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Tau antibody isotype induces differential 
effects following passive immunisation of tau 
transgenic mice
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Abstract 

One of the main pathological hallmarks of Alzheimer’s disease (AD) is the intraneuronal accumulation of hyper‑
phosphorylated tau. Passive immunotherapy is a promising strategy for the treatment of AD and there are currently 
a number of tau-specific monoclonal antibodies in clinical trials. A proposed mechanism of action is to engage 
and clear extracellular, pathogenic forms of tau. This process has been shown in vitro to be facilitated by microglial 
phagocytosis through interactions between the antibody-tau complex and microglial Fc-receptors. As this interaction 
is mediated by the conformation of the antibody’s Fc domain, this suggests that the antibody isotype may affect the 
microglial phagocytosis and clearance of tau, and hence, the overall efficacy of tau antibodies. We therefore aimed to 
directly compare the efficacy of the tau-specific antibody, RN2N, cloned into a murine IgG1/κ framework, which has 
low affinity Fc-receptor binding, to that cloned into a murine IgG2a/κ framework, which has high affinity Fc-receptor 
binding. Our results demonstrate, for RN2N, that although enhanced microglial activation via the IgG2a/κ isotype 
increased extracellular tau phagocytosis in vitro, the IgG1/κ isoform demonstrated enhanced ability to reduce tau 
pathology and microgliosis following passive immunisation of the P301L tau transgenic pR5 mouse model.
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Introducion
Alzheimer’s disease (AD) is characterised pathologically 
by the extracellular accumulation of amyloid-β (Aβ) as 
plaques and the intraneuronal accumulation of hyper-
phosphorylated tau as neurofibrillary tangles. While Aβ 
plaques and tau tangles characterize the neuropathology 
of end-stage AD, it is the small oligomers of Aβ and tau 
that correlate best with the neurotoxicity driving AD’s 

early clinical impairments. These small molecules act in 
concert to exert their effects in such a way that reduc-
tions in tau appear to abrogate Aβ-mediated toxicity [1]. 
This makes tau an attractive therapeutic target [2]. Pas-
sive immunotherapy is emerging as a promising strategy 
for the treatment of these diseases and there are cur-
rently a number of tau-specific monoclonal antibodies 
in clinical trials [3, 4]. Despite tau being predominantly 
localised within neurons, increasing evidence suggests 
that pathogenic tau is secreted and able to seed neuronal 
pathology in a prion-like manner [5, 6]. Therefore, the 
mechanism of action for some antibodies may not rely on 
antibody cellular uptake but rather the ability to engage 
with and clear extracellular pathogenic forms of tau and 
reduce neuron-to-neuron propagation [7–10]. In support 
of these proposed mechanisms, tau-specific monoclonal 
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antibodies have been demonstrated to facilitate micro-
glial phagocytosis of extracellular tau in  vitro [11], and 
this process has been shown to require Fcγ-receptor 
binding and functional lysosomes [12].

Fc receptor binding is mediated by the conformation 
of the Fc domain of an antibody. Humans have five IgG 
isotypes (IgG1, IgG2a, IgG2b, IgG3 and IgG4); mice also 
have five IgG isotypes but these differ in their nomencla-
ture (IgG1, IgG2a, IgG2b, IgG2c, IgG3). These subclasses 
mediate effector functions differently due to variable 
specificity and affinity for Fc receptors (FcR), including 
the intracellular Fc receptor, TRIM21, the neonatal Fc 
receptor and the family of Fcγ receptors (FcγRIa, FcγRIII, 
FcγRIV and FcγRIIb) [13]. For example, the murine IgG1 
only binds FcγRII and FcγRIII with low affinity, whereas 
murine IgG2a binds to all receptors in the following 
order of affinity: FcγRI > FcγRIV > FcγRIII > FcγRIIb [13]. 
Human IgG1 is the most similar to murine IgG2a as 
they both have the strongest binding to FcγRs and there-
fore the greatest ability to activate microglia and induce 
phagocytosis of the antibody-antigen complex. Human 
IgG4 on the other hand is most similar to murine IgG1 as 
they display the weakest ability interact with FcγRs and 
are poor activators of microglia. This was demonstrated 
by Adolfsson et  al. who directly compared an anti-Aβ 
antibody, MABT, as a human IgG1 isotype and a human 
IgG4 isotype, containing the same antigen-binding vari-
able domains and with equal binding to Aβ. They showed 
reduced activation of stress-activated p38MAPK (p38 
mitogen-activated protein kinase) in microglia and less 
release of the proinflammatory cytokine TNFα follow-
ing treatment with MABT IgG4, compared with the IgG1 
isotype [14]. This suggests that whilst a tau-specific mon-
oclonal antibody in a high effector-function isotype may 
induce the greatest amount of tau phagocytosis, the sub-
sequent release of pro-inflammatory cytokines may be 
deleterious in vivo.

We therefore aimed to investigate if the IgG isotype 
specifically affects the therapeutic efficacy of an anti-tau 
antibody. To achieve this, we cloned the variable domains 
of our previously characterised RN2N antibody, which 
is specific for 2  N tau isoforms [15], into both murine 
IgG1/κ and IgG2a/κ backbones and directly compared 
their ability to reduce tau. Here we show that despite 
RN2N IgG2a demonstrating an enhanced ability to clear 
tau in vitro, RN2N IgG1 demonstrated a superior ability 
to reduce tau inclusions and microgliosis following pas-
sive immunization of tau transgenic pR5 mice.

Materials and methods
Antibodies
Primary antibodies used for western blot (WB), immu-
nohistochemistry (IHC) and immunofluorescence (IF) 

in this study were as follows: Dako Tau (Dako) (WB: 
1:10,000), AT180 (pTau231) and AT8 (pTau202/205) 
(Thermo Fisher) (WB: 1:1000) (IF: 1:500), pTau422 
(GeneTex) (WB: 1:1,000) and IBA1 (Wako) (IHC: 1:400). 
The secondary antibodies used in this study were as 
follows: Goat anti-mouse Alexa Fluor 488 (Thermo 
Fisher) (IF: 1:500), polyclonal goat anti-rabbit IgG bioti-
nylated (Dako) (IHC: 1:500), goat anti-mouse IR800 
(WB:1:10,000) and goat anti-rabbit IR800 (WB: 1:10,000).

Antibody generation
RN2N is a 2  N-tau specific antibody raised against the 
tau peptide TEIPEGITAEEAGI (aa 84–97 of the longest 
human tau isoform, tau441) [15]. The variable light and 
variable heavy chains of RN2N were previously cloned 
into a mouse IgG2a/κ framework [15]. For this study, the 
variable domains were also cloned into a mouse IgG1/κ 
framework (mAbXpress vectors kindly provided by the 
Queensland node of the National Biologics Facility) as 
previously described [16]. IgG was purified by affinity 
chromatography then buffer exchanged into 1 × phos-
phate-buffered saline (PBS) (Protein Expression Facility, 
The University of Queensland). The concentration of the 
purified RN2N was determined using a NanoDrop 2000 
(Thermo Scientific).

Recombinant human tau
A cDNA encoding full-length human tau was cloned 
into the pET-DEST42 vector (Thermo Fisher Scientific) 
in frame with the C-terminal His6 and V5 tag. Plasmids 
were transformed into One Shot BL21 bacterial cells 
(Thermo Fisher Scientific) and recombinant protein 
expression was induced with 1 mM IPTG. Protein puri-
fication was conducted following the protocol outlined in 
[17].

Surface plasmon resonance
Surface plasmon resonance measurements were con-
ducted at the Monash Fragment Platform, Monash 
University, using the Biacore S200 biosensor (GE Health-
care). Biotinylated RN2N was captured on a streptavidin-
coated CM5 chip (GE Healthcare). For biotinylation, 
RN2N IgG1 (29.5 μM) in PBS was added in a 1:1 ratio to 
EZ-link NHS-LC-LC-biotin (Thermo Fisher Scientific) 
and incubated at 25  °C for 1  h. The antibody was sepa-
rated from free, unconjugated biotin by size-exclusion 
chromatography on a Superdex 200 10/300 GL (GE 
Healthcare) column equilibrated in PBS. Streptavidin 
was immobilized on the CM5 chip using amine coupling 
at 37  °C. Antibody was captured at 25  °C, using a flow-
rate of 10 µL/min in PBS. Tau binding experiments were 
run using single-cycle kinetics at 25  °C with the run-
ning buffer (12  mM Na2HPO4, 287  mM NaCl, 2.7  mM 
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KCl, 1.8 mM KH2PO4, 0.05% Tween-20 pH 7.4). Tau was 
injected for 120 s at a flow rate of 40 µL/min with a dis-
sociation time of 600 s, using 8 concentrations of tau (1/3 
serial dilutions from 0.0128 to 1,000 nM). The data were 
processed using Biacore S200 Evaluation Software Ver-
sion 1.0, double referenced against blank injections of 
buffer and fit to a Steady State Affinity model using report 
points 4 s before the injection end, with a 5 s window.

BV2 phagocytosis assay
BV2 cells were cultured in DMEM supplemented with 
5% heat-inactivated fetal calf serum. 24 h prior to treat-
ment, cells were plated at 1.25 × 105 cells/well in a 12-well 
plate and allowed to attach overnight. For microscopy, 
BV2 cells were plated on Poly-D-Lysine (Sigma) coated 
glass coverslips 24 h prior to treatment. RN2N IgG and 
recombinant hTau were conjugated to Alexa Fluor-
488 (AF488) (Thermo Fisher) and pHrodo Red protein 
(Thermo Fisher), respectively, according to the manu-
facturer’s instructions. hTau-pHrodo (50  nM) was incu-
bated either with or without RN2N IgG-AF488 (50 nM) 
in Opti-MEM (Thermo Fisher) at room temperature for 
1  h. For flow cytometric analysis, proteins were added 
to plated cells and incubated for 2 h at 37  °C, then cells 
were trypsinized and resuspended in Hanks’ balanced 
salt solution (Life Technologies) containing 1% FBS and 
1 mM EDTA. Excitation at 488 nM and 560 nM (BD LSR 
II Analyser) was conducted and data was analysed using 
FlowJo v10 software (Tree Star). The integrated fluores-
cence intensity (% Parent x Mean 488 nM intensity) was 
then calculated. For microscopy, proteins were added to 
plated cells and incubated for 2 h at 37 °C then cells were 
fixed with 2% paraformaldehyde (PFA) (Sigma), washed 
with PBS then counterstained with DAPI (Dako). Cells 
were washed again with PBS and then mounted onto 
microscope slides. Imaging was performed using the 
Axio Imager Z2 (Zeiss).

sqRT‑PCR analysis
For qPCR analysis, protein were added to plated cells and 
incubated for either 2 or 8 h at 37 °C. Cells were then col-
lected and RNA isolated as described below. Total RNA 
was isolated from treated BV2 cells using TRIzol reagent 
(LifeTechnologies), following the manufacturer protocol. 
Reverse transcription of 200 µg total RNA was performed 
using SuperScript III reverse transcriptase (LifeTech-
nologies) and random hexamer primers (LifeTechnolo-
gies). Semi-quantitative RT-PCR was performed using 
1 µL of the resulting cDNA in a 5 µL total volume con-
taining SSoAdvanced Sybr Green (BioRad) and murine 
primers (IDT) targeting the genes of interest. For ampli-
fication and recording, a CFX384 Touch machine (Bio-
Rad) was used, and the results were evaluated using the 

manufacturer’s software. Amplification specificity was 
confirmed by melting curve analysis, with quantification 
performed using the ΔΔCt method.

Mice
All animal experiments were conducted under the guide-
lines of the Australian Code of Practice for the Care and 
Use of Animals for Scientific Purposes and approved by 
the University of Queensland Animal Ethics Committee 
(QBI/412/14/NHMRC; QBI/027/12/NHMRC). pR5 mice 
express 2N4R tau with the P301L mutation under the 
control of the mThy.1.2 promoter [18].

In vivo imaging
6  month-old pR5 mice were randomly assigned to one 
of the following groups: no antibody, RN2N IgG1 and 
RN2N IgG2a. 24 h prior to treatment, animals were anes-
thetized with ketamine (100 mg/kg) and xylazine (10 mg/
kg), their whole body shaved and residual hair removed 
using hair removal cream. Immediately prior to treat-
ment, all animals were anesthetized again and prepared 
as previously described [19]. For the antibody groups, 
3 nmol of either RN2N IgG1 or RN2N IgG2a conjugated 
to AlexaFluor 647 (Life Technologies) was injected retro-
orbitally. Mice were kept under 1–2% isoflurane and were 
scanned 1  h post-treatment using a Bruker In  Vivo MS 
FX Pro optical imaging system with x-ray and a 630 nm 
excitation and a 700  nm emission filter. Whole animal 
scans were analyzed using Bruker Molecular Imaging 
software. An ellipsoid region of interest (ROI) was drawn 
in the brain of each mouse at every time point post-treat-
ment, with the calibrated unit of radiant efficiency (P/s/
mm2) being reported for each ROI. Raw signal was log-
transformed to improve Q-Q plot normality.

Passive immunisation of mice
Four month-old female pR5 mice were randomly assigned 
to three treatment groups (n = 10 per group): Control, 
RN2N IgG1 and RN2N IgG2a. Aged-matched wild-type 
(WT) littermate control mice were also assigned to a WT 
group for behavioural testing. pR5 mice were injected 
intraperitoneally once per week for 12 weeks with either 
100 μL PBS (control) or 40 mg/kg RN2N IgG1 or RN2N 
IgG2a. Mice were weighed every week.

Elevated plus maze
Anxiety-like behavior was assessed in the elevated plus 
maze (EPM) as previously described [20] with some 
modifications. Briefly, mice were placed in the central 
area of the maze (elevated cross-shaped apparatus with 
a central square, and closed as well as open arms with 
unprotected edges). The time spent in the three zones 
over a 5  min period was recorded using an overhead 
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camera with EthovisionXT™ tracking software (Ethovi-
sion). The percentage time spent in each arm was calcu-
lated. Seven untreated wild-type (WT) littermates were 
used as controls. Analysis was conducted blinded.

Open field
The open field test was used to assess general animal 
activity, exploration and anxiety. The open field consists 
of a square-shaped box where animal movement, posi-
tion and speed is monitored by infrared beam breaks 
that project across the open field along the X, Y and Z 
axes. Mice were placed in the centre of the box and were 
allowed to explore for 20  min. The software was set up 
according to the General Open Field test from the Activ-
ity Monitor version 7 manual (MED Associates, Inc.). All 
data was transmitted to a PC and analysed using Activity 
Monitor 7 software, SOF-812 (MED Associates, Inc.).

Tissue processing
24  h after behavioural testing, mice were anaesthetised 
and transcardially perfused with PBS. Their brains were 
harvested and the hemispheres separated. The right 
hemisphere was immersion-fixed in 4% PFA (Sigma) 
for 24 h, and then embedded in paraffin using a bench-
top tissue processor (Leica). Coronal paraffin-embedded 
brain Sects.  (7 and 14  μm thickness) between Bregma 
−  1.34  mm and −  2.06  mm were obtained using a 
microtome. The left hemisphere was snap-frozen in 
liquid nitrogen and stored at −  80  °C until further 
processing.

Fractionation of brain tissue
Brains from treated mice were extracted using the RAB/
RIPA fractionation method [21]. Brain tissue was homog-
enized in 6X volume of RAB Buffer (Astral Scientific), 
followed by centrifugation at 21,000 ×  g for 90 min. The 
supernatant (soluble tau) was collected for western blot 
analysis. The pellet was resuspended in RIPA buffer (Cell 
Signalling) then centrifuged at 21,000 × g for 90 min. The 
supernatant (insoluble tau) was collected for western blot 
analysis. Protein concentrations were measured using a 
BCA protein assay kit (Thermo Fisher).

Western blot analysis
15  μg of total protein was electrophoresed on a 10% 
Tris–glycine SDS-PAGE gel. Proteins were transferred 
to Immun-Blot Low Fluorescence PVDF membrane 
(Bio-Rad) using the Transblot Turbo Transfer System 
(Bio-Rad) and then stained with REVERTTM 700 Total 
Protein Stain according to the manufacturer’s instruc-
tions (LI-COR). Total protein was imaged in the 700 nm 
channel with the Odyssey FC Imaging System (LI-COR) 
then membranes were washed and blocked for 30  min 

in Odyssey® Blocking Buffer (LiCOR). Membranes were 
incubated in primary antibody overnight at 4 °C by rock-
ing. Membranes were washed with TBS and incubated 
with the secondary antibody for 30 min at room temper-
ature. Membranes were imaged in the 800  nm channel 
and fluorescence was quantified using the Image Studio™ 
Lite software (LI-COR).

Immunohistochemistry
Mounted brain tissue was first dehydrated in a series of 
xylene and ethanol washes. Antigen retrieval was con-
ducted in a domestic microwave (850  W) in citrate 
buffer pH 5.8 for 15  min, followed by cooling at room 
temperature for 40  min. Paraffin-embedded brain sec-
tions between Bregma −  1.34  mm and −  2.06  mm 
were analysed by immunohistochemistry as described 
[22], using at least 4 sections per mouse. Briefly, sec-
tions were incubated with primary antibodies overnight. 
For immunofluorescence staining, 7  μm sections were 
washed and incubated with respective secondary anti-
bodies, then counterstained with DAPI nuclear stain (4′, 
6-diamidino-2-phenylindole) (1:5000). For immunohis-
tochemistry staining, 14 μm sections were stained using 
the nickel-diaminobenzidine (Nickel-DAB) method with 
no counterstain applied. All images were obtained on an 
automated slide scanner (Axio Imager Z2, Zeiss) using a 
Metafer Vslide Scanner program (Metasystems) at 20 × 
magnification.

Image analysis
Image quantification and analysis were performed 
blinded using ImageJ software. For all analyses, a no pri-
mary antibody control was used for thresholding. More 
specifically, for immunofluorescence staining quantifica-
tion, percentage (%) area positivity for AT8- and AT180-
tau were obtained on thresholded images of the amygdala 
using the area fraction method. For Nickel-DAB stain-
ing quantification, Iba1 percentage (%) immunoreactive 
area (area fraction method) and Iba1-positive average 
cell sizes were obtained by using the Analyse Particles 
plugin on thresholded images of an area of the primary 
somatosensory cortex which was particularly positive for 
AT180- and AT8-tau in the transgenic mice used in this 
study. The regions of interest (ROIs) drawn in the Iba1 
analyses were kept constant across images. All measure-
ments were noted and averaged over 2–3 sections per 
mouse.

Statistical analysis
Statistical analyses were performed with GraphPad 
Prism 8 software using one-way ANOVA with Tukey’s 
multiple comparison test. All values are given as the 
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mean ± standard error of the mean (SEM). Outliers were 
removed using the ROUT method (Q = 1).

Results
Antibody isotypes do not affect binding to tau
We have previously cloned the RN2N variable domains 
into a murine IgG2a/κ backbone (RN2N IgG2a) and 
determined its binding affinity to recombinant human 
tau to be 381 nM [23]. To directly compare our tau anti-
body in different IgG isotype backbones, we cloned the 
RN2N variable domains into a murine IgG1/κ backbone 
(RN2N IgG1) and conducted surface plasmon resonance 
as done in our previous study [23] (Fig. 1a). The binding 
affinity to human recombinant tau was calculated to be 
407  nM (Fig.  1b), demonstrating that RN2N IgG1 and 
IgG2a have comparable binding affinities to human tau. 
Furthermore, both RN2N isotypes detected 2 N tau iso-
forms following western blotting of brain extracts from 
pR5 tau transgenic and wild-type mice but not in brain 
extracts of tau knock-out mice (Fig. 1c).

RN2N IgG2a treatment demonstrates enhanced 
phagocytosis of tau‑antibody complex by BV2 microglia 
cells compared to RN2N IgG1 treated cells
To investigate the ability of the RN2N IgG isotypes to 
activate microglial phagocytosis of tau, BV2 microglial 
cells were treated with recombinant human tau conju-
gated to pH-rodo in the absence or presence of RN2N 
IgG. FACS analysis revealed that tau on its own, and 
when incubated with the control IgGs, was phagocy-
tosed to a small extent (Fig.  2a). This was significantly 
increased, however, when tau was incubated with RN2N 
IgG1, and even more so when incubated with RN2N 
IgG2a (Fig.  2a). This demonstrates that the binding of 
RN2N to tau specifically stimulates microglial phagocy-
tosis and that RN2N IgG2a is more efficient at mediating 
tau phagocytosis compared to RN2N IgG1. This was also 
observed by microscopy, which showed increased phago-
cytosis of tau in the presence of RN2N IgG2a, compared 
to in the absence of IgG, and only minimal phagocytosis 
of tau in the presence of RN2N IgG1 (Fig. 2b).
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Fig. 1  Generation and characterisation of RN2N IgG1 and IgG2a isotypes. a Schematic of generation of RN2N IgG1 and IgG2a monoclonal 
antibodies using mAbXpress IgG vectors. b Single-cycle kinetics sensorgram of RN2N IgG1 to full-length human tau and summary table of RN2N 
IgG1 and RN2N IgG2a binding affinity (KD) to full-length human tau determined using surface plasmon resonance. The KD of RN2N IgG1 and 
RN2N IgG2a was 407 nM and 381 nM, respectively. c Western blot of mouse soluble brain extracts probed with RN2N IgG1 and IgG2a antibodies 
indicating similar binding profiles to tau (pR5 = pR5 tau transgenic mouse; WT = wild-type mouse; KO = tau knock-out mouse)
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RN2N IgG2a, but not RN2N IgG1, induces pro‑inflammatory 
cytokine transcription following treatment
Microglial stimulation of the Fc receptors can lead to 
pro-inflammatory cytokine release. Therefore, to deter-
mine if tau-specific antibody isotypes resulted in dif-
ferent levels of pro-inflammatory cytokine release, 

sqRT-PCR was conducted on cells treated with or with-
out the two IgG formats for 2 or 8 h. At 2 h, transcrip-
tion of the pro-inflammatory cytokine, tumor necrosis 
factor alpha (TNFα), was significantly increased in BV2 
cells treated with tau in the presence of RN2N IgG2a, 
but not in the RN2N IgG1 treated group (Fig. 2c). How-
ever, this effect was absent at 8  h (Fig.  2c). Similarly, 

a

b c

Fig. 2   a RN2N IgG2a treatment demonstrates enhanced BV2 microglial cell phagocytosis of tau and increased transcription of pro-inflammatory 
cytokines. Flow cytometric analysis and quantification of tau-pHrodo fluorescence in BV2 microglial cells treated with either RN2N IgG1, RN2N 
IgG2a, control IgG1 or control IgG2a (***p < 0.001, ****p < 0.0001; n = 3 for each group). b Representative microscopy images of BV2 microglial cells 
treated with RN2N and human recombinant tau showing phagocytosis of RN2N IgG (green) and internalized Tau-pHrodo (red) complexes. Nuclei 
were stained with DAPI in blue. Scale bar = 20 μm. c BV2 microglial cells were treated with recombinant human tau with or without RN2N IgG, and 
TNFα and IL1-β transcription was analysed using sqRT-PCR at 2 or 8 h post-treatment (*p < 0.05; n = 3 for each group)



Page 7 of 13Bajracharya et al. acta neuropathol commun            (2021) 9:42 	

at 2  h, transcription of the pro-inflammatory cytokine 
interleukin 1 beta (IL1-β), showed a trend towards an 
increase in the RN2N IgG2a treated cells compared to 
those treated with tau alone or in the presence of RN2N 
IgG1, and this effect was also absent at 8  h (Fig.  2c). 
These findings suggest that the engagement of tau by 
RN2N IgG2a, but not RN2N IgG1, and the subsequent 
stimulation of microglia, result in the increased acute 
production of pro-inflammatory cytokines.

Treatment with RN2N IgG2a, but not IgG1, induces 
a disinhibition‑like behaviour in pR5 mice
Our in  vitro studies have demonstrated that RN2N in 
the high FcR-binding IgG2a format enhances microglial 
phagocytosis of tau compared to the low FcR-binding 
IgG1 format. This process, however, results in a transient 
increase in expression of pro-inflammatory cytokines 

which might reduce the therapeutic efficacy of RN2N in 
the IgG2a format. We therefore aimed to determine the 
ability of both RN2N IgG formats to reduce tau pathol-
ogy in P301L tau transgenic pR5 mice which express the 
longest brain tau isoform, 2N4R, and are characterized 
by progressive tau pathology predominantly in the amyg-
dala and to a lesser extent in the hippocampus and cor-
tex [18]. Prior to treating mice, we sought to compare the 
delivery of the different RN2N isotypes to the brains of 
these mice (Fig. 3a). In vivo whole-body imaging 1 h post 
intravenous delivery of fluorescently-conjugated RN2N 
IgG revealed that both RN2N isotypes were detected in 
the brains of mice (Fig. 3a), with no significant difference 
between IgG1 and IgG2a following quantification of the 
fluorescence intensity in the brains of the mice (Fig. 3a). 
This suggests that any differences in efficacy follow-
ing passive immunisation of pR5 mice is not likely due 
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to differences in brain uptake. We then went on to treat 
pR5 mice once per week for twelve weeks with either 
vehicle only (PBS), RN2N IgG1 or RN2N IgG2a (Fig. 3b). 
Upon completion of the treatment, the behaviour of the 
pR5 mice was investigated using the elevated plus maze 
(EPM) (Fig. 3c). We have previously shown that pR5 mice 
have increased anxiety-like behaviour as characterised by 
a reduction in the time spent in the open arm of the EPM 
[15]. In the current study, however, there was no differ-
ence in the time spent in the open arm between the WT 
and pR5 mice, suggesting a loss of this behavioural phe-
notype in this cohort of pR5 mice possibly due to genetic 
drifting (Fig.  3c). Interestingly, however, mice treated 
with RN2N IgG2a, demonstrated a significant increase in 
the time spent in the open arms of the EPM compared 
to the control pR5 mice and mice treated with RN2N 
IgG1 (Fig. 3c), suggesting an increase in disinhibition-like 
behaviour in these mice. Furthermore, pR5 mice treated 
with IgG2a, but not IgG1, showed a trend towards an 
increase in weight gain over the course of the treatment 
(Fig. 3d). In the open field, however, there was no differ-
ences observed between the treatment groups in the time 
spent in the centre zone (Fig. 3e), resting time (Fig. 3f ) or 
ambulatory time (Fig. 3g).

Phosphorylated soluble and insoluble total tau 
levels are reduced independent of antibody isotype 
following passive immunization of pR5 mice
To investigate the effect the different RN2N isotypes 
had on tau pathology, the brains of treated mice were 
dissected and analysed by western blotting following 
sequential protein extraction (Fig. 4a). In the RAB-solu-
ble fractions, western blotting with the human tau-spe-
cific antibody, Dako Tau, demonstrated no differences in 
total tau in mice treated with RN2N compared to control 
treated mice (Fig. 4b). The phospho-tau specific antibod-
ies AT8 and AT180, however, demonstrated a significant 
reduction in tau phosphorylated at these epitopes fol-
lowing treatment with both RN2N isotypes compared 
to control treated mice. Interestingly, there was a signifi-
cant difference in the amount of AT180 immunoreactive 
tau in the RN2N treated groups with the IgG1 isotype 
reducing AT180 immunoreactive tau to a greater extent 
than IgG2a. On the other hand, investigation of serine 
422-phosphorylated tau revealed no significant differ-
ence in the RN2N treated groups compared to control 
(Fig. 4b). In the RIPA fraction, however, which contains 
insoluble, pathogenic species of tau, a reduction in total 
tau was observed in RN2N treated mice, regardless of 
isotype, compared to control mice (Fig.  4c). This was 
also seen with the phosphorylated-tau specific antibod-
ies, AT8 and anti-serine 422. It is important to note that 
AT180 immunoreactive tau in the RIPA fraction was 

below the detection limit of the assay. Taken together, 
these data demonstrate the ability of both RN2N IgG1 
and IgG2a to reduce tau phosphorylation and reduce the 
formation of insoluble tau species.

RN2N IgG1, but not RN2N IgG2a, reduces tau inclusions 
in the amygdala following passive immunization of pR5 
mice
To determine the effect of RN2N treatment on the for-
mation of tau inclusions, phosphorylated tau positive 
neurons in the amygdala, the main brain region that is 
affected in pR5 mice at this age [18], were counted fol-
lowing immunofluorescence analysis. Treatment with 
RN2N IgG1, but not IgG2a, significantly reduced the 
number of AT180 positive inclusions compared to con-
trol treated mice (Fig. 5). Quantification of AT8-positive 
tau inclusions in this region, however, did not show a sig-
nificant difference in the RN2N-treated groups compared 
to control mice, although there was a trend towards a 
reduction in the IgG1-treated mice compared to control 
mice (Fig. 5).

RN2N IgG1, but not RN2N IgG2a, reduces microgliosis 
following passive immunization of pR5 mice
Tau transgenic mice are known to exhibit increased 
microgliosis and this can be demonstrated by staining 
for Iba1, a cytoplasmic microglial marker [24]. In the pR5 
mice, we observed an increase in the number of Iba1-
positive microglia in the cortex compared to WT litter-
mate controls (Fig. 6). To determine the effect of antibody 
isotype on microgliosis following passive immunisation, 
brain sections of treated mice were labelled with Iba1. 
Total cortical microglial surface area, cell count and aver-
age cell body size were all significantly reduced in the 
mice treated with RN2N IgG1, but not RN2N IgG2a, 
compared to the PBS treated mice, suggesting that only 
IgG1 treatment can reduce microgliosis observed in tau 
transgenic mice (Fig. 6).

Discussion
Tau-targeting passive immunotherapy is a promising 
strategy for the treatment of AD, with a number of mon-
oclonal antibodies currently in clinical trials, delivered as 
either a humanized IgG1 or IgG4 isotype [25]. As a direct 
comparison of a tau monoclonal antibody as a high-effec-
tor function isotype and low-effector function isotype 
has not previously been conducted, we therefore aimed 
to directly compare the in vitro and in vivo efficacy of our 
RN2N tau-specific antibody in two murine IgG-isotypes: 
(i) the high-affinity FcR-binding IgG2a (equivalent to 
human IgG1), and (ii) the low-affinity FcR-binding IgG1 
(equivalent to human IgG4).
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Here, we demonstrate that RN2N, in both the IgG1 
and IgG2a format, reduced insoluble tau in the P301L 
tau transgenic pR5 mouse model. The reduction in tau 
pathology was more pronounced in the IgG1-treated 
group, however, with only IgG1 reducing phospho-tau 
positive inclusions in the amygdala. Furthermore, only 
IgG1 treatment was able to reduce microgliosis. This 
is despite the IgG2a isotype demonstrating enhanced 
phagocytosis of tau in  vitro. Treatment with the IgG2a 
isotype in  vitro, however, increased the secretion of 
pro-inflammatory cytokines following tau engagement, 

suggesting that enhanced phagocytosis and/or enhanced 
microglial activation with the subsequent release of pro-
inflammatory cytokines may be able to induce indirect 
disease toxicity and overshadow therapeutic effects of a 
tau-specific antibody. This is consistent with the work of 
Lee et al. who demonstrated that although a full-effector 
antibody and an effector-less antibody reduced the accu-
mulation of tau pathology following treatment of P301L 
tau transgenic mice, only the effector-less tau antibody 
protected neurons from tau-induced toxicity in vitro [26]. 
In addition, recent studies have shown that microglia are 
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able to take up and secrete tau seeds capable of seed-
ing pathology for neuron-to-neuron propagation [27]. 
Furthermore, tau-mediated activation of the microglial 
inflammasome was shown to increase the activity of 

caspase-1 and downstream IL-1β release, thereby induc-
ing tau pathology [28].

Beyond the effect of the RN2N antibodies on tau 
pathology, we also observed a surprising behavioural 

Fig. 5  RN2N IgG1 treatment reduces AT180-positive tau inclusions in the amygdala of pR5 mice. a Representative images of AT8 immunoreactivity 
observed in the amygdala of pR5 mice in each treatment group and quantification of % area positivity of AT8-positive cells in the amygdala (PBS: 
n = 9; IgG: n = 10; IgG2a: n = 10). b Representative images of AT180 immunoreactivity observed in the amygdala of pR5 mice in each treatment 
group and quantification of % area positivity of AT180-positive cells in the amygdala (PBS: n = 10; IgG1: n = 9; IgG2a: n = 10). There was a significant 
reduction in % area positivity of AT180 in the amygdala in mice treated with IgG1 compared to mice treated with PBS. *p ≤ 0.05. Scale bars: left 
panel, 200 μm; right panel, 50 μm
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phenotype in the RN2N IgG2a treated mice. In the EPM, 
the RN2N IgG2a treatment group demonstrated a dis-
inhibition-like behaviour, demonstrated by an increased 
time spent in the open arms of the EPM, that was not 
observed in the RN2N IgG1 treated group. In the open 
field, however, all treatment groups similarly avoided the 
centre zone, indicating similar anxiety levels. This high-
lights a disinhibition-like behaviour rather than reduced 
anxiety levels. Disinhibition-like behaviour has been pre-
viously reported in a number of mutant tau transgenic 
mouse models when compared to non-transgenic mice in 
the EPM [29–34]. In addition, a disinhibition-like behav-
iour has been observed in a mouse model of traumatic 
brain injury which is characterised by both tau pathol-
ogy and microgliosis following injury [35]. This suggests 
that pathology caused by tau accumulation or possibly 
microglial activation, particularly in the amygdala, may 
contribute to impulsivity and disinhibition-like behaviour 
in mice. Therefore, rather than improving therapeutic 
outcomes, treatment with the IgG2a isotype may actually 
worsen mouse behaviour to recapitulate the behaviour 
observed in human disease.

Whilst enhanced microglial activation in the IgG2a 
treated mice and subsequent release of pro-inflamma-
tory cytokines is one explanation for the differences we 
observed between RN2N IgG1 and RN2N IgG2a in vivo, 
the physicochemical properties of the Fc domains is 

another explanation for these differences. A study by 
Congdon et al. showed that neuronal uptake of tau anti-
bodies and their efficacy strongly depends on antibody 
charge, with an increase in antibody charge inhibiting 
the antibody’s ability to be internalized by neurons [36]. 
RN2N IgG1 has a net charge of 0.4, whereas RN2N IgG2a 
has one of 3.3, suggesting that RN2N IgG1 may have 
an enhanced ability to be internalised into neurons and 
target intraneuronal tau. To date, however, we have not 
observed any intraneuronal uptake of RN2N IgG in our 
experiments.

Taken together, our study supports the growing body of 
evidence that demonstrates that high tau-antibody effec-
tor function is not required for antibody efficacy follow-
ing passive immunization and that a robust microglial 
response in vivo may be deleterious. Therefore, low-effec-
tor function tau antibody isotypes, such as humanized 
IgG4, and engineered antibodies that lack effector-func-
tion all together, such as scFvs [15], Fabs and effector-less 
IgGs [26], may be safer and more effective alternatives for 
clinical development.

Abbreviations
AD: Alzheimer’s disease; IgG: Immunoglobulin; FcR: Fc receptor; scFv: Single-
chain variable fragment; TNFα: Tumor necrosis factor alpha; IL1-β: Interleukin 1 
beta; Iba1: Ionized calcium-binding adaptor protein-1.

Fig. 6  RN2N IgG1 reduces microgliosis following passive immunization. Iba1 labelling of cortical brain sections of WT and pR5 mice in three 
treatment groups. PBS and IgG2a treated pR5 mice demonstrate a significant increase in the Iba1-positive percentage area, cell count and average 
cell size compared to WT mice. Treatment of pR5 mice with IgG1 restores Iba1-positive percentage area, cell count, and average cell size to WT 
levels (WT: n = 9; PBS: n = 10: IgG1: n = 9; IgG2a: n = 10). **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. Scale bar: 100 μm
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