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Adaptive tolerance to a pathogenic
fungus drives major histocompatibility
complex evolution in natural amphibian
populations

Anna E. Savage† and Kelly R. Zamudio

Department of Ecology and Evolutionary Biology, Cornell University, Corson Hall, Ithaca, NY 14853, USA

Amphibians have been affected globally by the disease chytridiomycosis,

caused by the fungus Batrachochytrium dendrobatidis (Bd), and we are just

now beginning to understand how immunogenetic variability contributes to

disease susceptibility. Lineages of an expressed major histocompatibility

complex (MHC) class II locus involved in acquired immunity are associated

with chytridiomycosis susceptibility in controlled laboratory challenge

assays. Here, we extend these findings to natural populations that vary both

in exposure and response to Bd. We find that MHC alleles and supertypes

associated with Bd survival in the field show a molecular signal of positive

selection, while those associated with susceptibility do not, supporting the

hypothesis that heritable Bd tolerance is rapidly evolving. We compare

MHC supertypes to neutral loci to demonstrate where selection versus demo-

graphy is shaping MHC variability. One population with Bd tolerance in

nature shows a significant signal of directional selection for the same allele

(allele Q) that was significantly associated with survival in an earlier labora-

tory study. Our findings indicate that selective pressure for Bd survival

drives rapid immunogenetic adaptation in some natural populations, despite

differences in environment and demography. Our field-based analysis of

immunogenetic variation confirms that natural amphibian populations have

the evolutionary potential to adapt to chytridiomycosis.
1. Introduction
Emerging infectious diseases are key threats to wildlife populations [1] that often

have complex, varied, or uncertain causes [2]. Fungal diseases in particular are on

the rise [3], thus understanding the mechanisms of immune system response to

fungal pathogens is of particular importance for predicting whether wildlife popu-

lations can adapt to novel infections. The amphibian disease chytridiomycosis,

caused by the fungus Batrachochytrium dendrobatidis (Bd), has resulted in the decline

or extinction of hundreds of species worldwide [3–5]. Amphibian species demon-

strate a wide range of responses to chytridiomycosis [6] that are largely driven

by environment, ecology, and life history [7–10]. Controlled laboratory exper-

iments show that host immunological responses also contribute to Bd resistance

[11–15], but it has proved difficult to quantify differences in susceptibility

among species or natural populations because of the confounding effects of

environment, pathogen dynamics, and host demographic factors contributing to

disease [16–18]. Thus, the potential evolution of host resistance in response

to this emergent disease remains largely unexplored in natural populations.

Amphibian immune systems are structurally and functionally similar to

other vertebrates in possessing innate and acquired immune pathways [19].

One important host immune component contributing to Bd responses is the

major histocompatibility complex (MHC), a family of immune-related genes

conserved across vertebrates [20]. Class I and II MHC molecules bind pathogen
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molecules on their peptide-binding regions (PBRs) and present

them to T-cells to initiate an acquired immune response [21].

This central role in initiating immunity creates strong selection

on MHC loci for numerous polymorphisms and gene copies,

thereby maximizing the array of pathogens that can be recog-

nized [22,23]. Class II MHC genes are expressed on immune

surveillance cells in amphibian skin [19,24] and typically recog-

nize bacterial and fungal pathogens, whereas class I molecules

are involved primarily in viral immunity and self-discrimination

[25]. Class II loci are, therefore, ideal targets for the study of

immunogenetic responses to chytridiomycosis, a fungal disease

that infects amphibian epidermal cells [3].

Natural wildlife populations show correlations between

MHC polymorphism and disease susceptibility [22]. Four non-

exclusive evolutionary mechanisms potentially explain MHC

allele distributions after pathogen-imposed selection in popu-

lations. First, overdominance may arise if MHC heterozygotes

are able to bind a wider inventory of antigens [26], resulting in

higher fitness compared with homozygotes [27]. Second, direc-

tional selection may occur if a specific allelic lineage that confers

resistance to a common pathogen increases in frequency over

successive generations [28,29]. Third, frequency-dependent

selection may occur when pathogens become adapted to the

most common host genotype and rare MHC alleles confer a

selective advantage until they become common [30–32]. Finally,

diversifying selection for numerous resistance-conferring alleles

within a spatially heterogeneous selective landscape [33] may

cause balanced MHC polymorphism, a pattern that is indistin-

guishable from frequency-dependent selection [22,34]. Each of

these mechanisms have probably shaped MHC diversity over

the history of natural populations; thus, teasing apart the specific

immunogenetic consequences of Bd-imposed selection will

require multiple lines of evidence and the ability to distinguish

historical versus recent selective events.

In anurans, the MHC genomic region has been character-

ized in two model species, Xenopus laevis [35,36] and Silurana
tropicalis [37]. Both species have the ancestral tetrapod MHC

gene organization [38,39] and diverged early in the anuran

phylogeny [40]. Experimental studies in Silurana find that

under some conditions, Bd infection activates innate immune

defences [41] or minimal immune responses [42], while

under other conditions, acquired immunity is induced [14].

Interestingly, the Bd-susceptible species Rana muscosa and

R. sierrae, are similar to Silurana in that they show no evidence

of a robust immune response [42]. By contrast, the highly sus-

ceptible Atelopus zeteki mounts both innate and acquired

immune defences against Bd in challenge experiments, but

these efforts are not protective and previous Bd exposure

does not increase survival [43]. In other species, exposure to

Bd increases subsequent immunity; previous Bd exposure in

Osteopilus septentrionalis decreased pathogen burden and

increased lymphocyte proliferation and survival [14]. Bd also

potentially suppresses effective acquired immune responses.

Anuran T- and B-cells are killed by Bd in vitro [13], and

expression of T-cell pathway genes are suppressed in exper-

imentally Bd infected individuals compared with controls in

four frog species [44]. Uncertainty thus remains over the

necessary immune system components, antigenic targets, and

particularly the gene by environment interactions that lead to

an effective immune response against Bd.

Variation in MHC genes has been characterized in natural

amphibian populations that differ in susceptibility to non-

fungal pathogens [28,45,46] as well as Bd [12,15]. In Bufo
calamita, class II genotype frequencies varied in a pattern

consistent with directional selection in response to pathogen

prevalence among populations [12], and a comparison of class

II diversity across nine amphibian genera with Bd susceptibility

data found that more resistant species and populations have

common amino acids in peptide-binding pockets [15]. Com-

bined, these studies indicate a functional role for MHC genes

in natural chytridiomycosis dynamics.

Lithobates yavapaiensis is a North American frog that has

declined due to seasonal chytridiomycosis outbreaks since at

least 1990 [12,47]. Our earlier experimental Bd infections of

laboratory-reared L. yavapaiensis from five natural populations

identified specific class II MHC genotypes that were associated

with survival within and among populations [11]. Both MHC

heterozygotes and individuals bearing MHC allele Q had sig-

nificantly higher probabilities of surviving Bd infection [48].

Bataille et al. [15] subsequently extended these findings with

experimental Bd infections of the Australian tree frog Litoria
verreauxii alpina, and survival was significantly associated

with MHC alleles with amino acid substitutions in the same

region where we detected positive selection acting on allele

Q. Here, we test the generality of our experimental infec-

tion results in natural populations, and ask whether the same

signatures of selection and immunogenetic predictors of sus-

ceptibility can be found among individuals from populations

that differ in their demographic responses to Bd. We character-

ize class II MHC in field-sampled frogs from eight populations

currently infected with Bd, and interpret genetic variation at

this locus in the light of our published multi-year seasonal

field estimates of population and individual Bd susceptibilities

[11,16]. We also compare neutral genetic markers with immu-

nogenetic genotypes to identify significant signals of natural

selection in response to chytridiomycosis. We extend the exper-

imental finding that immunogenetic variation determines Bd
susceptibility by elucidating the mechanisms of evolutionary

response to disease across a variable ecological and environ-

mental landscape, predicting the potential for evolution of

resistance in natural populations.
2. Material and methods
(a) Field surveys
We surveyed eight L. yavapaiensis populations for Bd and chytridio-

mycosis during winter months (January–February) of 2007–2011

[11,16], the time of year when Bd mortalities occur in this species

[16]. Using standardized protocols [49], we swabbed the epidermis

of all individuals and used quantitative PCR to measure infection

intensity (the number of Bd genome equivalents (GE) recovered

per swab). We categorized each dead individual that tested

positive for Bd infection as a chytridiomycosis mortality event.

Additionally, we collected any individual with signs of chytridio-

mycosis (skin redness, lethargy, failure to seek shelter, and loss of

righting ability) for overnight observation, and also categorized

these as chytridiomycosis-induced mortality events if death

occurred within 24 h and the individual tested positive for Bd.

All eight populations were surveyed greater than or equal to two

times per winter, and because L. yavapaiensis is a stream-dwelling

species, inhabiting shallow flowing water and small plunge pools,

the sites could be exhaustively screened for dead and dying

individuals. Populations could, therefore, be definitively character-

ized for Bd susceptibility based on the number of frogs found dead

or dying with Bd infection. By contrast, the ultimate fate of individ-

uals sampled alive could not be determined for the five
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populations with mortality (i.e. they could hypothetically develop

chytrydiomycosis at a later time point). Our analyses thus measure

genetic correlates of Bd-susceptible frogs rather than directly asses-

sing Bd survival. We estimated Bd and chytridiomycosis mortality

prevalence and 95% Clopper–Pearson binomial confidence

intervals [50] for each L. yavapaiensis population.

(b) Microsatellite genotyping
We previously genotyped 128 L. yavapaiensis individuals at 14

unlinked microsatellite loci using published protocols [16,17,51].

We used GENEPOP v. 3.4 [48] to calculate observed and expected

heterozygosity and test for deviations from Hardy–Weinberg

equilibrium at each locus and population locality using a Monte-

Carlo chain method (1 000 dememorizations, 100 batches, 1 000

iterations) [52] with Bonferroni correction for multiple tests

(adjusted p ¼ 0.00022).

(c) Major histocompatibility complex amplification,
cloning, and sequencing

We extracted genomic DNA from ethanol-preserved toe clips

from the same 128 individuals that were microsatellite geno-

typed. The majority (108) of individuals were sampled in

winter, but for populations with prohibitively small winter

sample sizes (CIC, TV, and WC), we sampled 20 additional

frogs collected in the summers of 2006–2007. We used a degen-

erate forward primer [45] and a ranid frog intron-specific reverse

primer [11,46] to amplify 249 base pairs (bp) of exon 2 (which

encompasses the peptide-binding region) and 189 bp of adjacent

30-flanking intron of an expressed MHC class II locus. We used

previously published protocols to amplify, clone, and sequence

MHC alleles [11,46]. We screened each MHC sequence and

only retained those obtained from at least two clones. For each

individual, sequences recovered only once with less than or

equal to two nucleotide differences to other cloned sequences

were attributed to PCR/cloning errors and discarded. After

excluding these sequences, no more than two unique MHC

alleles were recovered from any individual. To assess the fre-

quency of artefactual alleles arising from cloning, we also used

the same MHC primers with 454 adapters added to the 50 ends

(fusion primers) to perform amplicon sequencing on a GS

Junior (Roche) using two different PCR amplifications and

more than 40� depth of sequencing for a subset of our sampled

individuals (N ¼ 29 frogs from five populations). We multiplexed

individuals by using a suite of 8 bp unique sequence tags added

to the 454 fusion primers that differed from each other in at least

three positions to minimize misassignment. PCR amplifications

were performed in 20 ml, including 3 ml of each primer, 3 ml of

DNA, and 7.5 ml of HotStar PCR Master Mix (Qiagen). We

pooled equimolar quantities of PCR products amplified with

distinct fusion primers, purified DNA with a MinElute PCR

Purification Kit (Qiagen) and sequenced the pool of amplicon

samples from all individuals on a GS Junior run (Roche). All indi-

viduals were amplified and sequenced at least twice to ensure we

did not generate any artificial alleles resulting from PCR or sequen-

cing error. We used Newbler v. 2.6 (Roche) to remove adapter

sequences and assemble MHC amplicons into contigs. All raw

MHC amplicon reads were analysed with jMHC v. 1.0 to demulti-

plex samples and assign genotypes. Only reads that had two

complete barcodes and a perfect match to the primer barcode

were retained and assigned to their respective sample and rep-

etition number, and only alleles that were found in at least

two separate samples or two separate repetitions with a minimum

of 15 reads were considered real. We aligned all MHC alleles

using Sequencher (Gene Codes Corporation) with adjustment

by eye and compared cloning-derived with 454-derived alleles

across individuals.
(d) Genealogy reconstruction
We tested the MHC alignment for evidence of recombination

using the single breakpoint method [53] before performing a

Bayesian analysis to reconstruct genealogical relationships

among alleles. We used class II exon 2 sequences from X. laevis
and S. tropicalis (GenBank accession numbers NM_001114771

and NM_001045794) as outgroups. Model parameters were deter-

mined using the Akaike information criteria in jModeltest [54]. We

used the best-fit model (general time reversible (GTR) model with

invariable sites plus gamma (I þ g) distribution (GTR þ I þ G)) to

estimate a 95% credible set of rooted MHC genealogies in the soft-

ware MRBAYES 3.1 [55]. We ran two separate analyses in MRBAYES

for 1 � 107 generations and sampled every 500th generation of

the Markov chain. We used Tracer v. 1.4 to assess stationarity of

model parameters, convergence of model parameters between

runs, the number of burn-in samples, and the effective sample

sizes for each parameter.

(e) Tests of selection
We ran tests of selection using HyPhy [56] with the Bayesian gen-

ealogy as our input tree, excluding outgroup sequences. We used

PARRIS to test for positive selection in the entire alignment [57],

evolutionary fingerprinting to infer the number of positive selec-

tion rate classes and the intensity of selection in each rate class

[58], and the most conservative maximum-likelihood method

(SLAC) to test for residue-specific positive selection across

lineages [59].

( f ) Major histocompatibility complex supertyping
To collapse MHC alleles into functional supertypes, we extracted

the 13 codon positions in our MHC alignment known to affect pep-

tide-binding capabilities of human class II alleles [15,21] and then

characterized each site based on five physio-chemical descriptor

variables: z1 (hydrophobicity), z2 (steric bulk), z3 (polarity), z4

and z5 (electronic effects) [60]. We used discriminant analysis of

principle components to define functional genetic clusters using

the adegenet 1.4-0 package in R [61], which implements a

k-means clustering algorithm using the Bayesian information cri-

terion (BIC). The optimal number of clusters was determined

using DBIC � 2, and alleles within clusters were collapsed into a

single MHC supertype.

(g) Selection and genetic differentiation among
populations

We used software for the measurement of genetic diversity

(SMOGD) [62] to estimate D [63] across all population pairs for

(i) 14-locus microsatellite genotypes, (ii) MHC exon 2 genotypes,

and (iii) MHC supertypes. We also calculated observed and

expected heterozygosity, nucleotide diversity (p), and theta (u),

and performed Ewens–Watterson (E-W) tests on MHC exon and

intron genotypes using Arlequin v. 3.5 [64]. We used the lm func-

tion in R [65] to perform linear regression on all pairwise

population measures of D from MHC supertype versus microsatel-

lite genotypes. Significant outliers were identified as data points

with both Cook’s D . 4/n and leverage values . 3/n, where n
is the number of observations [66].

(h) Statistical analyses
Differences in Bd infection intensity and nucleotide diversity

across populations were assessed using Student’s t-tests

implemented in JMP software, v. 9.0 (SAS). Differences in super-

type frequencies across individuals that were alive versus dead at

the time of sampling were inferred using 95% Clopper–Pearson

binomial confidence intervals. We used a previously published
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protocol [11] to calculate the relative risk (RR) for MHC super-

types and for the three alleles recovered in both the field and

laboratory study.
3. Results
(a) Batrachochytrium dendrobatidis infection dynamics

vary within and among populations
Lithobates yavapaiensis individuals varied within and among the

eight field-sampled populations in Bd infection prevalence

(figure 1a), associated mortality (figure 1b), and infection inten-

sity (figure 1c) [16]. Three populations were Bd tolerant, with

no winter mortality (HR, SM, and SS) despite high winter Bd
infection prevalence and intensity. For the five populations
with both laboratory and field data, mortality was consisten-

tly higher in our experimental infection study (41–100%

mortality [11]) than in the field (figure 1b). Within populations,

frogs that died had significantly higher infection intensities

than frogs that survived (two-tailed paired Student’s t-test,

p ¼ 0.046).

(b) Major histocompatibility complex variation is
associated with Batrachochytrium dendrobatidis
susceptibility in the wild

We identified 84 unique MHC class II PBR alleles among

the eight sampled populations (figure 2). Three PBR alleles

were recovered at high frequency (alleles A, N, and Q) and

are the same three alleles that were common in our
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experimental infection study [11]. Sixty-six of the 84 alleles

were recovered from a single individual. Owing to the high

proportion of singletons and knowledge that a subset of

codon sites within exon 2 are responsible for peptide-binding

capabilities of the MHC molecule [15,21], we converted

alleles into four MHC supertypes based on physio-chemical

binding properties (figure 1d ). For the subset of individuals

genotyped using both cloning and 454 amplicon sequencing,

MHC alleles from 26/29 individuals (90%) were identi-

cal between methods. Of the individuals that were not

identical, one individual was mismatched for one allele

only, and two individuals were mismatched for both alleles

(electronic supplementary material, S1). After converting

alleles into four functional supertypes (electronic supplemen-

tary material, S2), none of these five mismatched alleles

resulted in differences in MHC supertype assignments.

Therefore, we conclude that only a small proportion of

cloned alleles in this study are artefactual, and that any
undetected error derived from cloning is minimal once

analysed as MHC supertypes.

The MHC supertypes ST1 and ST4 show a phylogenetic

signal, with ST1 comprising all alleles in the clade including

allele A, and ST4 comprising all alleles in a clade unique to

population SS (figure 2). By contrast, ST2 includes most of the

clade with alleles N and Q, but ST3 and ST4 render it paraphy-

letic, and ST3 is distributed broadly throughout the genealogy.

Only MHC ST1 was significantly associated with susceptibility

(figure 3; electronic supplementary material, S3); indivi-

duals with ST1 had nearly a threefold increased risk of death

(RR ¼ 2.8, p ¼ 0.004). Notably, allele A (the dominant allele

within ST1) was also significantly associated with mortality

both in our field-collected samples (RR¼ 3.2, p , 0.0001) and

in our experimental infection study [11]. ST4, which was only

present in six frogs sampled alive from population SS,

showed a trend towards a reduced risk of mortality (RR¼ 0,

p ¼ 0.06). ST2 and ST3 were not significantly associated with
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susceptibility or survival, nor were ST heterozygotes, despite a

significant heterozygote survival advantage in our experimen-

tal infection study [11]. Allele Q was significantly associated

with survival both in our field-collected samples (RR ¼ 0.23,

p ¼ 0.008) and in our earlier experimental infection study [11].

(c) Positive selection drives major histocompatibility
complex evolution at a peptide-binding codon

Evolutionary models that included positive selection (a ratio of

non-synonymous nucleotide substitutions per non-synonymous

sites (dN) to synonymous substitutions per synonymous sites

(dS), or v, . 1) fit the alignment of PBR sequences significantly

better than models excluding positive selection (evolutio-

nary fingerprinting, log likelihood¼ 21951.54, p , 0.001).

The best-fit model included three nucleotide substitution rate

classes, and found that 65% of codons experienced negative

selection (v , 1), 30% experienced moderate positive selec-

tion (v ¼ 1.28), and 5% experienced strong positive selection

(v ¼ 1.95). In codon-specific tests of selection, we detected posi-

tive selection acting on one codon: position 46 of the MHC

alignment ( p ¼ 0.05, normalized dN–dS¼ 4.08; bold branches

in figure 2), which is among the 13 codon positions that
determine human MHC peptide-binding [21]. Codon 46 is also

the only residue where a significant signal of positive selection

was detected in our experimental infection study [11].

(d) Selection and not demography drives major
histocompatibility complex population
differentiation

To disentangle signatures of selection from demography, we

compared MHC supertype frequencies with 14 putatively neu-

tral microsatellite loci (figure 4). The average population

genetic differentiation (D) was significantly higher when

measured from microsatellites (D ¼ 0.54) compared with

MHC supertypes (D ¼ 0.39; two-tailed paired Student’s

t-test, p ¼ 0.025). Population pairwise estimates of D inferred

from microsatellites were not significantly correlated to those

from MHC supertypes (figure 4a), indicating discordance

between MHC and neutral genetic differentiation. Three com-

parisons between TV and other populations were identified as

significant regression outliers (figure 3a, dashed circles), and

removing these three data points produced a significant posi-

tive correlation between D measured from microsatellites and

MHC supertypes (figure 4b).

Genetic diversity was significantly higher for MHC exons

compared with introns when measured either as nucleotide

diversity (p; two-tailed paired Student’s t-test, p ¼ 0.014) or

the number of segregating sites (u; two-tailed paired Student’s

t-test, p ¼ 0.0097; electronic supplementary material, S4). We

detected significant signatures of directional selection from

MHC heterozygosity but not from microsatellite heterozygos-

ity in populations CIC (20% mortality) and TV (60% mortality),

indicating directional selection acts on MHC in these two

populations. By contrast, AC (8% mortality), HR (0% mor-

tality), and SM (0% mortality) had significant signatures of

directional selection from both MHC and microsatellite hetero-

zygosities, indicating recent demographic expansion rather

than selection may shape contemporary MHC evolution in

those populations. Neither locus type produced a significant

signature of directional or balancing selection in populations

SS, WC, or MR (electronic supplementary material, S4).
4. Discussion
Whether natural populations can rapidly adapt to novel patho-

gens remains a critically important question for evolutionary

biology in an era of emerging infectious diseases. L. yavapaiensis
has declined in recent decades due to chytridiomycosis out-

breaks, habitat loss, and invasive species [47,67]. The seasonal

selective pressure imposed by Bd each winter [16,17] means

that populations unable to adapt will probably become extir-

pated. Here, we find that some populations may be adapting

to Bd via standing MHC variation [68] that confers survival

(namely, allele Q and ST4), while other populations lacking

these MHC variants may not have the immunogenetic variation

necessary to adapt. Positive selection was only detected along

lineages leading to survival-associated or neutral alleles and

supertypes (figure 2), but not the susceptibility-associated

ST1. Thus, at the time of initial chytridiomycosis outbreaks,

populations with standing MHC variation that included survi-

val alleles have evolved partial (AC, 8% mortality) or complete

(HR, SM, SS, no mortality) Bd tolerance. By contrast, popu-

lations with high frequencies of the susceptibility supertype
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ST1 (CIC, MR, TV, WC) were probably decimated by initial chy-

tridiomycosis outbreaks and now have small population sizes,

limited genetic diversity, and struggle to persist in the face of

repeated bouts of Bd mortality [16,17]. MR is an exception,

maintaining high MHC diversity (including allele Q) and

high mortality (figure 3). However, this pattern is consistent

with previous analyses of this population, which is adjacent

to a thermal spring. Here, warm water protects the source popu-

lation from extirpation but also prevents selection from acting to

increase the frequency of survival alleles, creating an ongoing

source-sink dynamic when juveniles migrate out from the ther-

mal spring pools and develop chytridiomycosis [16,17]. Finally,

in addition to selection acting on standing genetic variants,

novel MHC variants providing a Bd survival advantage may

have arisen in one population. SS had no observed Bd mortality

and a low frequency of allele Q, but is the only population with

individuals bearing ST4, a recently diversified clade with a sig-

nificant signature of positive selection (figure 2). This pattern

suggests that adaptation to Bd may have evolved rapidly in

population SS from de novo genetic mutations, a less frequently

documented phenomenon [69].

By using field data to validate a controlled experimental

study, our analyses collectively show that selection caused by

chytridiomycosis has contributed to the evolution of an

expressed class II MHC locus in L. yavapaiensis. Our sampling

from wild populations confirms three of the immunogenetic

disease association patterns that were previously recovered in

our experimental infection study [11]: individuals with ST1/

allele A had a significantly increased risk of Bd mortality,

those with allele Q had a significantly reduced risk of mortality

(figure 3), and we found a significant signature of selection

acting on the same peptide-interacting codon in both studies

(figure 2). By contrast, here we found no evidence of heterozy-

gote advantage when examining MHC genotypes in natural

population samples, despite a strong survival advantage of het-

erozygotes in our experimental infection study [11]. Because we

could only definitively assess mortality events, whereas Bd sur-

vivors may have occasionally been mis-identified among

individuals developing chytridiomycosis exceptionally late in

the season after surveys took place, MHC associations to sus-

ceptibility are stronger than associations to tolerance. Thus, an
MHC-based heterozygote advantage may exist and could be

uncovered with finer-scale field sampling or additional exper-

imental infection studies. Alternately, because the previous

laboratory study used full- and half-sibling clutches to represent

populations, the apparent signal of overdominance may have

been driven by the allelic composition of heterozygous individ-

uals; all survivors with allele Q were heterozygotes. Indeed,

experimental infection studies examining resistance to single

pathogens rather than general pathogen-fighting ability find

evidence for survival based on particular MHC alleles rather

than heterozygotes [70].

Both directional [71] and diversifying [72] selection on

MHC alleles are commonly observed evolutionary responses

to pathogen pressure in natural populations. Given that Bd
imposes strong selective pressure, we might therefore expect

directional selection for one or a subset of MHC alleles to pre-

dominate in our system. Alternately, selection from other

pathogens or different evolutionary forces such as sexual selec-

tion may contribute to MHC variation and produce an overall

pattern of balancing selection. In our study, we found evidence

for directional selection in two populations with high Bd mor-

tality (CIC and TV), demographic expansion that has probably

resulted from directional selection for allele Q and ST4 in two

populations with infection but no Bd mortality (HR and SS),

and no support for balancing selection acting to equalize fre-

quencies of MHC supertypes in any population (figure 3).

Continued population monitoring in future generations may

provide direct evidence for the benefits of particular super-

types if the expected changes in Bd susceptibility occur.

Among our sampled populations, AC has the highest likeli-

hood of evolving future disease resistance, as this population

currently harbours allele Q at low frequency, experiences

moderate Bd mortality, and showed the highest proportion of

Bd survival in previous laboratory trials [11]. Interestingly, all

three population differentiation outliers involved population

TV, which was undifferentiated from 0% mortality populations

based on MHC supertypes but exceptionally distinct from

another high mortality population CIC (figure 4). Further,

frogs sampled alive from TV all had susceptibility ST1 and

those found dead all had ST2, despite the overall survival dis-

advantage we found for ST1. MHC dynamics are therefore
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highly unusual in this population, highlighting that allelic

advantages may be unique within populations due to eco-

immunological differences in the host or the pathogen under

distinct environmental regimes [73]. Excluding these three

outlier comparisons involving TV, concordance between MHC-

and microsatellite-based differentiation measures demonstrate

that demographic processes have played a significant role in

shaping MHC evolution. Recent positive selection on MHC

codons and strong MHC allelic associations with Bd survival

may therefore be modest drivers of overall population genetic

change compared with forces such as drift and popula-

tion bottlenecks in a species facing ongoing habitat loss and

competition from invasive species [67].

Global declines caused by chytridiomycosis have had cata-

strophic consequences for amphibian diversity [4] and Bd
continues to spread to new regions and hosts [74]. Emerging

fungal diseases of wildlife are also on the rise, including

white-nose syndrome in bats, fungal skin disease in snakes,

and honeybee colony collapse disorder [1,2]. Our study high-

lights the importance of examining fine-scale demographic,

epidemiological, and genetic patterns if we are to elucidate

the key processes underlying infectious disease dynamics

and evolution of resistance in free-living wildlife populations.

Identifying immunogenetic correlates of chytridiomycosis

outcomes provides a mechanism to explain variable host

susceptibility among individuals, populations, and species.

Analyses of Bd infection dynamics within and across amphi-

bian species, life-history traits, and geographical regions
[7–9], may also benefit from the incorporation of data on

host genetic variation [17]. Finally, identifying immunogenetic

hallmarks of Bd resistance in natural populations is a critical

step towards species recovery, as the global spread and persist-

ence of Bd means that wild populations must ultimately evolve

disease resistance to achieve long-term species survival.
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