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ABSTRACT

Nurr1 is a transcription factor specific for the develop-

ment and maintenance of the midbrain dopamine (DA)
neurons. Exogenous Nurr1 in neural precursor (NP) cells

induces the differentiation of DA neurons in vitro that are
capable of reversing motor dysfunctions in a rodent model
for Parkinson disease. The promise of this therapeutic

approach, however, is unclear due to poor cell survival
and phenotype loss of DA cells after transplantation. We
herein demonstrate that Nurr1 proteins undergo ubiqui-

tin-proteasome-system-mediated degradation in differenti-

ating NP cells. The degradation process is activated by a

direct Akt-mediated phosphorylation of Nurr1 proteins
and can be prevented by abolishing the Akt-target

sequence in Nurr1 (Nurr1
Akt

). Overexpression of Nurr1
Akt

in NP cells yielded DA neurons in which Nurr1 protein
levels were maintained for prolonged periods. The sus-

tained Nurr1 expression endowed the Nurr1
Akt

-induced
DA neurons with resistance to toxic stimuli, enhanced sur-
vival, and sustained DA phenotypes in vitro and in vivo

after transplantation. STEM CELLS 2009;27:2238–2246

Disclosure of potential conflicts of interest is found at the end of this article.

INTRODUCTION

Midbrain dopamine (DA) neurons play essential roles in the
control of voluntary movement and the regulation of emotion.
Degeneration/dysfunction of this neuronal subtype underlies
clinical features of many neurological and psychiatric disor-
ders. Nurr1 (NR4A2), a transcription factor belonging to the
orphan nuclear receptor family, is expressed in the developing
midbrain and is critical for midbrain DA neuron development
[1, 2]. Nurr1 is also expressed in the DA neurons of the adult
midbrain, and sustained expression of this factor has been
reported to be crucial for the maintenance of dopaminergic
phenotypes [1, 3] and survival [2, 4, 5]. Reduced levels and
genetic alterations of Nurr1 in adult midbrain DA neurons
have been found in midbrain DA pathologies [6, 7], indicating
that a potential therapeutic strategy could be established
through manipulation of Nurr1 protein level and function in
patients with those disorders.

Neural precursor (NP) cells can be isolated from develop-
ing and adult brains, and cultured for the purpose of generat-
ing large numbers of donor cells to treat neurodegenerative
disorders. Interest in Nurr1 has intensified due to its in vitro
role in DA neuron generation from cultured NP cells. Exoge-
nous Nurr1 expression in the absence [8] or presence of neu-
rogenic factor coexpressions drives naı̈ve nondopaminergic
NP cells to differentiate into DA neurons that exhibit presyn-
aptic functionalities capable of reversing dopaminergic deficits
in a rodent model of Parkinson disease (PD). However, poor
cell survival [8] and loss of DA phenotype of donor cells [9]
after transplantation are the most critical concerns in these
procedures.

The proteasomal degradation system is a critical regulator
of protein activity in a cell, with various cellular proteins
targeted to the proteasome for degradation by the covalent
addition of multiple molecules of ubiquitin, a 76-amino
acid polypeptide. In this report, we demonstrate that Nurr1 pro-
teins undergo ubiquitin-proteasome-system (UPS)-mediated
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degradation in differentiating NP cells. Intracellular signals
responsible for the protein degradation were defined and this
molecular understanding of the degradation process led us to
generate a ubiquitylation-resistant Nurr1 mutant. Induction of
mutant protein expression in NP cells yielded DA neurons with
Nurr1 protein levels that were stably maintained for a pro-
longed period while preserving native Nurr1 functions. As a
consequence, DA neurons generated by the mutant Nurr1 were
resistant to toxic stimuli and exhibited enhanced cell survival in
vitro and in vivo in rat brains after transplantation. These find-
ings represent a substantial technical advance in stem/precursor
cell-derived DA neuron generation for PD cell therapy and pro-
vide important cues for developing strategies to prevent PD
progression.

MATERIALS AND METHODS

Primary Culture for Neural Precursor Cells

Brain tissue was dissected from rat (Sprague Dawley) embryonic
cortices at embryonic day 13. Dissected cortices were mechani-
cally triturated in Ca2þ/Mg2þ free Hanks’ balanced salt solution
(HBSS; Gibco, Grand Island, NY, http://www.invitrogen.com),
seeded at 19,000 cells/cm2 on 10-cm culture dishes (Corning Life
Sciences, Acton, MA, http://www.corning.com/lifesciences) pre-
coated with polyornithine/fibronectin, and cultured for 4–5 days
in serum-free N2 medium supplemented with basic fibroblast
growth factor (bFGF; 20 ng/ml; R&D Systems Inc., Minneapolis,
http://www.rndsystems.com). Cell clusters generated by precursor
cell proliferation were dissociated in HBSS and plated at 50,000
cells/cm2 on coated 24-well and 6-well plates. After additional
induction of precursor cell proliferation in N2þbFGF up to 60%–
80% cell confluency (typically 1–2 days after plating), cells were
subjected to retroviral transduction as described below. On the
day following transduction, cell differentiation was induced by
withdrawing bFGF for 4–12 days. The medium was changed
every other day, and bFGF was supplemented daily. In certain
experiments, the precursor cells were cultured in the form of
floating cell aggregates (neurospheres) by seeding them on
uncoated surfaces in the media supplemented with bFGF or epi-
dermal growth factor (EGF; 20 ng/ml; R&D System). The follow-
ing factors or inhibitors were used: FGF20 (20 ng/ml), NT3
(10 ng/ml), and BDNF (10 ng/ml; all from ProSpec-Tany Tech-
noGene, Rehovot, Israel, http://www.prospecbio.com/), MG132
(1–10 lM), and lactacystin (1–10 lM), SU5402 (20 lM),
PD98059 (50 lM), U0126 (10 lM), LY294002 (20 lM),
wortmannin (1 lM; from Calbiochem, San Diego, http://www.
emdbiosciences.com) and leptomycin B (10 ng/ml; Sigma-
Genosys, Cambridge, U.K., http://www.sigmaaldrich.com/Brands/
Sigma_Genosys.html). Cell cultures were maintained at 37�C in a
5% CO2 incubator.

Retroviral Construction and Infection

Retroviral vectors expressing Flag-tagged wild-type Nurr1
(Nurr1WT), Nurr1 mutant (Nurr1Akt), dominant negative form of
Raf (dn-raf; kindly provided by Dr. Kang-Yell Choi, Yonsei Uni-
versity, Seoul, Korea), Wnt5a, and Notch intracellular domain
(kindly provided by Dr. Jaesang Kim, Ewha Woman University,
Seoul, Korea) were constructed by inserting each cDNA fragment
into the multicloning sites of pCL [10]. Viral particles were pro-
duced by transfecting the retrovirus packaging cell line 293gpg
with each vector using Lipofectamine (Invitrogen) and superna-
tants containing viral particles were harvested 72 hours after incu-
bation. For viral transduction, prepared NP cells were incubated
with the viral soup (5 � 106 particles/ml) containing polybrene
(1 lg/ml; Sigma-Genosys) for 2 hours, followed by a medium
change with bFGF-supplemented N2. Coexpression studies were

carried out by infecting cells with mixtures of the individual viral
constructs (1:1).

Immunofluorescent Staining

Cultured cells and brain tissues were fixed with 4% paraformalde-
hyde, blocked in 0.1% bovine serum albumin (BSA)/10% goat
serum/0.3% Triton X-100 and incubated with primary antibodies
overnight at 4�C. For detecting Nurr1-expressing cells grafted in
brain sections, an antigen retrieval procedure was applied by
treating cells with sodium dodecyl sulfate (1% in phosphate-buf-
fered saline [PBS]) at room temperature for 5 minutes before the
blocking procedure. The following primary antibodies were used:
Nurr1 (1:200, Chemicon, Temecula, CA, http://www.chemicon.
com, for cultured cells or 1:500, E-20, Santa Cruz Biotechnology
Inc., Santa Cruz, CA, http://www.scbt.com, for detecting grafted
cells in tissue), and tyrosine hydroxylase (TH; 1:250, Pel-Freez,
Rogers, AK, http://www.invitrogen.com). Alexa 488- (1:200,
Invitrogen) and Cy3- (1:200, Jackson Immunoresearch Laborato-
ries, West Grove, PA, http://www.jacksonimmuno.com) labeled
secondary antibodies were applied and mounted in Vectashield
containing 4, 6-diamidino-2-phenylindole (DAPI, Vector Labora-
tories, Burlingame, CA, http://www.vectorlabs.com). Immunore-
active cells were analyzed under an epifluorescence microscope
(Nikon Instruments, Melville, NY, http://www.nikoninstruments.
com) or confocal microscope (Leica, Heerbrugg, Switzerland,
http://www.leica.com).

Western Blot and Immunoprecipitation Assays

Proteins were extracted from cultures, electrophoresed by sodium
dodecyl sulfate polyacrylamide gel electrophoresis, and trans-
ferred to a nitrocellulose membrane. Transferred proteins were
blocked in 5% nonfat milk in 0.001% Tween 20 with Tris Buf-
fered Saline. Working concentrations of primary antibodies were
as follows: Nurr1 (1:1,000, Chemicon), TH (1:1,000, Pel-Freez),
b-galactosidase (b-gal, 1:1,000, MP Biomedicals, Irvine, CA,
http://www.mpbio.com), extracellular regulated kinase (ERK;
1:1,000), phosphorylated extracellular regulated kinase (pERK,
1:1,000), Akt (1:1000), phosphorylated Akt (pAkt, Ser473,
1:1,000, Cell Signaling Technology, Beverly, MA, http://
www.cellsignal.com), hemagglutinin (HA) (1:1,000, Covance,
Princeton, NJ, http://www.covance.com), pAkt substrate (1:1,000,
Sigma-Genosys), and b-actin (1:5,000, Abcam, Cambridge, U.K.,
http://www.abcam.com). Secondary anti-rabbit or anti-mouse IgG
antibodies conjugated with peroxidase (1:2,000, Cell Signaling)
were applied. Bands were visualized by enhanced chemilumines-
cence (ECL detection kit; Welgene, Daegu, Korea, http://
www.jbilife.com). Physical protein binding of Nurr1WT or Nur-
r1Akt to candidate molecules (Akt, ubiquitin) and pAkt-mediated
phosphorylation of Nurr1 proteins was determined using immuno-
precipitation (IP) assays. NP cells transduced with Flag-tagged
Nurr1WT (Nurr1Akt) were harvested with RIPA buffer (50 mM
HEPES, 150 mM NaCl, 1% NP40, 1 mM EDTA, 1 mM EGTA,
1 mM phenylmethylsulfonyl fluoride, 0.5% sodium deoxycholate,
1 mM Na3VO4) supplemented with protease inhibitors [11]. To
examine ubiquitinylation of Nurr1 proteins, HEK293 cells were
cotransfected with HA-tagged ubiquitin and Flag-Nurr1WT (or
Nurr1Akt). Cell lysates were incubated with anti-Flag antibody
(Sigma: 5 lg/ml) for 2 hours in the cold room. After binding of
antibodies to protein G beads for 2 h, the beads were washed
three times with RIPA buffer and resuspended in sample buffer
(Amresco, Cleveland, Ohio, http://www.amresco-inc.com/). Sam-
ples were electrophoresed through sodium dodecyl sulfate 10%
polyacrylamide gels, transferred to nitrocellulose membranes, and
probed by anti-HA, anti-Akt, or anti-pAkt substrate antibodies.

Nurr1 Protein Stability

HEK293 cells were transfected with Nurr1WT (or Nurr1Akt) and
harvested during 6 hours of cycloheximide (100 lg/ml; Calbio-
chem) treatment. Nurr1 protein levels were determined by West-
ern blot analyses.
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Reverse-Transcription Polymerase Chain Reaction

Standard reverse-transcription polymerase chain reaction (PCR)
procedures were used. Optimal PCR conditions for each primer
set were determined by varying MgCl2 concentrations, annealing
temperatures, and cycle numbers to determine a linear amplifica-
tion range. The primer sequences (forward and backward) and
PCR conditions were as follows: GAPDH (5-GGCATTGCTCT-
CAATGACAA-3 and 5-AGGGCCTCTCTCTTGCTCTC-3, 25
cycles, 60�C, 165 bp); Nurr1 (5-TGAAGAGAGCGGACAAGGA-
GATC-3 and 5-TCTGGAGTTAAGAAATCGGAGCTG-3, 35
cycles, 57�C, 255 bp).

Cell Toxicity Assays

NP cells were transduced with Nurr1WT or Nurr1Akt as described.
After 6 days of in vitro differentiation, cell viability was determined
in the cultures treated with H2O2 (50–500 uM; Sigma-Genosys) or
6-hydroxydopamine (6-OHDA; 50–200 uM; MP Biomedicals) for 8
hours by MTT assay (Sigma-Genosys), propidium iodide (PI) stain-
ing (Invitrogen), and by directly counting THþ cells.

In Vivo Transplantation

The 6-OHDA-lesioned rats were generated as described [12].
Neural precursor cells were harvested 2 days after Nurr1WT or
mutant transduction and dissociated into single cells in HBSS.
Using a 22-gauge needle, 3 ll of cell suspension (1.5 � 105

cells/ll in N2þbFGF) was deposited at the striatum (coordinates
in AP, ML, and V relative to bregma and dura: -0.09, -0.42,
-0.66 incisor bar set at 3.5 mm). The needle was left in place for
10 minutes following each injection. For histological analysis,
animals were anesthetized with ketamine (4.5 mg/kg) mixed with
rompun (93.28 lg/kg) and perfused transcardially with 4% para-
formaldehyde in PBS. Brains were equilibrated with 30% sucrose
in PBS and sliced on a freezing microtome (CM 1850, Leica).
Free-floating brain sections (35-lm thick) were subjected to
immunohistochemistry as described above. The total numbers of
cells positive for Nurr1, TH, and DAPI in the graft were esti-
mated by the Abercrombie correction factor [13].

Cell Counting and Statistic Analysis

Cell counting was performed in microscopic fields randomly cho-
sen (fractionator) across the culture area. Data are expressed as
mean � SEM of three independent experiments. Statistical com-
parisons were made by Student’s t test or one-way analysis of
variance (ANOVA) with post-hoc test using SPSS software (ver-
sion 13.0; SPSS Inc., Chicago, IL, http://www.spss.com).

RESULTS

Degradation of Exogenous Nurr1 Proteins During In
Vitro Precursor Differentiation

Nurr1 expression was induced in cultured NP cells derived
from rat fetal cortices. As demonstrated previously [10, 14,
15], exogenous Nurr1 expression yielded cells positive for
TH, a key marker for DA neurons, from naı̈ve nondopaminer-
gic NP cells. Nurr1 immunoreactivity was localized in the
nucleus of virtually all THþ cells for up to 4 days of differ-
entiation (Fig. 1F). The number of Nurr1-immunoreactive
cells and levels of Nurr1 protein gradually decreased during
the longer differentiation period (Fig. 1A–H, 1M, 1N) but
without a significant change in Nurr1 mRNA levels (Fig. 1O),
consequently yielding increased populations of THþ cells
which were negative for Nurr1 immunoreactivity (insets of
Fig. 1G, 1H). In addition, reduced Nurr1 expression was fol-
lowed by a substantial reduction in THþ cell numbers after
prolonged differentiation (Fig. 1F–H , 1M). As a control, pro-
tein levels of exogenous LacZ, expressed in a vector construct

identical to that of Nurr1, were observed to be uniform and
without variation throughout the cell differentiation period
(Fig. 1I–L, 1M, 1N). Treatment of the cells with proteasome
inhibitors MG132 or lactacystin significantly blocked Nurr1
protein degradation (Fig. 1P and 1Q). At differentiation day
6, Nurr1þ cells accounted for 15.2 � 10.4% of total cells in
untreated control versus 54.1 � 10.6% in MG132 (10 lM)-
treated cells (total 13,833 and 12,573 cells counted from three
sets of independent cultures, p < 0.01, Student’s t test). In an
IP assay, Nurr1 proteins bound directly to ubiquitin (Ub) and
slower migrating forms that corresponded to polyubiquitiny-
lated species were visible (Fig. 1R). Leptomycin B, an irre-
versible inhibitor of CRM-1-dependent nuclear export [16],
had no effect on Nurr1 decay (data not shown), suggesting
degradation of Nurr1 in the nucleus.

bFGF Prevents Nurr1 Protein Degradation

In contrast to exogenous Nurr1 protein decay during cell dif-
ferentiation, the protein levels of Nurr1 in proliferating NP
cells were maintained in the continued presence of bFGF in
culture (Fig. 2D, 2E, 2G). These findings prompted us to
determine if Nurr1 protein decay can be prevented by other
mitogens acting on NP cells. Proliferation of NP cells was
similarly induced by EGF treatment or activation of Notch
signaling via Notch intracellular domain transduction (data
not shown). However, neither of these factors was able to
maintain the Nurr1 protein stability elicited by bFGF
(Fig. 2D–H). Nurr1 protein levels were also not significantly
altered by treatments with factors regulating NP cell differen-
tiation (BDNF, NT3, FGF20, Wnt-5a) and survival (Fas
ligand, pan-caspase inhibitor; Fig. 2H). The bFGF-sustained
Nurr1 protein levels were abolished by treatment of cells with
SU5402, an FGF receptor blocker (Fig. 3c). Together, these
results suggest that the maintenance of Nurr1 proteins is
specifically mediated by bFGF.

Counteracting Regulatory Actions of Raf- and
Akt-Mediated Intracellular Signals in Nurr1
Protein Stability

We next sought intracellular signals that act downstream of
bFGF to maintain Nurr1 protein stability. To this end, we
explored time-course changes of protein levels of activated
(phosphorylated) forms of potential signaling molecules for
the period after bFGF withdrawal. An immediate decrease of
pERK levels was observed within 15 hours after bFGF with-
drawal and pERK was present at reduced levels for the
remainder of the differentiation period tested (Fig. 3A, 3B).
In contrast, levels of pAkt, another potential signaling mole-
cule downstream of bFGF [17, 18], were slightly decreased
during the initial period of bFGF withdrawal, but gradually
and substantially increased for the rest of the differentiation
period. The activation of Akt signaling was likely caused by
the decrease in Raf/ERK activation, as the pAkt and Raf-ERK
signals have been shown to mutually regulate each other in
an inhibitory manner [19, 20].

Inhibition of Raf-Erk signaling by the specific inhibitors
PD98059 and U0126 or transduction of a dn-raf resulted in a
marked reduction of Nurr1 protein levels (Fig. 3C and data
not shown). On the contrary, the PI3K-Akt signal blockers
LY294002 and wortmannin resulted in a striking increase of
Nurr1 protein levels (Fig. 3D). To determine if the Nurr1 pro-
tein level changes were caused by Erk- or Akt-mediated regu-
lation of protein degradation, we compared the stabilities of
Nurr1 proteins in the absence and presence of inhibitors for
these signaling molecules. Nurr1 proteins were readily
degraded within 6 hours of cycloheximide treatment (Fig.
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3E). Further drastic reduction of Nurr1 was observed to occur
rapidly after PD98059 treatment. In contrast, Nurr1 protein
levels in the cultures treated with LY294002 were stable after
6 hours of cycloheximide treatment, confirming counterregu-
latory roles of Raf-Erk and Akt signals in Nurr1 protein
degradation.

Direct Akt Phosphorylation Is Responsible for
Nurr1 Ubiquitylation

We next investigated the possibility that Raf-Erk and Akt mol-
ecules function through direct interaction with Nurr1 proteins.
Direct protein interactions of Akt (Fig. 4A) and Erk1/2/5 with
Nurr1 were observed in IP assays [21, 22] (data not shown).
Differentiation-dependent decreases of a Nurr1 mutant protein,
in which all three Erk phosphorylation consensus sites were
abolished, was comparable and insignificantly different from
that of wild-type Nurr1 (data not shown), ruling out the possi-
bility of direct Erk phosphorylation of Nurr1 mediating the
maintenance effect. The Nurr1 protein contains a consensus

site for Akt phosphorylation at Ser 347 (Fig. 4B). As shown
in Figure 4C, pAkt substrate antibody, which recognizes phos-
phorylated peptides and proteins at the Akt target motif
(RXRXXS/T), readily binds to Nurr1WT, but not to the Nur-
r1Akt in which serine 347 is substituted by alanine, indicating
Akt-mediated phosphorylation of Nurr1 and abolishment of
this Akt-mediated phosphorylation in the mutant.

The effect of the mutation was dramatic, with a clear dif-
ference in the protein stability of Nurr1Akt compared to that
of Nurr1WT after cycloheximide treatment (Fig. 4D). Nurr1
ubiquitylation was significantly reduced in Nurr1Akt-trans-
fected cells, indicating that the effect of the Akt mutation is
elicited by preventing initiation of UPS-mediated Nurr1 pro-
tein degradation (Fig. 4E).

Phenotype Maintenance and Cell Survival of TH1
DA Cells Generated by Nurr1

Akt
Transduction

Consistent with the sustained protein stability of Nurr1Akt, no
significant decreases in the percentage of Nurr1þ cells were

Figure 1. UPS-mediated protein degradation is responsible for the decrease in Nurr1þ/THþ cells during the differentiation of neural precursor
cells in vitro. Neural precursor cells were cultured from nondopaminergic rat embryonic cortices at embryonic day 13, and transduced with Nurr1
or LacZ (control). On the day after transduction, differentiation of Nurr1-transduced precursors into DA neurons was induced for 12 days by
withdrawing the mitogen bFGF. (A–L): Representative microscopic images for Nurr1þ (A–D) and Nurr1þ/THþ (E–H) cells from Nurr1-trans-
duced cultures, and b-gal-stained cells (I–L) from LacZ-transduced cells over the in vitro differentiation period. Scale bar ¼ 20 lm. Insets of
(E–H) show enlarged views of the regions indicated by arrows. (M): Percent changes of Nurr1þ, THþ, and b-galþ cells from three independent
cultures. Significant differences were found from the value of %Nurr1þ cells at differentiation day 0 (Diff0)* and from the %THþ cells of Diff
4# (p < .01). Nurr1 protein (N) and mRNA (O) levels at Diff0, Diff3, and Diff8 were further determined.(P–R): UPS-mediated degradation of
Nurr1 proteins. In the presence of the protein synthesis inhibitor cycloheximide (40 lg/ml), Nurr1þ cells (P) and Nurr1 protein levels (Q) were
determined in the cortical precursor cells treated with the proteasome inhibitors MG132 or lactacystin (0, 1, and 10 lM) at differentiation day 6.
(R): Immunoprecipitation assay for Ub and Nurr1 protein binding. *Significantly different from the untreated cultures (p < .01, n ¼ 3 independ-
ent experiments).
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seen in the cortical precursor cells transduced with Nurr1Akt

during 12 days of differentiation in vitro (percent Nurr1þ
cells out of total cells: 67.5 � 1.8% (Diff0), 69.2 � 4.0%
(Diff4), 74.5 � 12.8% (Diff8), and 63.9 � 1.4% (Diff12); p
¼ 1.0 compared to Diff0 and Diff12, n ¼ 3 sets of independ-
ent cultures, one-way ANOVA with post-hoc test, total
6,012–13,260 cells counted), whereas a greater than 60% loss
in the percentage of Nurr1þ cells was observed during the
same period of time in Nurr1WT-transduced cultures (Fig. 4F–
K). We further confirmed that the effect of the Akt mutation
is not likely due to enhanced transcription of the Nurr1 gene,
as mRNA levels of Nurr1Akt and Nurr1WT were indistinguish-
able (data not shown). Along with the sustained Nurr1 protein
levels, THþ cell numbers in the Nurr1Akt-transduced cultures
were stably maintained during the in vitro differentiation pe-
riod. For instance, the percentages of THþ cells were 66.5 �
2.8% at Diff4, 60.3 � 7.4% at Diff8, and 71.5 � 2.0% at

Diff 12 (total 7,005, 11,985, and 13,260 cells counted, respec-
tively, from three independent experiments, p ¼ .873 com-
pared to Diff0 and Diff12 by ANOVA with post-hoc Bonfer-
roni test) in the Nurr1Akt-transduced cultures (Fig. 4L–Q, 4S).

Messenger RNA expression of DA phenotype genes such as
TH and DA transporter were increased in Nurr1Akt-transduced
cultures compared to control cultures (data not shown). Mainte-
nance of the DA phenotype in Nurr1Akt-transduced cultures is
likely to be achieved by the continuous transcriptional activa-
tion resulting from sustained levels of Nurr1Akt proteins. In
addition, Nurr1 may have a cell survival effect in THþ cells
because Nurr1 has been shown to act as a cell survival factor
[2, 4, 5]. Cell apoptosis was markedly decreased in Nurr1Akt-
transduced cultures than in those with Nurr1WT (percent cells
with apoptotic nuclei: 2.7 � 0.7% in Nurr1Akt vs. 13.2 � 1.3%
in Nurr1WT-transduced cultures at Diff6, total 11,397 and
11,462 cells counted, n ¼ 3, p < .01). Furthermore, Nurr1Akt-

Figure 2. Basic fibroblast growth factor (bFGF) is specific to maintenance of Nurr1 protein stability. To maintain similar levels of cell-to-cell
contact, which may influence Nurr1 protein stability, cortical precursors transduced with Nurr1 were cultured for 2 days in the form of floating
cell aggregates (neurospheres) in the absence (A, D) or presences of the mitogens bFGF (B, E) or epidermal growth factor (C, F), and then
Nurr1 protein levels were determined (G). Scale bars ¼ 40 lm. In addition, neurospheres treated with various cytokines were plated on FN-
coated surfaces and were stained against Nurr1. (H): Percent decreases of Nurr1þ cells for 1 day of in vitro culture. Nurr1-transduced precursor
cells were left untreated (no tx) or treated with the factors and inhibitors indicated and the percent decreases were calculated by percent changes
of Nurr1þ cell numbers before and 1 day after the treatments. *Significantly different from the untreated control (p < .01, n ¼ 3, Student t test).

Figure 3. Raf-MEK and PI3K-Akt intracellular pathways downstream of basic fibroblast growth factor (bFGF) have opposing actions in the
regulation of Nurr1 protein decay. (A–C): Opposing roles of extracellular regulated kinase (ERK) and Akt in the regulation of Nurr1 protein sta-
bility. (A, B): Time-course changes of ERK and Akt signal activations for 84 hours after bFGF withdrawal. The activated ERK and Akt levels
were estimated by the ratios of pERK/ERK and pAkt/Akt, respectively. Each dot and bar in (B) represents the mean and SEM of the activated
protein level (relative to that of time point 0) scanned from five Western blot analyses performed with three sets of independent cultures. (C, D):
Nurr1 protein levels in the cultures treated with FGFR1 blocker (SU5402), Raf-ERK inhibitor (PD98059), dn-raf, or PI3K-Akt inhibitors
(LY294002, wortmannin) were compared with the untreated control. (E): Effects of Raf-ERK and PI3K-Akt signals in Nurr1 protein stability.
HEK-293 cells transfected with Nurr1 were treated with cycloheximide in the absence or presence of PD98059 or LY294002 and then harvested
for a Western blot assay at the times indicated.
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transduced cells were more resistant to the cellular toxicity
induced by H2O2 and 6-OHDA treatments based on our estima-
tion of cell viability using the MTT assay (Fig. 5I, 5K), the per-
centage of THþ cells (Fig. 5J, 5L), and the PI staining (Fig. 5E,
5H, data not shown). Thus, sustained Nurr1 protein stability in
Nurr1Akt-transduced precursor cells preserves DA phenotypes
and improves cell survival. These events contribute in turn to
the maintenance of THþ cells during differentiation.

Finally, we examined the in vivo survival effect of Nur-
r1Akt expression in donor precursor cells after transplantation
into the striatum of 6-OHDA-lesioned rats. Two weeks after
transplantation, none or very few donor cells were viable in
the striatum grafted with Nurr1WT-transduced NP cells (Fig.
5M, 5N). Furthermore, most of the THþ cells detected in the
striatum of the animals grafted with Nurr1WT-cells were nega-
tive for Nurr1 (Fig. 5O). In contrast, Nurr1Akt-transduced pre-
cursors survived, integrated into host striatum to generate
tubular masses of grafts, and differentiated toward THþ cells
(Figs. 5P, 5Q), most of which expressed Nurr1 proteins (Fig.
5R). Graft volumes (Fig. 5S), total donor cells (Fig. 5T),

Nurr1þ cells (Fig. 5U), and THþ cell numbers per graft (Fig.
5V) were much greater in the animals grafted with Nurr1Akt-
transduced precursors (Fig. 5). For instance, THþ cells per
graft were 1,757.5þ155.4 (Nurr1Akt) versus 53.12þ20
(Nurr1WT), n ¼ 5, p < .01). Altogether, our findings indicate
that Nurr1Akt overexpression in donor cells improves cell sur-
vival and DA phenotype maintenance in transplanted cells.

DISCUSSION

In this report, we showed that Nurr1 proteins undergo UPS-
mediated degradation during precursor cell differentiation and
that the process is regulated by the opposing actions of ERK
and Akt intracellular signals. We further demonstrated that
direct Akt phosphorylation of Nurr1 protein controls the ubiq-
uitinylation of this protein and that stability of Nurr1 proteins
can be sustained by abolishing the Akt phosphorylation site
of Nurr1. These findings are novel and are supported by

Figure 4. Enhanced maintenance of THþ DA cells generated by Nurr1Akt transduction. (A): Direct protein binding of Akt to Nurr1. Cortical
neural precursor (NP) cells transduced with Flag-Nurr1 were immunoprecipitated by incubation with Flag antibody and immunoblotted with Akt
antibody. (B): Sequence alignment of Nurr1 proteins around the consensus Akt phosphorylation site. (C): Abolishment of Akt phosphorylation in
Nurr1Akt mutant proteins in which serine 347 is transformed into alanine. Rat cortical NP cells transduced with Flag-Nurr1WT or Flag-Nurr1Akt

were harvested, immunoprecipitated with Flag antibody, and then immunoblotted by phospho-(Ser/Thr) Akt substrate antibody. (D): Abolishment
of the Akt phosphorylation site in Nurr1 enhances protein stability. Nurr1 protein levels were compared in the cultures transfected by Nurr1WT and
Nurr1Akt during 6 hours of cycloheximide (100 lg/ml) treatment. (E): Decreased ubiquitinylation in the Nurr1 Akt phosphorylation mutant. Immu-
noprecipitation assays for Ub and Nurr1 protein binding were performed as described in Figure 1. (F–S): Maintenance of Nurr1þ/THþ DA neu-
rons in cell cultures transduced with Nurr1Akt. (F–Q): Representative microscopic images for Nurr1þ (F–K) and Nurr1þ/THþ (L–Q) cells from
the cultures transduced with Nurr1WT and Nurr1Akt over the differentiation period in vitro. Scale bar ¼ 20 lm. Percent Nurr1þ and THþ cells are
depicted in (R) and (S), respectively. *Significantly different from the respective Nurr1WT values for the same differentiation days (p < .01).
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previous studies exemplified as follows. It is thought that pro-
tein phosphorylation plays a critical role in the initiation of
protein ubiquitylation [23–25]. ERK and Akt have recently
been specified as the critical protein phosphorylation path-
ways controlling several protein degradations [26–28]. In sup-
port of our findings, opposing cellular responses mediated by
Raf and Akt signals have also been shown to control UPS-
degradation of p53 proteins [29]. Furthermore, similar to our
results, direct Akt-mediated phosphorylation of androgen
receptor, a member of the same nuclear-hormone receptor
family of proteins that Nurr1 belongs to, activates ubiquitiny-
lation of this protein [28]. Current knowledge supports the
idea that the nucleus is the primary target for degradation of
nuclear receptors [30]. Consistent with this theory, treatment
with the nuclear export inhibitor, leptomycin B, did not affect
Nurr1 degradation, indicating localization of Nurr1-specific
UPS-mediated degradation to the nucleus. Further molecular
understanding of Nurr1 degradation requires studies to define
Nurr1-specific E3 ligases and deubiquitinylation enzymes.

The most critical problem with current methods of cell
transplantation for PD treatment is the low viability of donor
cells. Only a minor portion of the DA neurons survive trans-
plantation [8, 31]. Furthermore, recent studies have demon-
strated that the diseased PD environment transmits a toxic sig-

nal to the grafted neurons [32], indicating that improvement
of host environment will also be required to improve the sur-
vival of grafted neurons. Fundamental corrections to the envi-
ronment created by the diseased state, however, do not seem
to be easily achievable. An alternative would be to provide
transplanted cells with resistance to the toxic environment. In
addition to the key issue of survival, unstable phenotypes of
transplanted DA neurons [9] also contribute to a low yield of
DA neurons after transplantation. The present study shows an
example of genetic manipulation yielding donor DA cells
with improved cell survival and better-maintained phenotypes
in vitro and in vivo after transplantation. The single mutation
of the Akt-phosphorylation site of Nurr1 in this study resulted
in a dramatic effect on Nurr1 protein stability, and in turn
maintenance of THþ cells. It is manifest that the continued
Nurr1 expression in the Nurr1Akt-transduced cells accounts
for the observed effect of DA phenotype maintenance, as
Nurr1 is a transcription factor that activates expression of
genes involved in the DA phenotype [1, 2, 6]. The majority
of the THþ cells derived from Nurr1Akt-transduced precursors
expressed Nurr1 for a prolonged period during differentiation.
Consistent with a previous study [33], the Nurr1-expressing
DA cells maintained their DA phenotype better and survived
longer. Cell transplantation in clinical level, however, requires

Figure 5. Nurr1Akt-transduced NP cells yield dopamine (DA) neurons that are resistant to toxic stimuli and show enhanced survival in vitro and
in vivo after transplantation. (A–L): Cellular toxicity induced by H2O2 (50–500 lM) or 6-OHDA (50–200 uM) treatments. After 6 days of in
vitro differentiation, cells were treated with the toxins for 8 hours, and cell viability was determined by the MTT assay (I, K), PI staining (E–H),
and directly counting THþ cells (J, L). Scale bar ¼ 20 lm. *Significantly different from the respective Nurr1WT values of the same toxin con-
centrations (p < .01, n ¼ 3 independent experiments). (A–D) and (E–H) are the representative images of THþ cells and PI-stained cells, respec-
tively, which demonstrate the difference in H2O2-induced cell toxicity in Nurr1WT- and Nurr1Akt-transduced cultures. (M-V): In vivo survival of
THþ/Nurr1þ cells after transplantation. Representative images for THþ (N, Q), Nurr1þ (M, P), and THþ/Nurr1þ (O, R) cells in the grafts
generated by Nurr1WT-

(M–O) and Nurr1Akt- (P–R) transduced precursors. Quantification of graft volumes (S), total donor cells (T), Nurr1þ (U),
and THþ (V) cell numbers in the grafts are shown. Scale bar ¼ 20 lm. *Significantly different from the respective Nurr1WT values (p < .01, n
¼ 5 for each value, Student’s t test).
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long period of donor cell survival. While enhanced Nurr1þ/
THþ cell yield was clear and striking by Nurr1Akt-transduced
cell transplantation at 2 weeks after transplantation (Fig. 5M–
V), the beneficial effect of the Nurr1 mutation was not contin-
ued for a longer period after transplantation: only few THþ
cells (less than 200 THþ cells/graft) were detected in the
brains grafted with Nurr1Akt-cells 8 weeks after transplanta-
tion. We found that lack of the long-term effect is mainly due
to unstable exogene (Nurr1) mRNA expression, but not due
to loss of the Akt mutation effect in maintaining Nurr1 pro-
tein stability in the transplanted brains in vivo (data not
shown). This is consistent to the previous studies demonstrat-
ing loss of exogene (GFP) expression in donor cell after neu-
ral transplantation [34, 35]. We further found that promoters
of expression vectors (LTR, CMV, EF1a) commonly contain
cAMP-response element (CRE) and the promoter-driven
expressions are highly dependent on activated CRE-binding
protein (CREB) intracellular signal (data not shown). Thus
inactivation of CREB signal in donor cells long after trans-
plantation, with unidentified mechanism, is likely to be re-
sponsible for loss of Nurr1 mRNA expression and in turn loss
of Nurr1-induced TH phenotype expression in those cells. We
are now investigating to develop methods to achieve stable
exogene expression in transplanted donor cells.

DA neurons yielded by the mutant Nurr1 were more
resistant to toxic stimuli. These findings indicate an advance

in cell therapeutic approaches for PD through generation of
donor DA cells that are able to sustain their phenotype after
transplantation and that survive by overcoming the pathologic
host environment of PD. Nurr1 is a susceptible factor in PD
and decreased levels of Nurr1 have been found in PD patients
[7], suggesting that Nurr1 is a target molecule for the treat-
ment and prevention of PD. We anticipate that the informa-
tion we presented in this study regarding Nurr1 protein degra-
dation and stability can be used to develop medical treatments
to prevent the progression of PD.
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