, including the proportion of CGI-poor domain, CGI-poor
domain average length, average CpG densities of the two types of
domains, and the corresponding coefficients of variation (CVs) of the
CpG density.

Among the species analyzed, Escherichia coli has very few CGI-
poor domains with very low average CGI-poor domain lengths. The
CpG densities of E. coli are significantly higher than multicellular
eukaryotes. The E. coli genome is gene-rich and lacks noncoding
elements, which is consistent with the fact that it contains very few
CGI-poor domains. For eukaryotes, fishes, and amphibians also
have low amounts and short lengths of CGI-poor domains, but their
CpG densities in both CGI-poor and CGI-rich domains are lower than
the corresponding domains in prokaryotes and invertebrates.
Reptiles possess more CGI-poor domains and the CpG density
levels of their CGI-poor domains are lower than fishes and am-
phibians, close to birds and mammals. In fact, birds and mammals
are significantly different from other species, with a higher pro-
portion of core CGI-poor domains (0.229 ± 0.06 compared to 0.003 ±
0.007) and a longer average CGI-poor domain length (1.76 ± 0.63 Mb
compared to 0.23 ± 0.21 Mb), indicating an uneven CpG density
distribution at the Mb level. The density fluctuation of the low CpG
density regions is small, indicating that these regions have largely
uniformly distributed CpG dinucleotide (with an average standard
deviation of 27.6 ± 4.3 Mb−1 for mammals and birds, 55.0 ± 86.4 Mb−1

for other species). Birds and mammals also differ from each other
in sequential properties. Mammals have longer average CGI-poor
domain lengths (2.03 ± 0.57 Mb) than birds (1.25 ± 0.36 Mb). The

average CpG densities for CGI-rich domains of mammals are slightly
higher than those of birds, and their CGI-rich domain CpG densities
vary significantly less.

More generally, hierarchical clustering yielded a dendrogram for
different species (Fig 2), which is in reasonable accordance with the
phylogenetic tree. It can be seen from Fig 2 that E. coli can be
distinguished from eukaryotes. Among eukaryotes, plants specifi-
cally cluster together. Moreover, fishes and amphibians are also
distinctly discriminated against birds and mammals. Birds and
mammals roughly separate from each other except for turkey and
brown kiwi of which the CpG density fluctuations at the 1-kb average
length in CGI-rich domains are also similar to those of mammals.
Interestingly, lizard and painted turtle are grouped closely with
coelacanth, which is an important link in vertebrate evolution from
fishes to tetrapod.

Average CpG density and CpG distribution in different species

As seen in Fig 3B, the scatterplot of average CpG density and CpG
variability of the different species shows roughly an “L” shape. In
general, along evolution, the CpG density decreases. For example,
its value for invertebrates and plants is in general much higher than
that for fishes, reptiles, birds, and mammals. The CpG density
difference among different invertebrates, plants, and that between
invertebrates and vertebrates are all very large. Such a difference is
small among different species of vertebrates: the average CpG
density of mammals and birds is only slightly lower than that of
fishes and reptiles. The average CpG density being nearly constant
during the evolution of mammals and birds is consistent with a
detailed balance condition in CpG mutation, that is,

u × f = v × ð1 − f Þ:

In the above equation, u is the mutation rate of CpG, f is the
density, and v is the reproduction rate of CpG. Besides mutation,

Figure 1. Variabilities of the CpG density of the
longest chromosome for different species.
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insertion of repeating sequences including CpG-rich ones into their
genomes (partly from the transposition [Hwu et al, 1986]) could also
be important in avoiding further CpG depletion in genomes and
could explain the nearly constant average CpG density among
mammals and birds.

Different from CpG density, the CpG variabilities of invertebrates
and plants are all generally very similar and small. In contrast, the
variabilities of mammals and birds are much higher than those of
other species (Fig 3B). Therefore, the genomes appear to evolve in
different ways among different species. During the evolution of
invertebrates and plants, the CpG density decreases with little
change of the genome mosaicity and during the evolution of
mammals and birds, the CpG density remains largely constant but
the genome mosaicity increases. As a comparison, C+G content
does not exhibit a clear trend of changes among species from
different classes like CpG density (Fig 3A).

CpG distribution and 3D chromatin organizations

Given that 3D structure is typically strongly influenced by 1D se-
quence (such as that seen in protein folding), the DNA sequence
appears to be of dramatically different properties for different
species. In this section, we investigate how the CpG distribution
correlates with the 3D chromatin organizations in different species.
We collected the Hi-C datasets of archaea, yeast, Arabidopsis
thaliana, zebrafish, chicken, mouse, and human. To compare the
two-dimensional Hi-C map with the CpG distribution along the
linear genome, we factorized the Hi-C matrix into two one-
dimensional vectors by nonnegative matrix factorization (NMF,
see the Materials and Methods section). We termed these two

vectors “structure vectors” (i.e., W1 andW2), which reflect intensities
of two anti-correlated Hi-C signals along the sequence. We tested
the robustness of structure vectors and found structure vectors
factorized by different NMF methods to be similar to each other
after scaling (Fig S6A–F).

Next, we performed continuous wavelet transformation for the
structure vectors as well as for the CpG density along the sequence
at multiple wavelet frequencies, to compare directly their fluctu-
ations at varied length scales. Interestingly, the wavelet transform
coefficients of structure vectors and CpG density of the same
species largely resemble each other at many length scales (Fig 4A
and B and S7A–D). To quantify their similarity, we further calculated
the Pearson correlation of the wavelet transform coefficients of
structure vectors and CpG density. One structure vector is overall
positively correlated, whereas the other is anti-correlated with CpG
density (Figs 5A and B and S8), indicating that the DNA can be
grouped into high and low CpG density groups in space and
contacts tend to be formed within each of the two groups. In birds
and mammals such as chicken, mouse, and human, the correlation
increases with the length scale, and the peak appears at the ~10 Mb
scale. In contrast, this correlation in other species such as A.
thaliana and zebrafish does not increase with the length scale
monotonously. Consistently, we also compared the correlation
between CpG-rich/poor domains and compartments A/B in dif-
ferent species and found that it is higher in human, mouse and
chicken than in A. thaliana and zebrafish (Table S9 and Fig S9A and
B). Such a result suggests that the correlation between CpG dis-
tribution and 3D chromatin organization increases along evolution,
especially in large length scales, indicating the strengthened in-
fluence of globally CpG heterogeneous distribution on chromatin

Figure 2. Dendrogram for 38 species from different classes.
Six columns represent the proportions of CGI-poor domain, CGI-poor domain average length, average CpG densities of CGI-rich and poor domains, and the
corresponding coefficients of variation (CVs) of CpG density, respectively. The color bar shows the column-scaled values.
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structure in birds and mammals than other species such as fishes
and plants, consistent with the increasing multi-scale heteroge-
neity of CpG distribution (Figs 1 and S2A–H).

Then, we compared CpG distribution with the lengths of TADs and
compartments in human (Fig 5C). At length scale of compartments,
CpG density is highly correlated with the structure vectors in IMR90
cell line, whereas their correlation is weaker at the length scale
corresponding to TADs. Consistently, the overlap between A/B
compartments and CpG-rich/poor domains is more significant
than the one between TADs and CpG-rich/poor domains (Fig S10).
These observations suggest CpG density may play amore important
role in compartment than in TADs formation.

Because CpG distribution and 3D chromatin organization is
highly correlated in species with uneven CpG distribution, one may

speculate the chromatin structure to be more segregated in
mammals and birds. To examine this hypothesis, we calculated the
chromatin contact frequency decay for different species. One can
see from Fig S11A and B that contact frequency decay exponents are
very similar between mouse and human, and among different cell
types of human. At the short length scale, the Hi-C contact fre-
quency for mouse and human samples decays more slowly than
species such as A. thaliana, yeast, and drosophila, indicating amore
segregated chromatin structure of mouse and human at these
length scales, consistent with the formation of interactions within
the linear DNA domains such as compartments (Liu et al, 2018). In
contrast, at the length scale larger than ~Mb, the chromatin contact
frequency for A. thaliana, yeast and drosophila decays more slowly,
indicating that long-range contacts are more likely to be observed
in these species than in human and mouse. Besides, we also
calculated the interaction segregation ratio of compartments A/B
for different species (Table S10). The interaction segregation ratio of
human and mouse is higher than other species.

CpG distribution and gene expression level

It was previously reported that the gene expression level is higher
in CpG-rich than in CpG-poor regions (Liu et al, 2018). It is interesting
to examine at which scale(s) such a correlation between CpG
density and the gene expression hold. We found that a reasonably
strong correlation exists at the scales ranging from hundreds of
thousands to millions of base pairs between gene expression and
CpG distribution in species such as human and zebrafish which
have an uneven CpG distribution (Figs 6A and C and S12). However,
in species with largely even CpG distribution like plants, the gene
expression level varies along the sequence and is only weakly
correlated with the CpG distribution (Fig 6B and C). Furthermore, we
grouped genes by CpG density and compared the expression levels
of genes of different CpG densities. The dependence of gene ex-
pression level on CpG density is seen to be different for different
species (Fig S13A–C). For example, the expression levels of zebrafish
and rice genes show a more pronounced peak at median CpG
densities than that of human. These results suggest that the re-
lation between CpG density and expression level becomes stronger
in evolution, with their distribution along the genome becomes
more heterogeneous.

Distribution properties of other dinucleotides

Finally, we extended our analysis to all 16 dinucleotides. Overall, we
found that CpG tends to possess the highest density distribution
fluctuation among the 16 different dinucleotides. For example, CpG
density has the largest fourth moment at various length scales (Fig
7A), indicating its highest probability of assuming extreme values
among all the 16 dinucleotides. We also calculated the variability of
all dinucleotide densities. The result given in Fig 7B again shows
that CpG has the largest local fluctuations.

We also found that dinucleotides composed by C and G (i.e., CpC,
GpG, CpG, and GpC) or by A and T (i.e. ApA, TpT, ApT, and TpA) have a
fourth moment that is larger than the other eight dinucleotides
such as ApG which is composed of two types of nucleotides, one
being A or T and the other being C or G (Fig 7). Besides CpG,

Figure 3. (A) The scatterplot for C+G content and CpG variability of various
species. (B) The scatterplot for CpG density and CpG variability of various species.

Hierarchical CpG distribution in evolution Cai et al. https://doi.org/10.26508/lsa.202101028 vol 4 | no 8 | e202101028 5 of 12

https://doi.org/10.26508/lsa.202101028


distributions of other dinucleotides also become more heteroge-
neous changing from bacteria, invertebrates, plants, fishes to
mammals and birds. For example, the Pearson correlations of CpA
densities of mammals and birds but not bacteria, invertebrates,

plants, and fishes exhibit a long-range power law decay (Fig S3E and
F). Interestingly and consistent with the trend discussed above,
among all the mammals, the density correlation of platypus decays
more quickly than other mammals. The exponent of the decay

Figure 4. (A, B) Wavelet transform of (A) CpG density
and (B) structure vector along the chr1 of human liver
cell at different length scales.

Figure 5. (A, B) Pearson correlation of wavelet transform coefficient of structure vectors (i.e., W1 and W2) and CpG density of different species compared with random.
X-axis is the length scale of wavelets. (C) Top: the length distribution of compartments and topologically associating domains of human, respectively, Bottom: Pearson
correlation of wavelet transform coefficient of structure vectors and CpG density of chr1 of IMR90 cell line.
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Figure 6. (A)Wavelet transform of CpG density and expression level averaged at 40 kb along chr1 of human liver cell. (B)Wavelet transform of CpG density and expression
level averaged at 40 kb along chr1 of rice. (C) Pearson correlation of wavelet transform coefficient of CpG density and expression level at multi-length scales of human
and rice.
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function for platypus is similar to that of fishes, possibly because of
its transitional position on the phylogenetic tree.

We further analyzed the density fluctuation of longer DNA se-
quences, for example, trinucleotides and tetranucleotides. The
density fluctuation of these longer sequences appears to be largely
determined by that of dinucleotides. For example, as shown in Fig
7C, the trinucleotides containing CpG such as CCG, CGC and CGA also
show high Coefficients of Variation. Meanwhile, the trinucleotides
such as ACA have a high variability similar to those of AC and CA (Fig
7B and C). Similar phenomena are also observed for tetranu-
cleotides (Fig S14A–D). Interestingly, it is known that codon is

dominantly determined by its first dinucleotide (Hartman, 1975), con-
sistent with the observed importance of the dinucleotide composition
in the DNA sequence.

Discussion

On one hand, chromatin structure formation and gene transcrip-
tion regulation form complex networks and are influenced by many
genetic and epigenetic factors. On the other hand, simple sequence
information such as nucleotide and dinucleotide density distri-
bution appears to have strong predictive power on these various
biological functions. For example, CpG dinucleotide has been
shown to influence gene regulation and chromatin organization at
different levels, ranging from single CpG through the methylation to
CGI in promoter regions and TADs boundaries. CGI distribution
along the genome was also shown to correlate with compart-
mentalization globally in human cells. These results show that the
multi-level heterogeneous CpG (among other dinucleotides)
density distribution does code important information on chromatin
organization and gene expression.

The sequence properties of bacteria, plants, invertebrates,
fishes, and reptiles are distinctly different from birds andmammals
in terms of the dinucleotide distribution. The CpG density of the
former shows low variabilities and a decreasing multi-SE as a
function of genomic distance. Consistently, its Pearson correlation
coefficient does not exhibit a long-range power law decay. In
contrast, the CpG density of birds and mammals has relatively high
CpG variabilities, a multi-SE generally increasing with the genomic
length, and a wide-range power law decay, all of which indicate a
more heterogeneous CpG distribution. From the perspective of CGI-
rich and CGI-poor domains, birds and mammals have a larger
proportion of and longer CGI-poor domains than other species.
Consistently, birds’ and mammals’ overall average CpG density is
also lower than that of other species.

Interestingly, species with shorter and smaller proportions of
CGI-poor domains are more dominantly cold-blooded, living with a
wide body temperature range. CGI-poor domains rarely exist in
genomes of these species, but become ubiquitous in birds and
mammals. Birds’ and mammals’ long CGI-poor domain lengths,
relatively high proportions of CGI-poor domains, and significant
CpG density differences between these two types of domains
suggest a high sequence heterogeneity. These two species are
normally warm-blooded living with a narrow body temperature
range.

Consistently, the values of CpG density variability also show a
correlation with body temperature control of different species (Fig
1). Warm-blooded species (birds and mammals) have higher DNA
sequence variabilities than cold-blooded ones (fishes, amphibians,
and reptiles). Among warm-blooded species, DNA sequences of
birds tend to have a higher variability than those of mammals.
Furthermore, among the cold-blooded species, alligators are
known as “half warm-blooded animals” because of their mainte-
nance of relative high body temperatures through basking
(Seebacher, 2003; Tattersall et al, 2012). Consistently, the CpG
density variability of the alligators resembles that of mammals and

Figure 7. Distribution characteristics of dinucleotides and trinucleotides of
human chr1.
(A) Fourth moment of 16 dinucleotides density averaged at different length
scales. (B) Variability of 16 dinucleotides density averaged at 1 kb. (C) The
scatterplot for variability and coefficient of variation of 64 trinucleotides. Blue:
trinucleotides beginning with A or T; Red: trinucleotides beginning with C or G.
Only trinucleotides with large variability or Coefficient of Variation are labeled.
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is very different from either turtles or lizards. To further investigate
the possible relation between the body (or environmental, in the
case of cold-blooded species) temperature and the CpG density
variability, we also calculated and compared the variability of fishes
from the tropical and polar regions (Table S4). The tropical fishes
were found to have a higher sequence variability than the polar
fishes. Interestingly, the brown bear appears to have a higher
sequence variability than the polar bear (Table S3 and Fig S15A and
B). Such a coincidence may suggest a possible relation between the
living environment and the CpG distribution of the genomes of
different species.

As a note, the DNA methylation level was also reported to be
negatively correlated with the environment temperature for fishes
and reptiles (Varriale and Bernardi, 2006a, 2006b). It is well known
that the most of the methylation occurs on cytosine and higher CpG
density often results in the higher methylation level. Such an
observation is consistent with our results for a high CpG density is
correlated with the low variability (Fig 3). In fact, earlier analysis
shows that themethylation level correlates with CpG density and its
fluctuation (Liu et al, 2018).

As mentioned above, a close relation exists between the mosaic
CGI and gene distributions in human andmouse genomes (Liu et al,
2018). The segregation of the CGI/gene-rich and CGI/gene-poor
domains largely determines the chromatin compartmentalization,
with a large number of alternating compartments A and B (Fig S16A).
In contrast, it is well known that chromosomes of many plants are
simply partitioned into three compartments: two compartments A
near the telomere and one compartment B near the centromere
(Liu et al, 2017). We calculated the gene density of rice and A.
thaliana along the genome and found that their gene density
correlates well with compartment partition and the gene density is
higher in compartment A than in B (Fig S16B and C). However, little
correlation is seen between CpG density and compartment parti-
tion for these species as the CpG distribution is nearly uniform in
plants (Figs 1 and S2). Similar gene density–compartment corre-
lation is also observed for archaea (Fig S16D). These results suggest
an important role of the gene distribution along the linear genome
in chromatin structure segregation and compartment formation,
and suggest that the uneven CpG distribution further promoting the
spatial partition of the chromosome in species such as mammals
and birds but not plants. The separation of the chromatin structure
into different compartments following the gene density distribution
is highly conserved across different species, and indicates a
connection between the CGI (and thus CpG, as well as other di-
nucleotides) distributions and the gene clustering along the linear
genome. In fact, genes of similar functions also tend to segregate
along the linear genome (Lewis, 1992, 2004), consistent with a
function-driven gene and DNA sequence redistribution in evolu-
tion. Because genes of similar functions tend to form spatial
contacts (Belcastro et al, 2011; Ibn-Salem et al, 2017), it would be
interesting to examine the cross-talk between 3D chromatin
structure and DNA linear sequence in different species and in
evolution.

Recently, it was proposed that a stable phase separation of
genome is correlated to differentiation, senescence, and diseases
such as cancer (Liu et al, 2018). A high mosaicity of a genome
appears to correspond to stable differentiation. Consistent with this

theory, with a low genome mosaicity and a largely even CpG dis-
tribution (see the Discussion section above and Fig 1), plants are
prone to reprogramming and dedifferentiate. For example, plants
can generate calluses in response to stresses, many of which are
totipotent (Steward et al, 1958; Ikeuchi et al, 2013). Moreover, fishes
and reptiles can remain growing and developing throughout their
lives. For example, lizards can regenerate tails (Baranowitz et al,
1979). Among mammals, whales, which have a low CpG variability
(Fig 1), are the largest mammals on the earth and famous for the
longevity and ability of suppressing cancer (Caulin & Maley, 2011).
Similarly, elephants are also known for their longevity, resistance to
aging and cancer, and indeterminate body size. In contrast, cells of
birds and mammals with a high sequence mosaicity are difficult to
reprogram (Surani, 2012), and more prone to cancer than inver-
tebrates and plants (Albuquerque, 2018).

Finally, our analysis indicates that CpG density, consistent with
its highly uneven distribution, is a better function and structure
indicator than C+G content. CpG density but not C+G content (Figs 1
and 3) can cluster species corresponding to their positions in the
phylogenetic tree. It was also found that the CGI-rich and CGI-poor
domains correlate more strongly than isochores to the segregation
of the genomic features such as compartment and TADs formation
as well as DNA methylation in human and mouse (Liu et al, 2018),
indicating CpG density correlates better than the C+G content to the
chromatin structure formation. Because C to T mutation is believed
to be associated with CpGmethylation, which has been shown to be
actively involved in gene regulation, these results all suggest that
the CpG density is likely more directly connected to biological
functions and evolution than C+G content.

Conclusion

In this study, we explored the nucleotide distribution features in the
genome sequences of different species. In evolution, the genome
gradually loses CpG dinucleotide and gains in the unevenness of
their distributions along the genome. Among the dinucleotides, the
density distribution of CpG shows the most prominent multi-scale
heterogeneity. Based on this distribution, we divided the genomes
into the CGI-rich and CGI-poor domains with distinct compositions
and properties. By analyzing the average lengths, ratios and
compositions of the CGI-rich and CGI-poor domains, we showed
that genomes of birds and mammals are more heterogeneous than
those of bacteria, plants, invertebrates, fishes and reptiles. Fur-
thermore, we found that the CpG distribution is closely correlated
with 3D chromatin organization at different length scales, especially
in birds and mammals, suggesting the increased role of DNA se-
quence in determining the chromatin 3D structure in evolution. In
warm-blooded animals, it appears that chromatin organization is
strongly coded in the DNA sequence, especially in the uneven
dinucleotide distributions. Because of the genome mosaicity, the
chromatin 3D structures of warm-blooded species are likely to be
more (stably) segregated than the ones of cold-blooded species.
The increased role of DNA sequence in determining the chromatin
structure along evolution is consistent with a co-evolution of the 1D
and 3D genomes. We speculate this difference in genome sequence
segregation to have an effect on differentiation, senescence, and
maybe susceptibility to cancer among species. The various
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correlations found in this study call for careful and extensive ex-
periment verifications.

Materials and Methods

Data source

In this study, we analyzed the genomes of 38 representative species
including bacteria, plants, invertebrates, fishes, reptiles, mammals,
and birds (Table S1). Genomes of species were retrieved from UCSC
genome browser and NCBI. For each species, the longest chro-
mosome was chosen to calculate the variability, multi-SE, and
Pearson correlation coefficient of the dinucleotide density. Source
and information of Hi-C datasets are listed in Table S5. Source of
RNA-seq are listed in Table S6. Cell types of Hi-C map are listed in
Table S7.

HHT

A brief explanation of HHT (Huang et al, 1998) is given here and the
details can be found in the reference and Supplemental Data 1. HHT
can decompose a data series into oscillatory modes of different
frequencies. The difference between HHT and Fourier transform is
that HHT can be applied to nonlinear and nonstationary series
without the requirement of a priori basis.

For a given data series X(t) as input, the mean value series m1 of
the upper and lower envelope of X(t) is calculated using the cubic
spline lines. The difference h1 between the input X(t) and m1 is
called the first protomode,

h1 = XðtÞ −m1:

Here, h1 is used as input in the next iteration to yield a new set of
h1 until the following conditions are satisfied: (1) In the entire
dataset, the number of extrema and the number of zero crossings
must either be equal or differ at most by one. (2) At any data point,
the mean value of the envelope consisting of the local maxima and
the one consisting of the local minima is zero.

After the first mode h1 has converged, the difference between the
input X(t) and h1, that is, X(t) − h1 can be used as the input for the
next iteration to obtain the next mode h2. Repeating this procedure,
we can retrieve modes of different frequencies: h1, h2, h3...hn, in the
order of the decreasing frequency.

Take the CpG density series of human (Fig S1A and B) and Nile
tilapia (Fig S1C and D) as example, they can be decomposed to
series at different frequencies by HHT.

Dinucleotide variability
We define the variability of decomposed dinucleotide density se-
ries to quantify the extent of the dinucleotide density fluctuations
at high frequencies. Given that the decomposed series fluctuates
around the value zero (Fig S1), we calculated the absolute values of
the decomposed series and then divided the new (absolute value)
series into the high amplitude group in which the values are larger
than a + 3σ, and the low amplitude group with values smaller than

a + σ. Here a and σ are average and standard deviation of the new
series. CpG variability is defined as follows:

V =
ahigh
alow

;

where ahigh and alow are high and low amplitude group averages,
respectively (The threshold value a + 3σ is chosen because 3σ is
often used as a threshold in detecting outliers in statistics theory.
Choice of different thresholds does not have significant influence
on the relative order of CpG variability of different genomes, see
Table S2). A higher variability for a genome indicates that the
amplitude of local CpG density fluctuation varies more drastically
along the genome.

Generalized definition of CGI forest and prairie domains
As many species do not have identified CGIs, we expanded the
forest-prairie domains definition (Liu et al, 2018) in human and
mouse to the CGI-rich and CGI-poor domains in all species using
human and mouse genomes as references. Considering that forest
and prairie domains are reflections of the high level of CpG density
fluctuation along the sequence, we selected sequential units with
significantly high CpG density as CGI-rich domain “loci” at 200 bp, 10,
and 500 kb length scales, respectively. We next define regions either
with significantly low CpG density (the value of which is smaller
than both 75% regions of the species and five percentile of human
and mouse forest domains) or with both low CpG density variation
(the value of which is smaller than 75% regions of the species and
five percentile of human and mouse forest domains) and low CpG
density as the CGI-poor “clusters” at 10 kb scale. The CGI-rich and
CGI-poor domains are then defined following previous procedures
used for forest and prairie domains except that the critical distance is
selected as themaximumdistance, using which at least 95% CGI-poor
“clusters”would be classified into CGI-poor domains. For species with
CGI-poor “clusters” taking up <1% of total length or with CGI-rich “loci”
taking up more than 60% of total length, we used instead a canonical
critical distance (which is the critical neighboring CpG density peak
distance defined following our previous work [Liu et al, 2018]). The
generalized forest and prairie domains definitions are reflections of
the alternation between regions enriched in high CpG density peaks
and regions with low CpG densities and small fluctuations.

Nonnegative matrix factorization
NMF (Lee & Seung, 1999) is a decomposition method for a matrix
(i.e., multivariate data) that has been used widely in signal pro-
cessing, image recognition (Wang et al, 2016; Du & Swamy, 2019) and
computational biology (Devarajan, 2008). The aim of nonnegative
matrix factorization is to reproduce the observed data by com-
bining a limited number of basis components.

A nonnegative factorization of matrix X is an approximation of X
by the product of two matrices W and H, which are constrained to
have nonnegative entries (i.e., W ≥ 0, H ≥ 0). This decomposition is
thus an approximation, not an equality. The solution W and H
matrices minimize the quadratic error between X and W*H. The
number of rows of W and columns of H should be same as the ones
of X, respectively, and the number of columns of W and rows of H
can be chosen as needed.
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When it is applied to Hi-C map, each column of W are defined as
structure vector for it reflects intensity of Hi-C signal along the DNA
sequence. Unlike the compartment vector calculated by PCA, the
values of structure vector are all positive (Fig S5 and Table S8).
Using structure vectors to recapitulate the Hi-C map is more in-
formative on the contacts between compartment A and B than
compartment vectors because there is no offset of positive and
negative elements of matrices. In this study, we applied NMF to
Observed/Expected Hi-C matrix. The number of columns of W
(structure vectors) is set as two, as these two structure vectors were
found to be correlated with compartments A and B, respectively.

Besides normal NMF, we also factorized Hi-C matrix by balanced
NMF (BNMF) and Graph regularized NMF (GRNMF) to test the ro-
bustness of structure vectors (Fig S6).

Hi-C map analysis
Raw Hi-C data were processed by the ICE procedure. We grouped
chromatin loci according to genomic distance, then calculated the
decay of average Hi-C contact frequency with the genomic distance.
To calculate the structure vectors, the observed/expected Hi-Cmap
was first calculated to ensure the average contact frequency at
different genomic distance is normalized, before performing
nonnegative matrix factorization. Interaction segregation ratio
between A/B compartments is defined as contacts of compart-
ments of the same type (A–A, B–B) divided by contacts of com-
partments of different types (A-B) of normalized Hi-C contact
matrix.

Data Access

Genomes of species are publicly available in NCBI and UCSC ge-
nome browser. Code for CGI-rich/poor domain division, CpG vari-
ability calculation, multi-SE analysis, and NMF is available on
request.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202101028.
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