
Neuron

Article
Activity-Dependent Gating of Calcium Spikes
by A-type K+ Channels Controls Climbing Fiber
Signaling in Purkinje Cell Dendrites
Yo Otsu,1 Paı̈kan Marcaggi,1 Anne Feltz,2 Philippe Isope,3 Mihaly Kollo,4 Zoltan Nusser,4 Benjamin Mathieu,5

Masanobu Kano,6 Mika Tsujita,7 Kenji Sakimura,8 and Stéphane Dieudonné1,*
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SUMMARY

In cerebellar Purkinje cell dendrites, heterosynaptic
calcium signaling induced by the proximal climbing
fiber (CF) input controls plasticity at distal parallel fi-
ber (PF) synapses. The substrate and regulation of
this long-range dendritic calcium signaling are poorly
understood. Using high-speed calcium imaging, we
examine the role of active dendritic conductances.
Under basal conditions, CF stimulation evokes
T-type calcium signaling displaying sharp proximo-
distal decrement. Combined mGluR1 receptor acti-
vation and depolarization, two activity-dependent
signals, unlock P/Q calcium spikes initiation and
propagation, mediating efficient CF signaling at
distal sites. These spikes are initiated in proximal
smooth dendrites, independently from somatic so-
dium action potentials, and evoke high-frequency
bursts of all-or-none fast-rising calcium transients
in PF spines. Gradual calcium spike burst unlocking
arises from increasing inactivation of mGluR1-modu-
lated low-threshold A-type potassium channels
located in distal dendrites. Evidence for graded ac-
tivity-dependent CF calcium signaling at PF synap-
ses refines current views on cerebellar supervised
learning rules.

INTRODUCTION

Interactions between synaptic inputs, dendritic excitability, and

dendritic morphology give rise to local and global calcium

signaling in dendrites (Higley and Sabatini, 2008; Larkum et al.,

1999; Sjöström et al., 2008). These interactions shape the rules

for the induction of calcium-dependent plasticity and ultimately
control information processing and storage in neuronal networks

(Magee and Johnston, 2005; Sjöström et al., 2008).

Climbing fibers (CFs) form a giant synaptic input on spines on

large-diameter proximal dendrites of cerebellar Purkinje cells

and control calcium dependent short- and long-term plasticity

at parallel fiber (PF) synapses on spiny dendritic branchlets (Bre-

nowitz and Regehr, 2005; Rancz and Häusser, 2006;Wang et al.,

2000), the main site for cerebellar learning. It is crucial to under-

stand the conditions under which heterosynaptic modifications

of PF inputs occur, and therefore the nature and regulation of

dendritic CF calcium signaling. CF stimulations evoke wide-

spread calcium transients in Purkinje cell dendrites (Sullivan

et al., 2005; Tank et al., 1988), which have been attributed to

propagating dendritic calcium spikes. While regenerative events

have been recorded from proximal smooth dendrites both in vivo

(Fujita, 1968; Kitamura and Häusser, 2011) and in vitro (Davie

et al., 2008; Llinás and Sugimori, 1980), the variability of CF cal-

cium transients measured in distal spiny branchlets suggests

that calcium spikes may not always occur at distal sites. The

amplitude of the CF calcium signal is modulated by the somatic

holding potential (Wang et al., 2000; Kitamura and Häusser,

2011), by dendritic field depolarization (Midtgaard et al., 1993),

by synaptic inhibition of the dendrites (Callaway et al., 1995;

Kitamura and Häusser, 2011), and by the activity of PFs (Breno-

witz and Regehr, 2005; Wang et al., 2000). The mechanisms

underlying these modulations remain unknown.

Purkinje cells express a high density of P/Q-type (Usowicz

et al., 1992) and T-type (Hildebrand et al., 2009) calcium chan-

nels. P/Q-type channels sustain propagating high-threshold

dendritic calcium spikes (Fujita, 1968; Llinás et al., 1968; Llinás

and Sugimori, 1980). In contrast, T-type channels are involved

in local spine-specific calcium influx during PF bursts (Hilde-

brand et al., 2009). Purkinje cell dendrites also express a variety

of voltage-gated potassium channels, but their roles in the regu-

lation of dendritic calcium electrogenesis are poorly understood

(Etzion and Grossman, 1998; Llinás and Sugimori, 1980; McKay

and Turner, 2004; Womack and Khodakhah, 2004). Here, we
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Figure 1. Spatial Decrement of Calcium

Transients Evoked by Complex Spikes

(A) Quasisimultaneous recordings of fluorescence

transients in response to CF stimuli in 22 spines

and dendritic shafts of a Purkinje cell loaded with

200 mM Fluo-4. Fluo-4 fluorescence is normalized

to the calcium-independent Alexa 594 fluores-

cence (G/R) and optical traces represent the

average of 28 stimuli. Each CF stimulation

induced an all-or-none complex spike at the soma.

Recording site distance from soma is color coded.

(B) Fluorescence transients in the main smooth

dendrite at points marked in (A).

(C) Relationship between calcium transient

amplitude and distance from soma (same cell as in

A). Black circles: smooth dendrites, plain regres-

sion line (slope 0.023 ± 0.006 DG/R per 100 mm

[±SD]; p < 0.05). Red circles: spiny branchlets and

spines, short dashes regression line (slope 0.028 ±

0.004 DG/R per 100 mm (±SD); p < 0.001).

(D) Same as (C) for the distance of recording site in

spinybranchletsandspines from thebranchpoint in

smooth dendrite. Signal is normalized to the signal

insmoothdendriteat thebranchpoint. The intercept

of dashed regression line (slope 0.025± 0.007mm�1

(±SD); p < 0.001) is 1.9: this higher calcium con-

centration at the base of the spiny branchlet than in

the smooth dendrite is likely due to the higher sur-

face-to-volume ratio of spiny branchlets.

(E and F) Spatial pattern of CFCTs from WT mice.

Calcium transients were normalized to the value

of DG/R in the proximal smooth dendrites and

plotted against the soma distance. Points are

average of 6–49 values per 15 mm (13 cells), and

continuous lines show logistic function fit to

smooth dendrites data (E) and a single exponential

fit to pooled spiny branchlets and spines data (F).

(G and H) Pharmacogenetic profile of CFCTs measured from slices of WT, Cav3.1 and Cav2.3 KOmice, and frommibefradil-treated WT slices. In each cell, more

than 20 CF stimuli were averaged. Cell number is indicated on each bar. Error bars show ±SEM. **p < 0.01, *p < 0.05. For Cav2.3, p = 0.86 in smooth dendrites

(G), n = 18 cells, p = 0.13 in spines and spiny branchlets (H).

(I and J) As in (E) and (F), for CFCTs in CaV3.1 KOmice (4–131 values per 15mm; 16 cells). The small remaining CFCTs in CaV3.1 KOs also decrease with distance

from soma.
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used random-access multiphoton (RAMP) microscopy to

monitor the calcium transients induced by CF stimulation (CF-

evoked calcium transients [CFCTs]) at high temporal resolution

to unambiguously distinguish between subthreshold calcium

transients and calcium spikes. We show that calcium spike initi-

ation and propagation in distal spiny branchlets are controlled by

activity-dependent mechanisms.

RESULTS

Proximodistal Decrement of CFCTs in Purkinje
Cell Dendrites
CFCTs were mapped optically in Purkinje cell smooth and spiny

dendrites using RAMP microscopy (Otsu et al., 2008). At repeti-

tion rates close to 1 kHz, the peak of Fluo-4 (200 mM) fluores-

cence transients was well resolved (Figure S1 available online).

Using dual indicator quantitative measurements (see Experi-

mental Procedures), we found that the amplitude of the CFCT

(Figures 1A and 1B) decreased with distance from the soma

(Figure 1C). In individual spiny dendrites, CFCT amplitude
138 Neuron 84, 137–151, October 1, 2014 ª2014 Elsevier Inc.
decreased linearly as a function of the distance from the parent

dendritic trunk (Figure 1D) by �1.4% ± 0.4% mm�1 (±SD) for

spines (r = �0.26, p < 0.001; n = 157 of 14 cells), and �1.5% ±

0.4% mm�1 for spiny branchlet shafts (r = �0.36, p < 0.001;

n = 114 of 14 cells). In proximal compartments (<50 mm from

soma), fluorescence transients averaged 0.023 ± 0.008 DG/R

(±SD) in spines (n = 15, 5 cells), 0.020 ± 0.008 DG/R in spiny

branchlets (n = 19, 7 cells), and 0.014 ± 0.008 DG/R in smooth

dendrites (n = 25, 10 cells). In the most distal parts (>120 mm

from soma), CFCTs were barely detectable (0.003 ± 0.004

DG/R [±SD] in spines, n = 22, 4 cells; 0.002 ± 0.002DG/R in spiny

branchlets, n = 18, 4 cells).

The average spatial profile of the CFCT was obtained by pool-

ing data from 13 cells. In the smooth dendrites, the CFCT re-

mained constant up to �70 mm from the soma and decreased

markedly in more distal parts (Figure 1E). Half-maximum

occurred at 91 mm from the soma with a steepness of 18 mm

(exponential space constant of the logistic fit). In contrast, the

amplitude of the CFCTs in spiny branchlets and in spines

decreased approximately exponentially with distance from the
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soma (space constant; l = 54.5 mm) (Figure 1F). This spatial pro-

file of calcium influx is reminiscent of the electrotonic distribution

of membrane potentials in Purkinje cells upon proximal depolar-

ization (Roth and Häusser, 2001), suggesting that calcium tran-

sients result from electrotonic activation of calcium channels in

spiny dendrites.

Low-Threshold Calcium Channels Mediate
Decremental CFCTs
In Purkinje cells of Cav3.1 knockout (KO) mice, lacking the main

T-type subunit, the amplitude of the CFCTs was reduced to 31%

of wild-type (WT) mice (n = 23 cells, p < 0.001) in smooth den-

drites and to 25% of WT (n = 24 cell, p < 0.001) in spines and

spiny branchlets (Figures 1G and 1H). In contrast, the CFCTs

were not significantly inhibited in Cav2.3 KO mice lacking

R-type calcium channels (Figures 1G and 1H). The role of Cav3

channels was confirmed by pharmacological block with 1 mM

mibefradil (McDonough and Bean, 1998), which reduced the

CFCTs to 61% (p = 0.012) (Figure 1G) and to 46% (p < 0.001)

of control in smooth dendrites and in spines and spiny branchlets

(Figure 1H), respectively. The spatial profile of the CFCTs re-

corded from Cav3.1 KO mice was similar to that observed in

WT mice, with a half decrement at 93.5 mm (steepness of

16.3 mm) in the smooth dendrites and a l = 56.3 mm in the spiny

dendrites (Figures 1I and 1J). In conclusion, electrotonic filtering

of the CF excitatory postsynaptic potential (EPSP) in spiny

branchlets reduces calcium signaling at distal PF synapses,

which is mainly mediated by T-type channels.

mGluR1 Activation Unlocks Dendritic Calcium Spikes
and Enables Heterosynaptic CF Calcium Signaling
We explored whether PF input-mediated glutamatergic signaling

might promote CF-evoked dendritic calcium electrogenesis.

Selective mGluR1 activation by DHPG potentiated CFCTs by

350%±80% in spiny branchlets and by 320%±120% in smooth

dendrites (n = 8 cells; paired data) (Figures 2A–2D). This effect

developed in a few tens of seconds, as DHPG penetrated into

the slice and was accompanied by a slower increase of basal

calcium concentration (slope 4% ± 1%.min�1 [±SD]) (Figure 2B).

The somatic complex spike remained unchanged (Figure S2),

confirming that 20 mM DHPG did not depress the CF EPSP

(Maejima et al., 2005). Strikingly, the potentiated CFCT no longer

showed decrease with distance from the soma (Figure 2E), an

effect that cannot be attributed to dye saturation (see Supple-

mental Information).

Does the potentiation of CF calcium signaling result from the

occurrence of P/Q dendritic calcium spikes in distal dendrites?

In small compartments, like spines, the rising phase of optical

calcium transients monitored with high binding rate calcium

dyes is expected to reflect the time course of the underlying cal-

cium conductance (Cornelisse et al., 2007). Using 500 mM Fluo-

5F, we performed optical recordings of the CFCTs at a frame

rate of 4.8 kHz. The signal-to-noise ratio was preserved by

pooling photons collected from ten POIs distributed over one

or two adjacent spiny branchlets (Figure 2F). At this temporal

resolution, mGluR1-potentiated CFCTs appeared as composite

events made of several fast-rising unitary fluorescence tran-

sients (n = 17 of 18) (Figures 2G and 2H).
Unitary transients could be resolved without averaging and

their number gradually increased as the mGluR1 potentiation

developed (Figure 2H). The mean amplitude of unitary transients

varied widely from cell to cell (first transient 0.102 ± 0.040 [±SD]

DG/R, 343 events, 7 sites in 6 cells, p < 0.001; second transient

0.095 ± 0.039 DG/R, 201 events, 7 sites in 6 cells; 3rd transient

0.136 ± 0.040 DG/R, 32 events, 5 sites in 4 cells). However, in a

givencell, the amplitudedistribution of unitary transientswasnar-

row (Figure 2I) and theirmeanamplitudewas independent of their

position in the global response (second over first 0.97 ± 0.02, p =

0.89; third over first 1.01±0.04, p=0.52).Weconclude that all-or-

none unitary transients are signatures of dendritic spikes.

Purkinje Cell Depolarization Determines the Number of
Dendritic Calcium Spikes in DHPG-Potentiated
Composite CFCTs
In the presence of DHPG, the number of unitary calcium tran-

sients (P/Q dendritic spikes) and the resulting peak amplitude

of the composite CFCT were tightly correlated with the somatic

membrane potential (Figures 3A–3D). While hyperpolarization

caused dendritic calcium spike failure, gradual depolarization

from �75 mV to �60 mV increased the number of dendritic cal-

cium spikes in the CFCT (Figures 3A–3D). Overall, the number of

dendritic calcium spikes and the CFCT amplitude were related to

the membrane potential by a logistic sigmoidal relationship with

a half-maximum of �72.3 mV and an exponential steepness of

2.0 mV (6 cells) (Figure 3D). In contrast, before addition of

DHPG, the amplitude of the CFCT was only mildly increased

by somatic depolarization (Figures 3C and 3D) and a fast-rising

unitary calcium transient was only recorded in one trial at the

most depolarized potentials (triangle in Figure 3C).

In control experiments without DHPG, Purkinje cells were

either held around �70 mV or set to fire spontaneously (42.7 ±

4.2 Hz, n = 14; membrane potential: �62 ± 1.7 mV) and a spatial

mapping of theCFCTwas performed (Figures 3E and 3F). CFCTs

were potentiated by depolarization to 143.8% ± 13% of control

in smooth dendrites (n = 14, p = 0.002) and to 174.1% ± 19%

of control in spiny branchlets (n = 14, p = 0.001) (Figure 3F).

Depolarization did not reduce the spatial decrement of the

CFCTs (linear regression slope �0.011 ± 0.007/mm [±SD] versus

�0.010 ± 0.008/mm in smooth dendrites, 5 cells; l = 47.4 mm

versus 50.7 mm in spines and spiny branchlets, 6 cells)

(Figure 3F). Furthermore, in Cav3.1 KO mice, the CFCTs were

similarly reduced at hyperpolarized potentials or depolarized

potentials (to 36.5% and 42.6% of WT, respectively, in smooth

dendrites; to 28.2%and 34.4%ofWT, respectively, in spiny den-

drites). We conclude that mGluR1 activation is strictly required

and acts in synergy with depolarization to unlock dendritic P/Q

calcium spiking. This synergistic effect is not caused by direct

mGluR1-mediated depolarization of the dendrites. Indeed,

blockade by 1-naphthyl acetyl spermine (NASPM) of the slow

current responsible for mGluR1 depolarization did not prevent

unlocking (Supplemental Information and Figure S3).

P/Q-type Calcium Channels Are the Main Contributors
to CFCTs after DHPG Potentiation
We applied u-conotoxin MVIIC locally on a spiny branchlet and

simultaneously monitored calcium at the application site and in a
Neuron 84, 137–151, October 1, 2014 ª2014 Elsevier Inc. 139
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(A–E) Effect of mGluR1 activation in a cell loaded

with 200 mM Fluo-4. (A) Morphological image of a

Purkinje cell from a WT mouse showing the POIs

from which measurements in (B)–(D) were ob-

tained (black dots: smooth dendrite; red dots:

spiny branchlets and spines). (B) CFCT (DG/R)

potentiation and basal fluorescence (Go/R) in-

crease upon bath application of 20 mM DHPG.

Fluorescence transients averaged amplitude over

all POIs in smooth dendrites (black circles) and

spiny branchlets and spines (red circles). Each

point represents a single CF stimulation at 0.1 Hz.

(C) Control and potentiated CFCTs in spiny

branchlets and spines averaged over six stimula-

tions (1 min) at times (1) and (2), as indicated in (B).

(D) Scaled control and potentiatedCFCTs from (C),

showing their similar onset and decay time course.

(E) Effect of DHPG in smooth dendrites (black) and

spiny branchlets and spines (red) depends on the

distance to the first branch point in smooth den-

drites (six cells). CFCTs in the POIs induced by 15–

42 (control) and by 6–12 CF stimuli (DHPG) were

pooled and averaged every 20–30 mm (7–78 POIs).

For direct comparison, identical bins were used

for control and in the presence of DHPG mea-

surements. Linear regression lines are shown in

control: smooth dendrites (�1.26% ± 0.24% mm�1

[±SD], r = �0.66, p < 0.0001; 39 POIs, 6 cells),

spiny branchlets and spines (�1.03% ± 0.10%

mm�1 [±SD], r = �0.59, p < 0.0001; 191 POIs, 6

cells), and after DHPG application: smooth den-

drites (r = �0.15, p = 0.38; 39 POIs, 6 cells), spiny

branchlets and spines (r = 0.06, p = 0.39; 191 POIs,

6 cells).

(F–I) Recordings at higher time resolution in a

cell loaded with 500 mM Fluo-5F reveals calcium

spikes in distal Purkinje cell spines in presence of

20 mM DHPG. (F) Morphology of a Purkinje cell

showing the distal location of the recorded spines.

All ten POIs are placed on spines of two adjacent

branchlets, as shown in inset (red dots) and char-

acterized in (G)–(I). (G) Time course of the DHPGpotentiation of CFCTs. Each point shows the amplitude of the fluorescence transient induced by a CF stimulation

(0.33 Hz) and averaged over the ten POIs. (H) Fluorescence transients recorded at a repetition rate of 5 kHz at various time points during the onset of the DHPG

effect (indicated by numbers in G). Traces are averages of 13 (at 1), 3 (2), 2 (3), or single (4, 5) CF stimuli. Note the multiphasic onset and stepwise amplitude

increase of the CFCTs after DHPG application. (I) Example of a CFCT displaying three unitary transients induced by a single CF stimulation (left column).

Amplitude histogram of the first, second, and third unitary transients in CFCTs obtained from the same cell. Gaussian curves are fitted to the data.
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nearby control branchlet. In baseline conditions (without DHPG)

u-conotoxin MVIIC puff did not significantly reduce the CFCTs

(Figures 4A–4C, time 1 and 2). In contrast, in DHPG, unitary tran-

sients were suppressed by u-conotoxin MVIIC (Figures 4A–4C)

at the application site but not in the control site, leaving an under-

lying low-amplitude slow-rising transient. Overall u-conotoxin

MVIIC inhibited suprathreshold CFCTs to 49.7% ± 10% of con-

trol regions in the same dendrite (n = 3) and suppressed all uni-

tary transients. This further supports that unitary transients are

the signature of high-threshold P/Q calcium spikes.

mGluR1 potentiation of T-type calcium channels at Purkinje

cell spines has been recently reported (Hildebrand et al., 2009).

T-type calcium channels may thus contribute to unitary tran-

sients by triggering P/Q spikes. However, unitary calcium tran-
140 Neuron 84, 137–151, October 1, 2014 ª2014 Elsevier Inc.
sients were readily evoked in Cav3.1 KO mice (in the presence

of DHPG), with similar voltage dependence as in WT mice (n =

7 out of 8) (Figure 4D) and similar amplitude (0.11 ± 0.01 DG/R

in Cav3.1 KO, n = 7; 0.12 ± 0.01 DG/R in WT, n = 17; p = 0.71;

Figure 4F). The maximum amplitude of the composite DHPG-

potentiated CFCTs in spiny branchlets was mildly reduced in

the Cav3.1 KO, when compared to WT (92% ± 14%; 0.24 ±

0.03 DG/R in Cav3.1 KO, n = 8; 0.26 ± 0.02 DG/R in WT,

n = 18; p = 0.72 whenmeasured with 500 mMFluo-5F; Figure 4G)

(68%± 20%; 0.075 ± 0.01DG/R in Cav3.1 KO, n = 12; 0.11 ± 0.02

DG/R inWT, n = 8; p = 0.076whenmeasuredwith 200 mMFluo-4;

Figure 4H). T-type channels may thus provide a contribution of

about 20% (average reduction for the Fluo-4 and Fluo-5F condi-

tions) to the total amplitude of mGluR1-potentiated CF calcium
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tial Effect on CFCTs in the Presence and

the Absence of DHPG

(A) DHPG was applied while recording CFCTs

(500 mM Fluo-5F) in eight distally located spines of

a Purkinje cell from a WT mouse (see red dots in

inset).

(B) Examples of the electrophysiological traces

(top, and middle on expanded timescale) at

different holding potentials when applying a CF

stimulation (at arrowhead) in the same cell as in (A)

and (C). Note that in top trace, spikes are cut.

Corresponding illustrated CFCTs (bottom traces)

are single stimulus traces (green, red, and blue) or

average of three CF stimuli (yellow). The number

of calcium spike is color coded. Broken line

indicates �73 mV.

(C) Relationship between composite CFCT ampli-

tude, color-coded calcium spike number, and

somatic membrane potential in this cell. Open

circles show CFTC amplitude before DHPG

application. A spike-like CFCT was recorded in

one case (open triangle).

(D) Group data from six cells. Color fillings in each

bar indicate the probability of triggering a given

number of spikes. Data were binned every 2–7 mV

of somatic membrane potential. The number in

each bar indicates the number of occurrences.

DG/R values recorded after DHPG application

(gray circles) are fitted with a logistic function.

Open circles correspond to the CFCTs amplitude

(no spike) recorded before DHPG application in

the same cells. Error bars indicate ±SEM.

(E) An example in a WT mouse Purkinje cell of

CFCTs (200 mM Fluo-4) and somatic membrane

potential recordings in response to CF stimuli

at hyperpolarized (�73 mV imposed by somatic

current injection, circle) and depolarized (let to fire

spontaneously with 0 pA holding current, open

circle) membrane potentials in the absence of

DHPG.

(F) Plot of CFCTs amplitudes at both mem-

brane potentials as a function of the recording

point distance from the soma. Note that the calcium signals are potentiated by somatic depolarization but still decay with distance from the soma.

In red and blue circles, data obtained from WT (n = 6 cells) and CaV3.1 KO (n = 11 cells) mice, respectively.
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transients, similar to the amplitude of T-type mediated influx in

control conditions.

Another possible source of cytoplasmic calcium linked to

mGluR1 receptor activation is IP3-dependent calcium stores

(Finch and Augustine, 1998; Takechi et al., 1998), as IP3 uncag-

ing preceding the CF stimulations has been shown to produce a

late component of the CFCT (Sarkisov and Wang, 2008). In our

experiments, the time to peak of the CFCT was not significantly

slowed by DHPG potentiation (increased delay to peak after

DHPG: 0.94 ± 3.0 ms [±SD] in spines, 2.2 ± 4.4 ms [±SD] in

spiny branchlets and 2.1 ± 1.5 ms [±SD] in smooth dendrites,

n = 5 cells, p > 0.05) (Figure 2D), contrary to what has been

observed to date for the slow secondary release of calcium

from IP3-sensitive calcium stores (Finch and Augustine, 1998;

Sarkisov andWang, 2008; Takechi et al., 1998). Slices were pre-

incubated with 25 mM cyclopiazonic acid (CPA), to empty the in-

ternal stores. In these conditions, DHPG strikingly potentiated
the CFCTs by evoking unitary transients that were recruited in

a voltage-dependent manner, as in control (n = 11 out of 11)

(Figure 4E). Hence calcium stores, if recruited, act downstream

of spike unlocking by mGluR1 activation. The mean amplitude

of the unitary transients was reduced to 0.08 ± 0.01 DG/R

(65% of control, n = 11; p = 0.008) and the total amplitude of

the CFCT was reduced to 0.19 ± 0.02 DG/R (73% of control,

n = 11; p = 0.068). Participation of IP3-dependent calcium

stores in submillisecond calcium release (unitary transients) is

unexpected, as all store release events described in Purkinje

cells have an onset time course of several milliseconds (Finch

and Augustine, 1998; Takechi et al., 1998) even when paired

with CF stimulation (Sarkisov and Wang, 2008). Alternatively,

nonspecific effects, as attested by significant slice swelling

during CPA application, may explain the reduction in spike-

associated calcium influx. Overall, our data demonstrate that

unitary transients mediated by dendritic P/Q spike are the
Neuron 84, 137–151, October 1, 2014 ª2014 Elsevier Inc. 141
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(A–C) Fast unitary transient induced by DHPG are blocked byu-conotoxinMVIIC. (A)uCTxwas pressure applied to a small region of PC dendrites, using a nearby

spiny branchlet further from the puff pipette as a control. Panel shows configuration with 14 optical recording sites and puff pipette. (B) Time course of the CFCT

amplitude potentiation by DHPG for the POIs in (A) for test (in blue) and control (in red). Arrows point to puff applications of uCTx. (C) Fluorescence transients

recorded in each region at times indicated in (B).uCTx puff did not significantly reduce the CFCTs at times 1 and 2. AfteruCTx partial washout, DHPG application

produced a subthreshold potentiation of the CFCTs in control and test regions with similar time course and amplitude (time 3). Repeated uCTx puffs prevented

the appearance of fast unitary transients at the test site, but not at the control site, and eventually reversed theCFCTs to the subthreshold slow-rising level (time 4).

Overall uCTx led to the suppression of fast unitary transients.

(D and E) DHPG-induced CFCTs recorded in CaV3.1 KO slices (D) and in cyclopiazonic acid-treated slices (CPA) of WT mice (E). As in Figure 3B, examples of the

electrophysiological traces (top, and middle on expanded timescale) and corresponding illustrated CFCTs (bottom traces) when applying a CF stimulation

(at arrow). Note evoked unitary events as in Figures 3A–3D. Broken lines indicate �78 mV (D) and �85 mV (E).

(F–H) Pharmacogenetic profile of the CFCTs induced by DHPG in WT slices nontreated/treated with 25 mM cyclopiazonic acid (CPA) and in CaV3.1 KO slices.

Amplitude of the first unitary transient (F) and total amplitude (G) of the CFCTs in presence of DHPG are reported. Each dot (average of 5–10 spines recordings)

corresponds to a branchlet (500 mM Fluo-5). (H) Each dot corresponds to a cell as in Figure 1H (200 mM Fluo-4). During DHPG application, ten CF stimuli were

averaged at the peak of the response. Numbers of cells or branchlets are indicated on each bar. Errors bars show ±SEM. **p < 0.01.
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primary contributors to voltage-dependent CFCT potentiation

by mGluR1 activation.

Optical Dissection of Subthreshold and Suprathreshold
Dendritic Calcium Electrogenesis
The onset of control CFCTs and of the first unitary transients in

DHPG (both recorded during 40 Hz spontaneous Purkinje cells

firing) were fitted by a logistic function (Figure 5A), yielding an
142 Neuron 84, 137–151, October 1, 2014 ª2014 Elsevier Inc.
exponential steepness factor. On average, unitary transients

observed in the presence of DHPG rose faster (0.19 ± 0.01 ms,

exponential steepness factor of the logistic fit, n = 17) than con-

trol CFCTs (0.45 ± 0.03 ms, n = 46) (p < 0.001). However, about

25% of the control CFCTs rose as fast as unitary transients (gray

circles, Figure 5B). Strikingly, the relationship between amplitude

and rise kinetics (the exponential steepness factor) were oppo-

site in control CFCTs and unitary transients (Figure 5C). The
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(A–G) CFTCs comparison before and after 20 mM

DHPG application. (A) Top: onsets of control

CFCTs (500 mM Fluo-5F) (black) and first unitary

transient in DHPG (red) were fitted by logistic

functions (green). Bottom: scaled control CFCT

and the first unitary transient, showing the faster

rise of unitary transients. CF stimulation at arrow-

head is shown. (B) Cumulative probability plot

summarizing the rise kinetics measured with lo-

gistic fitting in (A) under control condition (n = 46;

black, gray, and blue) and in the presence of DHPG

(n = 17; red). Broken line indicates the slowest rise

kinetics in the presence of DHPG and sets the limit

between gray and black circles in control. (C)

Relationship between the amplitude and the rise

kinetics for the data shown in (B) with regression

lines under control condition (black) and in the

presence of DHPG (red). The blue point, excluded

for the regression, refers to one cell in control

conditions that yielded a CFCT of particularly fast

rising time and a large calcium entry, probably

linked to calcium spike. (D) Cumulative probability

plot of calcium flux (see Results). Same color code

as in (B). Broken line indicates the largest sub-

threshold calcium flux under control condition

(0.12 DG/R ms�1). (E) Relationship between cal-

cium flux and distance from soma. Broken line is

as in (D). Six open circles correspond to very small

CFCTs in control condition. (F) Simultaneous

recordings of CFCTs (500 mM Fluo-5F) at a distal

branchlet and a proximal dendrite (at 136 mm, blue,

and 87 mm, red, from the soma, respectively), as

shown in the Purkinje cell morphological recon-

struction (left). Five to six POIs (9–11 successive

CF stimulations) were averaged at each location.

The first unitary transient evoked in 20 mM DHPG

occurs at the two sites with different latencies

from the CF-evoked complex spike (right). Half rise

point latency (short horizontal bar) was obtained

by fitting a logistic function to the rise of the unitary

transient. (G) Relation between calcium spike

delay and distance from the soma. Lines link paired recordings in the same cell. Broken line shows the linear regression. Colored dots correspond to data in (F).

(H–J) Differential 5 mM 4-AP effect. (H) Paired recordings configuration for data shown in (I) and (J), corresponding to a distal (137 mm from soma, blue) and a

proximal branchlet (108 mm from soma, red), respectively (500 mMfluo-5F; 10 POIs). (I) Superimposed traces in absence (filled circles) and presence (open circles)

of 4-AP at proximal and distal sites. Cell firing rate was fixed at 30–40 Hz by hyperpolarizing current injection (control condition: averaging 20 successive CF stim,

averaged simple spike frequency: 40.9 ± 4.6 Hz, averaged somatic membrane potential: �54.4 ± 0.7 mV; +4-AP condition: averaging 22 successive CF stim,

32.0 ± 4.2 Hz,�58.9 ± 0.3mV). (J) Examples of the CFCTs recorded in the presence of 4-AP from the proximal (red, averaging eight successive CF stim) and distal

(blue, averaging seven successive CF stim) dendritic sites shown in (E) at various holding membrane potentials.
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rise kinetics of control CFCTs were negatively correlated with

their amplitude (slope = �0.098, r = �0.53, p < 0.0001, n = 45),

as expected from the activation of T-type channels by increas-

ingly temporally filtered electrotonic depolarizations due to cable

effects. In contrast, the amplitude of unitary transients was pro-

portional to their rise kinetics (slope = 0.56, r = 0.67, p = 0.003,

n = 17), indicating that unitary transients result from regenerative

events of similar peak calcium flux but variable duration.

Because the fluorescence is directly proportional to the total

influx of calcium in the spine (bound calcium remains within the

optical focal volume at this timescale), the derivative of the fluo-

rescence signal is a measure of calcium flux. The peak calcium
flux was calculated as the maximum slope of the CFCT, defined

as the ratio of the amplitude to four times the fitted logistic expo-

nential steepness (i.e., the derivative of the logistic function at

midpoint). The peak calcium flux of unitary transients (0.16 ±

0.01 DG/R$ms�1, n = 17) (Figure 5D) was not correlated with

the somatic distance (r =�0.29, p = 0.29, n = 15) (Figure 5E), con-

firming that dendritic calcium spikes propagate without decre-

ment in spiny dendrites. The peak calcium flux of control CFCTs

was smaller (0.04 ± 0.01 DG/R$ms�1, n = 45, p < 0.001) and its

amplitude distribution only slightly overlappedwith that of unitary

spikes (Figure 5D). A calcium flux larger than 0.12DG/Rms�1 can

thus be considered as a hallmark of calcium spikes.
Neuron 84, 137–151, October 1, 2014 ª2014 Elsevier Inc. 143
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Control CFCTs with a fast rise time occurred mostly at prox-

imal sites (gray circles, Figure 5E). The duration of calcium influx

at these proximal sites (Figure 5B) is shorter than the inactivation

of Cav3.1 channels (Hildebrand et al., 2009), which appear to

carry most of the calcium flux (Figure 3F), and much shorter

than the inactivation of P/Q channels. Hence, fast closure of

T-type channels has to occur, most likely after regenerative

repolarization of the proximal dendrites by a K+ conductance.

A similar kinetic analysis cannot be performed in smooth den-

drites, as intracellular diffusion of calcium will slow the fluores-

cence transient rise. However, the amplitude of control CFCTs

(<90 mm from soma) was found to be similar to that of the first uni-

tary spikes in DHPG (control: 0.10 ± 0.02 DG/R versus DHPG:

0.12 ± 0.007 DG/R, n = 4, p = 0.53; paired t test). These results

indicate that a dampened regenerative depolarization, similar

to a spikelet, may occur in the smooth dendrites and proximal

spiny dendrites before mGluR1 unlocking, as observed in den-

dritic electrophysiological recordings (Davie et al., 2008; Kita-

mura and Häusser, 2011), but fails to propagate further.

Calcium Spikes Are Generated in Proximal Dendrites
Independently from Somatic Sodium Spikes
To better understand how dendritic spike unlocking can be

controlled by the somatic holding potential, we determined the

site of spike initiation by monitoring simultaneously the CFCTs

in two spiny branchlets. In these paired optical recordings (Fig-

ure 5F), unitary transients (the first of the CFCT) always occurred

earlier at proximal sites (latency from the first sodium spike

1.52 ± 0.12 ms; n = 4) than at distal sites (1.79 ± 0.19 ms, addi-

tional distance 28.2 ± 9.0 mm). This timing difference was not ac-

counted by a change in the rise kinetics of the unitary transients

(Figure 5F). When pooled from eight cells, the delay between the

peak of the first sodium spike of the complex spike and the half-

rise time of the first unitary transient was linearly correlated to the

distance of the optical recording site from the soma with an esti-

mated propagation speed of 81 mm ms�1 (r = 0.68, p = 0.016)

(Figure 5G). Hence, in contrast to dendritic calcium spikes

evoked by strong PF stimulations that are initiated in the stimu-

lated distal dendrite and propagate toward the soma (Llinás

et al., 1969), CF-evoked calcium spikes are initiated in proximal

dendrites.

To examine whether dendritic calcium spikes were triggered

directly by somatic sodium spikes within the complex spike,

we determined the time of occurrence of unitary fluorescence

transients in individual traces by interpolation of their half-rise

point. The latencies of the first and second unitary fluorescence

transients from the peak of the 1st sodium spike were 1.87 ±

0.44 ms and 4.81 ± 0.69 ms (±SD; n = 8 cells). The first unitary

transient was more tightly time locked to the complex spike

(jitter = SD of the latency = 379 ± 75 ms; ±SD) than the second

one (jitter 550 ± 155 ms; ±SD). Cross-correlograms of the time

of occurrence of somatic sodium spikes within the complex

spike and of dendritic unitary calcium transients were computed

(Figure S4). The correlation was not found to be significantly

different (2 SD) from random correlation in four of five cells, as

assessed by shuffling spikes between episodes. Hence, high-

threshold calcium spikes are initiated in the proximal dendrites

independently of somatic sodium spikes.
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It has been proposed that the fast repolarization of spikes by

Kv3 channels decreases their capacity to propagate in dendrites

(Martina et al., 2003; Stuart and Häusser, 1994). We tested

whether dendritic calcium spike propagation was impeded by

high-threshold Kv3 potassium channels by blocking these chan-

nels with low concentrations of 4-AP (Figures S5A and S5B and

Supplemental Information). The shape of the somatic complex

spike was modified by 4-AP (Figures S5C–S5H), and large

regenerative calcium events (Figure S5I) could be imaged in

distal dendrites (Figures 5H and 5I). However, multiple spikes

were never evoked (n = 10 cells; 17 branchlets) even at the

most depolarized potentials, in contrast with the bursts occur-

ring after mGluR1 activation. Furthermore, propagation of this

single spike at distal sites (Figure S5J) remained regulated by

the somatic membrane potential (Figures 5J and S5K). These

results indicate that Kv3 channels, while involved in dendritic cal-

cium spike repolarization, are not key in the mGluR1-mediated

modulation of dendritic calcium electrogenesis.

Identification of a Low-Threshold A-type K+

Conductance
We looked for themolecular substrate ofmGluR1modulation and

voltage-dependent spike unlocking. Because DHPG appears

to regulate dendritic calcium spike initiation, it must act on

voltage-gated channels activated rapidly below spike threshold.

A-type potassium channels, because of their voltage-dependent

inactivation, are the best candidates to modulate dendritic excit-

ability. Two components of A-type conductanceswere described

in Purkinje cells from young animals (Sacco and Tempia, 2002).

The first can be activated from a holding potential of �73 mV by

depolarizing steps above �50 mV (Figures 6A and 6B, red trian-

gles). Addition of 4 mM TEA blocked this high-threshold A-type

conductance as well as the high-threshold noninactivating Kv3

channels (Sacco and Tempia, 2002). Subsequent hyperpolar-

ization of the holding potential from �73 mV to �93 mV revealed

a second component of low-threshold A-type K+ conductance

(ISA) that activated around �65 mV (Figures 6A and 6B, blue

circles).

Activation of the isolated ISA conductance proceeded with a

V1/2 of �42.1 ± 0.9 mV (n = 5) and a k of 8.4 ± 0.2 mV (blue sym-

bols, Figure 6B). The ISA component activated in 2.8 ± 0.8 ms

(n = 5) at�43mVand in 1.2 ± 0.1ms (n = 7) at�3mV,much faster

than the high-threshold A-type component (activation: 14.3 ±

1.9 ms at �43 mV, 2.5 ± 0.3 ms at �3 mV, n = 7) (Figures 6A,

6C, and S6A). The activation kinetics of both components was

voltage dependent (exponential constant of 33.0 mV versus

23.5 mV for ISA and high-threshold A-type, respectively) (Fig-

ure 6C). The inactivation of ISA could be fitted by the sum of

two exponential functions. The fast and slow time constants

were 22.3 ± 3.4 ms (relative contribution: 69.7% ± 5.8%)

(n = 5) and 96.4 ± 14.7 ms (n = 5) at �43 mV and 15.8 ± 3.6 ms

(57.0% ± 3.9%) and 82.8 ± 19.1 ms (n = 5) at �3 mV (Figure S6).

The time course of inactivation of the high-threshold A-type

component isolated at a holding potential of �73 mV was also

much slower than that of ISA (116 ± 11 ms, 100%, at �43 mV

and 55 ± 4 ms, 60.2% ± 4.1% at �3 mV, n = 7) (Figure S6), con-

firming that the two types of conductance are mediated by

different channels. Hence, ISA displays the properties required



A Vh = -73 mV

-3 mV

-63 mV

-43 mV

-68 mV

200 ms

2 nA

Vh = -93 mV (TEA)

5 %
20 ms

B

-70 0
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
ar

iz
ed

 c
on

du
ct

an
ce

Test potential (mV) -60 0
0

6

12

18

A
ct

iv
at

io
n 

tim
e 

co
ns

ta
nt

 (m
s)

Test potential (mV)

C

100ms

500pA

-98mV
-48mV

2min
10min
Washout
Control

+Phr Toxin

D

E

F G

H

I

Nuclei Cytopl. Membr.
PC dendrites

Cytopl. Membr.
PC spines

Cytopl. Membr.
Interneurons

Im
m

un
op

ar
tic

le
 d

en
si

ty
 (g

ol
d/

µm
2 )

I A I SA

I SA

I A
I SA

I A

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 tr
an

si
en

t c
ur

re
nt

N
orm

alized conductance

Test/Prepulse potential (mV)
-100 -50

Figure 6. Purkinje Cells Express a Low-Threshold Inactivating K+ Conductance

(A–C) Characteristics of the low-threshold K+ conductance (ISA) current. (A) Calcium-independent K+ currents evoked by 1 s test pulses to potential between

�63mV and�3mV in 10mV increments from a holding potential (Vh) of�73mV (red) or�93mV (blue). IA (red) display a transient phase and/or a sustained phase

slowly activated and blocked by 4mM TEA. A low-threshold fast-activating current, fully inactivated at�73mV (ISA), is recorded from Vh =�93mV in presence of

TEA (blue). Two different cells are shown. Differential rise times of the two K+ currents (bottom) are shown after normalization to peak amplitude at�3 mV (traces

between �68 mV and �43 mV in 5 mV increments on expanded timescale). (B) Boltzmann function fit to normalized conductances of peak currents of IA (seven

cells, red triangles) and ISA (five cells, blue circles) (see Supplemental Experimental Procedures). Note that a test potential at�50mVwill allow recording almost in

isolation of ISA. (C) Rise time constants obtained by fitting the product of two exponential functions describing activation and inactivation to the current onset.

(D and E) ISA induced under physiological condition is blocked by phrixotoxin-2, a selective KV4 blocker. (D) Puffs of 10 mM phrixotoxin (purple trace) reversibly

block ISA recorded almost in isolation by step depolarization to�48mV (see Figure 6B). (E) Normalized steady-state inactivation (circles) and activation (triangles)

curves of K+ transient current before (blue) and after (purple) phrixotoxin application (n = 3). Inactivation was induced by changing the prepulse potential from�98

to �48 mV in 5 mV increments while keeping test potential at �48 mV, and activation curve was obtained by maintaining prepulse potential at �98 mV and

changing step depolarization. Note the composite origin of traces obtained in presence of toxin: some unblocked low-threshold IA, plus an about 20%

contaminant high-threshold IA expected at – 50 mV (cf. activation curves in Figure 6B). Error bars shows ±SEM.

(F and G) The plasmamembrane of rat Purkinje cell dendritic shafts and spines contains immunoreactive Kv4.3 subunits. An EMmicrograph shows a Purkinje cell

dendrite (P). (F) Some gold particles (arrows) are present along the cytoplasmic side of the plasma membrane and others (arrowheads) are located in the

cytoplasm. (G) Some Purkinje cell spines (s) are also labeled (arrows).

(H) The plasma membrane of an interneuron dendrite (D) contains high density of gold particles.

(I) Kv4.3 immunogold density values (mean ± SD, n = 4). Significant differences from nuclear background are labeled by *p < 0.05. Scale bars, 400 nm.
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to implement spike gating: fast activation and large inactivation

at hyperpolarized potentials.

ISA Encoded byKv4.3 Subunits Is Expressed inDendrites
and Spines
The properties of the ISA conductances are similar to those of the

native and recombinant conductances encoded by the Kv4

channel family. We sought to verify that Kv4 ISA conductance

is the dominant K+ conductance activated at hyperpolarized po-

tential under physiological conditions. Normal physiological in-

ternal and external solutions were used and K+ conductances
were isolated by blocking Ih (10 mM ZD7288), low-threshold

T-type channels (5 mM mibefradil), sodium channels (0.5 mM

TTX), and GABAA receptors (5 mM SR-95531). IA was activated

by a test potential to �48 mV, at the foot of the high threshold

IA activation curve (see Figure 6B), from a prepulse potential

of �98 mV. These currents were reduced by 10 mM Phrixo-

toxin-2 (a specific blocker of Kv4 channels) applied through a

local puff pipette (Figure 6E) to 44.4% ± 8.1% of control (n =

3). This block was slowly reversible in about 10 min (Figure 6D).

Computing the activation and inactivation curves of the tran-

sient K+ current before and after toxin application (Figure 6E)
Neuron 84, 137–151, October 1, 2014 ª2014 Elsevier Inc. 145
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Figure 7. KV4 Channels Downregulation

Underlies Spike Unlocking

(A) Steady-state inactivation curves of ISA currents

recorded under physiological condition in the

absence (filled circle, n = 8) and presence (open

circle, n = 4) of 20 mM DHPG. For the inactivation

curves, the amplitude of the transient current

evoked by steps to �48 mV after 1 s prepulses to

potential from�108 to�58mV in 5mV increments

were normalized to the amplitude obtained by

prepulse at �108 mV. These results were plotted

against the prepulse potential and fitted using a

Boltzmann function (see Results).

(B) Normalized conductances of the transient

currents evoked from Vh =�98 mV in the absence

(black circle, n = 8) and the presence (open circle,

n = 4) of 20 mM DHPG. Boltzmann fits are shown

by continuous line. For control currents, fit is ac-

cording to Figure 6B data (gray circle, n = 5). For

data in presence of DHPG, see Results. Error bars

show ±SEM.

(C) Phrixotoxin application induces spike-like

CFCTs. Examples of the electrophysiological

traces (top, and middle on expanded timescale)

and corresponding CFCTs (bottom traces) when

applying a CF stimulation (at arrowhead) in the

absence (yellow) and the presence (green, red,

and blue) of 2 mM toxin (single stimulations). Color

code of calcium spikes number is as in (D). Broken

line indicates �83 mV.

(D) Averaged data from three cells recorded in absence and presence of 1–2 mM phrixotoxin (white and gray circles, respectively). Note the only slight

sensitivity of the discharge to membrane potential (compared to the DHPG-induced sensitivity in Figure 3D).
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confirmed that the block only affected the ISA current with

low inactivation threshold, while leaving untouched contami-

nating high-threshold IA most noticeable at prepulse potentials

of �63 mV and above (about 20% of total control current).

Kv4.3 mRNA expression has been reported in Purkinje cells

(Serôdio et al., 1996). The protein is abundantly expressed in the

molecular layer (Amarillo et al., 2008) and is found at high levels

at specialized junctions made between CFs and molecular layer

interneurons (Kollo et al., 2006). Pre-embedding immunogold re-

actions were carried out to investigate whether the Kv4.3 subunit

of A-typepotassiumchannels is also present on theplasmamem-

braneof ratPurkinjecells.Goldparticledensitiesalong theplasma

membrane of Purkinje cell dendritic shafts and spineswere signif-

icantly (p<0.001) higher than thenonspecificbackground labeling

measured over the nuclei, indicating that the plasma membranes

of Purkinje cells contain the Kv4.3 subunit (Figures 6F and 6G).

This quantitative analysis also confirmed the significant labeling

of interneuron plasma membranes, as shown previously (Kollo

et al., 2006) (Figure 6H). No significant difference between the la-

beling intensity of Purkinje cell dendritic shafts and spines was

found (Figure 6I). The presence of Kv4.3 subunits in Purkinje cell

spine and dendritic shaft plasma membranes was also demon-

strated in P22 mouse with SDS-digested freeze-fracture replica-

immunolabeling technique in cerebellum (Figure S7).

DHPG Causes a Hyperpolarizing Shift of the Inactivation
of Kv4 Channels
Using the same near-physiological isolation conditions as in Fig-

ures 6A–6E, we tested whether mGluR1 activation modulates
146 Neuron 84, 137–151, October 1, 2014 ª2014 Elsevier Inc.
Kv4 conductance. Application of DHPG shifted the midinactiva-

tion of the Kv4 channels from �75.3 ± 0.7 mV to �86.3 ± 2.3 mV

(p = 0.008) without changing the inactivation slope (from �5.9 ±

0.4 mV to �5.9 ± 0.5 mV, p = 0.933) (Figure 7A). The activation

curve (Figure7B)wasalsoshiftedby6mVtowardahyperpolarized

potential (as deduced by fitting Boltzmann equations to the partial

activation curves and normalizing to the extrapolated maximal

transient current deduced from the ISA data in Figure 6B). The

leftward shift in the inactivation curve will decrease the available

Kv4 conductance at all holding potentials ranging from �100 mV

to �60 mV. At midunlocking potential for the calcium spikes

(�72 mV; see Figure 3F) the available conductance is reduced

by more than 60%. In conclusion, the shift of 11 mV in the Kv4

inactivation curve appears large enough to explain the voltage-

dependent spike unlocking induced by DHPG (Figures 3F).

If Kv4 inactivation underlies the voltage and mGluR1 depen-

dence of spike unlocking, blocking Kv4 conductance with Phrix-

otoxin should produce constitutive voltage-independent spike

unlocking.Applicationof 1–2mMtoxin througha local superfusion

pipette led toastrongpotentiationof theCFCT (0.047±0.004DG/

R at �77 ± 0.4 mV in control, n = 103 CF stimulations; 0.155 ±

0.006 DG/R at �79 ± 0.6 mV, n = 44 CF stimulations; p < 0.001,

n = 3 cells) and to the appearance of high-threshold spike bursts

(one to three spikes) in the distal dendrites of three out of five cells

(Figure 7C). The other cells only displayed a mild increase in the

calcium transient amplitude, probably due to insufficient penetra-

tion of the toxin in the slice. As anticipated, the voltage-depen-

dence of the spike number and of the peak CFCT amplitude in

the three cells responding to the toxin was greatly reduced
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Figure 8. Local Initiation of Spike-like

CFCTs in the Purkinje Cell Dendrite by

Concomitant PF and CF Stimulations

(A) Optical recording sites (139 mm from soma) and

glass pipette position for PF stimulation, for data in

(B) and (C). Inset shows the nine POIs, all placed

on spines activated by PF stimulation.

(B) Somaticmembranepotential (top) and averaged

CFCTs (bottom) under three conditions: single CF

stimulus (arrowhead) at Vh =�73mV (black traces),

under spontaneous firing (0 pA holding current) (red

traces), and 20ms after ten PF stimuli (vertical short

line) at 100 Hz under spontaneous firing (0 pA

holding current) (blue traces). CFCTs represent

averages over 10, 5, and 9 CF stimuli, respectively.

Note that the CFCT is increased by depolarization

(Figures 3E and 3F) and further transformed into a

spike-like CFCT by a preceding PF stimulation.

(C) Superimposed CFTCs recorded in (B) to show

at expanded timescale the distinct onset kinetics

estimated by fitting logistic functions (green).

(D) Calcium flux evaluated from nine spiny branchlets in eight cells. Colors indicate the recording conditions, as in (B). Data from the same spiny branchlet are

connected with lines: open circles and open triangles (spiny branchlets selected for their terminal distal position). Arrowhead points to recordings illustrated in

(A)–(C) and to filled circles in (E). Filled circles and triangles represent averaged data under each condition. Broken line indicates the criteria for calcium spike,

obtained in Figure 5D. Error bars represent SEM.

(E) Same data as in (D) with (blue) or without (red) pairing of PF stimuli preceding the CF stimulation as a function of the distance from soma. Vertical line indicates

the largest distance to soma from which a calcium spike was evoked (�140 mm).
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compared to DHPG (Figures 8D and 3F) (22% decrease of CFCT

amplitude and 36% decrease in number of spike between�59 ±

0.5 mV and�81 ± 0.5 mV in Phrixotoxin; 80% decrease of CFCT

amplitude and 94% decrease in number of spike between�62 ±

0.1 mV and �80 ± 0.3 mV in DHPG). Hence, activation of low-

threshold Kv4 channels limits the initiation of high-threshold

spike in proximal dendrites during CF-evoked dendritic EPSPs.

Increased inactivationofKv4 channels by activity-dependent sig-

nals (depolarization and mGluR1 activation) can fully account for

the observed dendritic spike unlocking.

PF Beam Stimulation of Spiny Dendrites Unlocks
CF-Evoked Calcium Spikes
Because PF stimulations can both activate mGluR1 receptors

and depolarize the distal dendrites, we tested whether PF stim-

ulations similar to the ones used for LTD induction protocols

could produce spike unlocking. As previously shown (Hildebrand

et al., 2009), a burst of ten PF beam stimulations at 100–200 Hz

produced a calcium transient mediated by T-type voltage-gated

calcium channels in a circumscribed region of the dendrites.

Pairing of the PF stimulation with the CF stimulation (5–20 ms

after PF offset) at depolarized potentials (spontaneous firing)

increased the CFCT measured within the PF responsive region

from 0.071 ± 0.006 DG/R to 0.094 ± 0.005 DG/R (p = 0.016,

paired t test, n = 5) (Figures 8B and 8C). This potentiation re-

sulted in a calcium flux shift from subthreshold regime (0.087 ±

0.013 DG/R$ms�1) to suprathreshold regime (0.211 ± 0.021

DG/R$ms�1) in all the cells (n = 5) (Figures 8C and 8D, circles).

Multiple spikes were never observed. This milder effect can be

explained by the persistence of Kv4 channels in the dendrites

outside of the stimulated PF beam.

The spatial restriction of the effect was further tested by PF

stimulation of extremely distal spiny branchlets (soma distance
above 150 mm). At these locations, the sensitivity to somatic de-

polarization appeared reduced (hyperpolarized 0.021 ± 0.008

DG/R, depolarized 0.031 ± 0.005 DG/R) and the CFCT was

only mildly potentiated by PF pairing (0.039 ± 0.004 DG/R

n = 4), remaining well below spike threshold (control calcium

flux 0.017 ± 0.003 DG/R$ms�1; paired calcium flux 0.028 ±

0.009 DG/R$ms�1) (Figures 8D and 8E, triangles). Hence, focal

PF beam stimulations can unlock local nonpropagated CF

induced P/Q spikes but only if the PF input is not too remote

from the proximal initiation sites in the smooth dendrites. Wide-

spread PF input over the whole dendritic tree would probably be

necessary to achieve global unlocking.

DISCUSSION

We used RAMPmicroscopy to map CFCTs at high temporal res-

olution and resolve calcium spikes in optical recordings from

Purkinje cell spiny dendrites. In contrast to the stereotypical so-

matic complex spike, we find that dendritic calcium electrogen-

esis is a regulated process. In a subthreshold regime, calcium

influx decreases with distance from the soma and is mediated

by T-type channels activation. In a suprathreshold regime, bursts

of P/Q calcium spikes propagate from the smooth dendrites to

the spiny branchlets. The gating between these two regimes is

under the control of two activity-dependent signals, mGluR1

activation and Purkinje cell depolarization. Kv4.3 channel modu-

lation by mGluR1 mediates this gating.

Optical Recording of CalciumElectrogenesis in Purkinje
Cell Dendrites
Whether small-amplitude short-lasting spikelets in Purkinje cell

smooth dendrites (Davie et al., 2008; Fujita, 1968; Kitamura

and Häusser, 2011; Llinás and Hess, 1976; Rancz and Häusser,
Neuron 84, 137–151, October 1, 2014 ª2014 Elsevier Inc. 147
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2006) are caused by actual regenerative propagated calcium

spikes has remained unclear. Our optical recordings suggest

that fast-repolarizing events may occur in smooth dendrites

and proximal spiny dendrites in basal conditions but fail to prop-

agate distally as full-blown spikes. The associated CFCT de-

creases with distance from the soma, reaching undetectable

levels in distal dendrites, as previously suggested by wide-field

imaging data (Miyakawa et al., 1992; Ross and Werman, 1987).

Spikelets may thus represent failed regenerative events crown-

ing the large CF excitatory postsynaptic current (EPSC). Interest-

ingly, previous dendritic recordings indicate that CF stimulations

evoke a single spikelet, only rarely followed by a second one

(Davie et al., 2008; Kitamura and Häusser, 2011; Llinás and

Sugimori, 1980), as expected for local regenerative amplification

at the peak of the CF EPSC. Strong PF stimulations can also pro-

duce local calcium influx mediated by high-threshold P/Q chan-

nels (Rancz and Häusser, 2006), which are recorded as spikelets

from the nearby smooth dendrites (Rancz and Häusser, 2006),

further supporting that low-amplitude spikelets recorded elec-

trophysiologically cannot be unambiguously associated with

the occurrence of high-threshold propagated dendritic calcium

spikes.

Electrophysiological techniques fail to provide accurate mea-

sure of the time course of fast regenerative events in dendrites,

due to filtering and dampening by leak, pipette access resis-

tance, and capacitive load. The temporal resolution of optical re-

cordings of calcium transients is defined by the time constant

of calcium binding to the dye, which is approximately 2 ms for

500 mM Fluo5F, assuming a kon of 109 M�1 s�1 (Lattanzio and

Bartschat, 1991). The stimulus-evoked change in fluorescence

is linearly related to the cumulative Ca influx up to the dye con-

centration (Higley and Sabatini, 2008). Using these advantages,

we provide unambiguous description of nondecremental, all-or-

none, high-threshold calcium spikes mediated by P/Q type

channels. The calculated charge corresponding to a calcium

spike is 3.6 fC entering each spine, with a half-time of 400 ms

(see Supplemental Information). This would depolarize the spine

by 180 mV, strongly suggesting that calcium spikes are over-

shooting in spiny branchlets, unlike spikelets recorded electro-

physiologically (Davie et al., 2008; Fujita, 1968; Rancz and

Häusser, 2006).

High-rate paired optical recordings indicate that CFCTs prop-

agate at a speed of 80 mm.ms�1, slightly slower than assessed

from field potential recordings in vivo (Llinás and Hess, 1976; Lli-

nás et al., 1968). After full unlocking of the dendrites by mGluR1

activation and depolarization, CFCTs are composed of high-fre-

quency bursts (500Hz) of calcium spikes, consistent with graded

variations of global CFCT amplitudes previously reported at

lower temporal resolution (Miyakawa et al., 1992; Ross andWer-

man, 1987). Variability of the number of spikes in each burst or

failure of spikes to propagate in some dendritic branches may

arise from the stochastic nature of P/Q channels activation

(Anwar et al., 2013).

Mechanisms Underlying Dendritic Spike Gating
In pyramidal neurons, fast activation of a low-threshold A-type

K+ conductance (ISA) controls the capacity of spikes to back

propagate in distal dendrites (Hoffman et al., 1997). In Purkinje
148 Neuron 84, 137–151, October 1, 2014 ª2014 Elsevier Inc.
cells, the potentiating effect of strong somatic depolarizations

(Cavelier et al., 2002; Chan et al., 1989) and that of direct field de-

polarization (Midtgaard et al., 1993) on calcium transients and

spikes evoked by CF and PF stimulation has also been tenta-

tively attributed to the inactivation of an unidentified dendritic

A-type or delayed conductance. Dendrotoxin-sensitive, Kv1-

encoded, dendritic A-type conductances have been shown to

modulate somatic sodium spike rate and control the duration

of the complex spike (Khavandgar et al., 2005; McKay et al.,

2005) in Purkinje cells. Our data rule out the role of these chan-

nels in gating dendritic spikes. We show that the Kv4.3 subunit

is present in Purkinje cell spines and shafts and mediate a fast-

activating ISA. The block of this ISA by phrixotoxin unlocks den-

dritic calcium spikes, as mGluR1 activation does. By shifting

the inactivation curve of ISA toward hyperpolarized potentials,

mGluR1 activation decreases the availability of these channels

at Purkinje cell resting membrane potential and favors both the

proximal initiation of calcium spikes and their propagation into

spiny dendrites. Membrane potential may then influence calcium

spike genesis in two distinct ways. First the somatic membrane

potential imposes a bias on the spike initiation site, thus control-

ling the number of calcium spikes emitted on top of the CF EPSP.

Second, somatic depolarization preceding the CF EPSP can

spread electrotonically (Roth and Häusser, 2001) and increase

the inactivation of Kv4.3 channels in spiny dendrites, favoring

calcium spike initiation and propagation. Direct synaptic control

of dendritic membrane potential by inhibitory interneurons has

been shown to inhibit CF calcium signaling (Callaway et al.,

1995; Kitamura and Häusser, 2011). We propose that the effect

of synaptic hyperpolarization may be amplified by an increase in

ISA availability through recovery from inactivation.

Molecular Layer Activity and Activation of mGluR1
Receptors
mGluR1 receptors are activated at PF synapses by high-fre-

quency granule cell firing (Finch and Augustine, 1998; Marcaggi

et al., 2009; Takechi et al., 1998), similar to those produced in vivo

by physiological patterns of activity (Barmack and Yakhnitsa,

2008; Bengtsson and Jörntell, 2009; Chadderton et al., 2004;

Ekerot and Jörntell, 2008; Rancz et al., 2007). Given the long

time course of metabotropic effects, physiological levels of

granule cell activity may maintain a substantial level of mGluR1

signaling (Marcaggi et al., 2009), crosstalk between GABAB,

and mGluR1 receptors activation (Hirono et al., 2001) adding

integration of molecular layer interneurons activity. Pooling of

glutamate between multiple CFs by spillover (Szapiro and

Barbour, 2007) may also ‘‘contribute’’ to widespread mGluR1

tone in the molecular layer during local CF synchrony (Ozden

et al., 2009). It is therefore likely that spike unlocking by mGluR1

occurs at physiological levels of molecular layer activity.

CFCTs have been recorded in the distal dendrites of Purkinje

cells in vivo (Ozden et al., 2009; Schultz et al., 2009; Sullivan

et al., 2005). However, in the absence of pharmacological data

or high-frequency optical recordings, it remains unclear whether

these CFCTs arise from subthreshold T-type channels activation

or from propagated P/Q spikes. Quantitative measurements of

the CFCTs have been obtained in the anesthetized animal during

membrane voltage manipulations (Kitamura and Häusser, 2011).
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In that study, CFCT potentiation by depolarization is modest,

except for extreme depolarized plateau potentials, and therefore

similar to the voltage dependence that we report in absence of

DHPG. This is consistent with granule cell activity being reduced

in the anesthetized animal (Bengtsson and Jörntell, 2007).

Elevated PF activity found in the behaving animal is probably

necessary to unlock dendritic calcium spikes.

CF Graded Calcium Signaling and Cerebellar Learning
Strong high-frequency PF beam stimulations can produce local

(Canepari and Vogt, 2008; Rancz and Häusser, 2006) or propa-

gated (Llinás et al., 1969) calcium spikes. However, milder

stimulations at similar frequencies will only produce a smaller,

T-mediated, local calcium influx (Brenowitz and Regehr, 2005;

Wang et al., 2000) that can be restricted to individual spines

(Denk et al., 1995; Hildebrand et al., 2009). T-type signaling is

required for the induction of long-term potentiation at PF synap-

ses by trains of PF stimulations (Ly et al., 2013). Pairing mild PF

stimulations with CF stimulations will evoke local dendritic cal-

cium transients that are much larger than those triggered by

CF stimulations alone (Brenowitz and Regehr, 2005; Canepari

and Vogt, 2008; Wang et al., 2000) and that have been used to

trigger short-term (Brenowitz and Regehr, 2005) and long-term

(Canepari and Vogt, 2008; Ito and Kano, 1982; Wang et al.,

2000) plasticity.

The mechanisms underlying associative CF/PF calcium

signaling are not well understood. High-frequency PF bursts

activate postsynaptic mGluR1s (Finch and Augustine, 1998;

Takechi et al., 1998). The subsequent mobilization of IP3-sensi-

tive calcium stores by the CF-mediated calcium transient (Sarki-

sov and Wang, 2008), as a result of the calcium dependence of

IP3 receptors, has been proposed to mediate associative cal-

cium signaling and plasticity (Miyata et al., 2000; Wang et al.,

2000). However, supralinear summation of calcium transients

during associative PF-CF stimulations is also regulated by the

membrane potential (Brenowitz and Regehr, 2005; Canepari

and Vogt, 2008) and becomes mGluR1-independent for larger

PF stimulations, suggesting the involvement of voltage-gated

processes (Wang et al., 2000) upstreamof store release. Further-

more, IP3 stores are not required for the induction of short-term

depression by associative PF-CF stimulations (Brenowitz and

Regehr, 2005). We show here that PF-CF paired stimulations

may unlock calcium spikes locally in Purkinje cell dendrites

through voltage-dependent Kv4 channel modulation. However,

global molecular layer activity in addition to local stimulation is

probably required to achieve widespread dendritic unlocking

and dendritic spike propagation.

Our findings suggest a framework for activity-dependent

cerebellar learning. First, increased activity in the molecular

layer will favor calcium spikes and PF synaptic depression, play-

ing a homeostatic role. Second, Purkinje cell discharge rate will

gate calcium spikes and thus synaptic plasticity. Transitions to a

hyperpolarized state (Loewenstein et al., 2005; Williams et al.,

2002) may prevent the induction of synaptic plasticity, for

example, in Purkinje cells that are not used by ongoing motor

tasks. Decreased PF synapse depression at reduced firing

rate may prevent learning saturation. Furthermore, our results

suggest a mechanism by which synaptic plasticity may be
induced by altered PF or Purkinje cell activity, even with unal-

tered CF activity, as recently shown during vestibulo-ocular

learning protocols (Ke et al., 2009). Finally, gating calcium spikes

offers a substrate for metaplasticity, as in hippocampal neurons

(Losonczy et al., 2008), through long-term regulations of Purkinje

cell dendritic excitability, as observed following learning proto-

cols in vivo (Schreurs et al., 1998) and in vitro (Belmeguenai

et al., 2010).

EXPERIMENTAL PROCEDURES

Calcium Imaging

CFCTs weremonitored at high speed (kHz) by two-photon random-accessmi-

croscopy, using acousto-optic deflector (AOD)-based scanning (Otsu et al.,

2008). Two-photon excitation was produced by an infrared Ti-Sa pulsed laser

(Tsunami pumped by a 6 W Millenia VI, 400 mW output at 700 fs, Spectra-

Physics) tuned to 825 nm. A custom-made user interface programmed under

Labview was used to coordinate scanning protocols and signal acquisition.

Fluorescence photons were detected by a cooled AsGaP photomultiplier

(H7421-40, Hamamatsu) discriminated and counted on a fast digital card.

Externally triggered episodes of 500–1,500 points (100 ms–1.3 s) were used

to avoid phototoxicity.

Relative fluorescence was expressed as DG/R, i.e., variations in Fluo-4 or

Fluo-5F signals change (DG) divided by calcium-independent Alexa 594 fluo-

rescence (R). This ratiometric method scales the calcium fluorescence signal

to the volume of the imaged compartment yielding a measurement of the

dye-bound cytoplasmic calcium concentration independent of the dendritic

geometry. To monitor basal Ca2+, we used Go/R, where Go is the basal fluo-

rescence before CF stimulation.

Experiments were carried in compliance with the ethic recommendations

of the CNRS.

For additional information, see online Supplemental Experimental

Procedures.
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