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Abstract: Studies of adipose tissue biology have demonstrated that adipose tissue should be con-
sidered as both passive, energy-storing tissue and an endocrine organ because of the secretion of
adipose-specific factors, called adipokines. Adiponectin is a well-described homeostatic adipokine
with metabolic properties. It regulates whole-body energy status through the induction of fatty acid
oxidation and glucose uptake. Adiponectin also has anti-inflammatory and antidiabetic properties,
making it an interesting subject of biomedical studies. Perivascular adipose tissue (PVAT) is a fat de-
pot that is conterminous to the vascular wall and acts on it in a paracrine manner through adipokine
secretion. PVAT-derived adiponectin can act on the vascular wall through endothelial cells and vas-
cular smooth muscle cells. The present review describes adiponectin’s structure, receptors, and main
signaling pathways. We further discuss recent studies of the extent and nature of crosstalk between
PVAT-derived adiponectin and endothelial cells, vascular smooth muscle cells, and atherosclerotic
plaques. Furthermore, we argue whether adiponectin and its receptors may be considered putative
therapeutic targets.
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1. Introduction

The growing obesity epidemic, especially in Western countries, has prompted the
need to discover novel therapeutic strategies for various conditions that are related to
obesity, such as cardiovascular disease, which is the most prevalent cause of mortality and
morbidity in developed countries [1]. The main feature of obesity is substantial adipose tis-
sue volume expansion. Understanding the biological mechanisms by which adipose tissue
expands became a compelling research area that led to the discovery that adipose tissue not
only stores lipids in the form of triglycerides but also secretes various molecules, termed
adipokines that exert effects on both adjacent and remotely located organs [2,3]. Perivascu-
lar adipose tissue (PVAT) is a particularly interesting fat depot because of its anatomical
location. It surrounds nearly all blood vessels except the cerebral vasculature, suggesting a
possible connection with vascular homeostasis. Indeed, PVAT was shown to play a signifi-
cant role in both health and disease states through adipokine secretion, which has been
extensively reviewed elsewhere [1,4]. One of the most abundant adipokines, adiponectin,
is especially interesting when considering its unique structure [5] and pleiotropic actions
on numerous cellular processes, such as lipid and glucose metabolism [6–8], insulin signal
transduction [9], and inflammation [10]. The present review discusses recent advances in
the research area of adiponectin signaling in PVAT and its influence on the vascular wall.

2. Perivascular Adipose Tissue: Structure and Function

The traditional view of the vascular wall structure comprises a three-layer model. The
first layer, termed the tunica intima, consists of endothelial cells and has direct contact with
blood. The second and thickest layer is the tunica media, which consists mainly of smooth
muscle cells that regulate vascular tone through their ability to alternate contraction and

Cells 2021, 10, 1485. https://doi.org/10.3390/cells10061485 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://doi.org/10.3390/cells10061485
https://doi.org/10.3390/cells10061485
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells10061485
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells10061485?type=check_update&version=2


Cells 2021, 10, 1485 2 of 21

relaxation events. The third layer, the tunica adventitia, consists of different cell types,
primarily fibroblasts that play a mainly supportive role. In this three-layer model, PVAT
is not considered a part of the vascular wall. For many years, PVAT was only seen as
structural support for blood vessels. In traditional contraction studies, PVAT was removed
because it was not suspected to play any notable role. This perception was reconsidered
when PVAT was shown to influence aorta responsiveness in rats [11]. The important
role of PVAT was further established when adipocyte-derived relaxing factors (ADRFs)
were identified [12,13]. PVAT exhibits both a white adipose tissue (WAT) phenotype and
a brown adipose tissue (BAT) phenotype, depending on its anatomical location. Brown
adipose tissue derived its name from its macroscopic appearance, which is determined by
its higher vascularization and thus more abundant blood supply. Brown adipose tissue
characteristics also include more abundant mitochondria, multiple, small lipid droplets, a
greater amount of cytoplasm, and the expression of uncoupling protein 1 (UCP1), which
mediates mitochondrial non-shivering thermogenesis. White adipose tissue macroscopi-
cally appears lighter with less of a blood supply. White adipose tissue does not express
UCP1. A typical WAT adipocyte contains one large lipid droplet, a peripherally located
nucleus, and a smaller cytoplasm [14]. The existence of either type of adipocyte within
PVAT differs, depending on the vessel’s anatomical localization. For example, the thoracic
aorta in mice is surrounded by PVAT with more of a BAT-like phenotype [15]. In addition,
thoracic PVAT in rats was shown to resemble BAT, while abdominal PVAT had more
features that were specific to WAT [16]. PVAT, like every other adipose tissue, secretes
cytokines, hormones, growth factors, and adipocyte-specific molecules, termed adipokines.
Adipokines are involved in regulating whole-body energy status through food intake
regulation (e.g., by leptin) and other processes, such as inflammation, glucose uptake, fatty
acid oxidation, and reactive oxygen species formation (e.g., by leptin, adiponectin, visfatin,
and resistin). Some of these molecules were also shown to act as vasoactive agents that
induce vasodilation and vasoconstriction. Adipose tissue plays a beneficial role as long as
adipokine levels with opposing properties remain in equilibrium. At the onset of metabolic
conditions, such as obesity or type 2 diabetes, when this equilibrium is impaired in favor
of proinflammatory or constriction-inducing agents, PVAT becomes dysfunctional and
exerts detrimental effects with regard to vascular homeostasis. For example, it can promote
endothelial cell dysfunction, recruit proinflammatory immune cells, and induce vascular
smooth muscle cell (VSMC) proliferation. This dual nature of PVAT has thus been called
a “double-edged sword” [1]. The dichotomous qualities of PVAT are further emphasized
by the fact that human coronary arteries are embedded in abundant PVAT and are one
of the most susceptible arteries to atherosclerosis, whereas murine coronary arteries are
completely devoid of PVAT and develop atherosclerotic plaques in aortic stretches, such
as the aortic arch [17]. Histological discrepancies between the anatomical localization of
PVAT appear to be clinically significant because the abdominal aorta is more susceptible
to aortic aneurysm development than the thoracic part of the aorta [17,18]. Genome-wide
transcriptional studies revealed significant differences between PVAT that surrounds the
area of the dilated aortic area (i.e., an area with an aneurysm) compared with non-dilated
areas. Components of innate and adaptive immunity were overrepresented in PVAT adja-
cent to aneurysms, supporting the hypothesis that this type of vascular condition has an
autoimmune nature, and a vast number of immune cells and cytokines originates from dys-
functional PVAT [19]. The human thoracic aorta is plausibly less susceptible to aneurysm
development because of thoracic PVAT UCP1 expression, which sequesters fatty acids and
thus prevents potential lipotoxic effects on the aortic wall [20].

3. Metabolic Functions of Adiponectin and Its Receptors
3.1. Structure of Adiponectin

Adiponectin is an adipocyte-derived adipokine that was first identified in blood
plasma and differentiated 3T3-L1 cells [5,21]. Adiponectin contains 247 amino acids in
mice and 244 amino acids in humans, and its predicted molecular weight is 30 kDa [5].
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Adiponectin is encoded on chromosomes 3 and 16 in humans and mice, respectively [22].
Plasma levels of adiponectin are similar in humans and rodents and remain around µg/mL,
which makes adiponectin nearly 1000-fold more abundant than insulin or leptin [23].
Adiponectin possesses structural features that resemble complement protein C1q, collagen
VIII, and collagen X. Thus, it was initially named Acrp30 (adipocyte complement-related
protein of 30 kDa) [5].

The adiponectin molecule consists of two domains: the C-terminal globular domain
and the N-terminal collagen domain. In serum, adiponectin does not occur in monomeric
form because of its fibrous domain, which allows it to oligomerize. Adiponectin forms
trimers with a molecular weight around 67 kDa, two trimers that form hexamers of around
140 kDa, and multimers that consist of at least 18 monomers, termed high-molecular-weight
(HMW) adiponectin [24]. The globular form of adiponectin, without a collagen-like do-
main, also exhibits activity [25]. Although adiponectin is mainly secreted by adipocytes, its
plasma levels are inversely correlated with adipose tissue mass. Therefore, obese and dia-
betic patients exhibit lower circulating adiponectin [26]. The lack of adiponectin in mice led
to greater susceptibility to high-fat diet-induced obesity and higher plasma tumor necrosis
factor α levels, indicating its anti-inflammatory properties [27]. Furthermore, exogenous
adiponectin administration improved insulin resistance and inhibited neointimal plaque
formation in adiponectin knockout mice [28]. Direct antiatherogenic effects of adiponectin
have only recently been reported. Adiponectin preferentially binds to oxidized low-density
lipoprotein (oxLDL), thereby preventing its entry into the cell [29].

3.2. Adiponectin Receptors 1 and 2 in Regulation of Metabolism and Membrane Homeostasis

To date, three adiponectin receptors have been discovered: adiponectin receptor 1
(AdipoR1), AdipoR2 (both encoded by their respective genes) [30], and T-cadherin [31].
Mouse AdipoR1 is a 375-amino-acid protein with a molecular weight of 42.4 kDa, whereas
AdipoR2 is a 311-amino-acid protein with a molecular weight of 35.4 kDa. AdipoR1 and
AdipoR2 exhibit high homology between mice and humans (96.8% and 95.2%, respectively).
The structures of both receptors are similar, with 66.7% identity between them. Although
AdipoR1 and AdipoR2 have seven transmembrane domains, N-termini are intracellular,
and C-termini are extracellular, which, combined with low sequence homology, makes
them structurally distant from G-protein-coupled receptors (GPCRs) [32–34]. Both AdipoR1
and AdipoR2 have been implicated in the insulin signaling pathway and alterations of
expression patterns of metabolic genes [35]. Although both receptors are expressed in many
cell types, AdipoR1 expression is most abundant in skeletal muscles, and AdipoR2 expres-
sion is most abundant in hepatocytes. The activation of both receptors is connected with the
activation of pathways that involve 5’-adenosine monophosphate-activated protein kinase
(AMPK), p38 mitogen-activated protein kinase (MAPK), and peroxisome proliferator-
activated receptor γ (PPARα), leading to increases in fatty acid oxidation and glucose
uptake [6,30]. The muscle-specific disruption of AdipoR1 led to insulin resistance and a
decrease in mitochondrial biogenesis [36]. Moreover, Yamauchi et al. [35] reported that
AdipoR1 overexpression in the liver improved insulin resistance and decreased gluco-
neogenesis through the activation of AMPK, whereas AdipoR2 was more connected with
PPARα activation. Controversial findings, however, have also been reported, in which
two research groups independently discovered opposing effects of AdipoR1 and AdipoR2.
Mice with AdipoR1 knockout exhibited glucose intolerance and an increase in body weight
that was attributable to decreases in locomotion and overall energy expenditure. AdipoR2
knockout mice exhibited resistance to high-fat diet-induced obesity that was associated
with higher energy expenditure and improved insulin signaling [37,38].

Although AdipoRs function in cells seems to be well established, a few novel insights
into their biology have been recognized. AdipoR’s amino acids sequence shows homology
with yeast IZH protein, which was shown to have an impact on plasma membrane fluidity
through regulation of levels of structural membrane sterols [39]. It was also shown that
human AdipoRs were able to mimic IZH proteins in yeast [40]. Similarities were also iden-
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tified in Caenorhabditis elegans, where two AdipoRs homologs exist, and their disruption
leads to membrane rigidification as a result of the accumulation of saturated fatty acids
in plasma membranes [41]. This suggests that AdipoRs have an enzymatic activity that
is independent of adiponectin, since C. elegans lacks adiponectin homolog [42]. Indeed,
studies utilizing human cell lines showed that depletion of AdipoRs resulted in a higher
accumulation of saturated fatty acids (SFAs) in plasma membranes, resulting in their rigid-
ification [43]. Furthermore, AdipoR2 downregulation in human umbilical vein endothelial
cells (HUVECs) and human embryonic kidney cells (HEK293) and subsequent treatment
with SFA palmitate resulted in impaired the expression of desaturases as well as the in-
duction of unfolded protein response. In addition, upon palmitate treatment, cells showed
mitochondrial respiratory defects and poor viability [44]. Intriguingly, supplementation
with mono- or polyunsaturated fatty acids, which are known to increase membrane fluidity,
was able to revoke detrimental effects of AdipoR2 silencing [42,44]. These findings suggest
that the primary function of AdipoRs may not be adiponectin binding but the regulation
of membrane homeostasis. This implies that future studies on AdipoRs should be more
focused on their adiponectin-independent activity, possibly by using in vivo models [42].

3.3. T-Cadherin Receptor

Another receptor for adiponectin is T-cadherin [31]. It belongs to a large group of
proteins, called cadherins, with a different structure that is involved in cell–cell adhesion.
In addition to T-cadherin, all members of the cadherin protein superfamily possess a
transmembrane domain in their structure that ensures connections between extracellular
signals and the intracellular environment. T-cadherin is anchored in the plasma mem-
brane by a glycophosphatidylinositol anchor with no intracellular part. The mechanism
by which a signal is transduced from the cell surface to the cytoplasm remains to be eluci-
dated [45]. T-cadherin is known to be a key signal transducer between adiponectin and
the cardiovascular system, and these two proteins often co-localize with each other in
cardiovascular tissues, whereby adiponectin can exert its cardioprotective actions [46–48].
Beyond cardiovascular tissues, T-cadherin is also found in skeletal muscles and facilitates
adiponectin accumulation in this tissue [49,50]. The regulation of T-cadherin expression
is complex and not fully understood. Relationships have been reported between plasma
adiponectin levels and mutations in the gene that encodes T-cadherin [51–53]. T-cadherin
protein levels were also shown to be associated with adiponectin levels. In adiponectin
knockout mice, T-cadherin levels were lower, and exogenous adiponectin administration
increased T-cadherin levels [50]. Recent data suggest that adiponectin and T-cadherin,
when bound together, accumulate in multivesicular bodies in endothelial cells and can
be further secreted by exosomes [54]. This finding provides interesting insights into the
mechanism by which adiponectin exerts its biological effects through T-cadherin because
the former does not possess an intracellular domain. Recently, it has been demonstrated
that the native adiponectin in mouse serum, which is primarily HMW adiponectin, strongly
binds to the surface of cells expressing T-cadherin, but not AdipoRs [55]. It pinpoints the
fact that the form of adiponectin (monomers, oligomers, or multimers) is a key feature
when considering the preferential binding affinity of adiponectin. It should also be consid-
ered when conducting future experiments since the majority of studies utilize recombinant
E. coli- derived adiponectin.

4. Intracellular Actions of Adiponectin

The binding of adiponectin on the cell surface results in several cellular effects. As
mentioned above, although AdipoRs and GPCRs share common features, such as seven
transmembrane domains, they are relatively distinctly related. Hence, the secondary
messenger is not a G-protein. Nevertheless, they still need to be functionally bound to a
protein that can relay extracellular adiponectin signals to induce adequate intracellular
responses. Upon adiponectin binding to either AdipoR1 or AdipoR2, adaptor protein
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containing pleckstrin homology domain, phosphotyrosine binding domain, and leucine
zipper motif (APPL1) are activated [56].

4.1. Adiponectin Mediated AMPK Activation

When adiponectin binds to AdipoR1, this activation results in the recruitment of
protein phosphatase 2A (PP2A) and protein kinase Cζ (PKCζ) (Figure 1A). When AAPL1
is not activated, PKCζ phosphorylates liver kinase B1 (LKB1) at Ser307 and facilitates
its translocation to the nucleus. However, after APPL1 activation, PP2A leads to PKCζ

dephosphorylation (Figure 1B). Dephosphorylated PKCζ no longer has the ability to phos-
phorylate LKB1, and PP2A facilitates LKB1 dephosphorylation, resulting in the inhibition
of LKB1 in the nucleus. When in the cytosol, LKB1 joins the AdipoR/APPL1/PP2A/PKCζ

complex and phosphorylates AMPK (Figure 1B) [57,58].
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Figure 1. Mechanism of adiponectin-dependent AMPK activation. (A) In the non-stimulated state, APPL1 and protein
phosphatase 2A (PP2A) do not interact. Protein kinase Cζ (PKCζ) phosphorylates liver kinase B 1 (LKB1) and induces its
translocation to the nucleus. (B) Upon adiponectin (APN) binding, PKCζ is dephosphorylated by PP2A. Dephosphorylated
PKCζ is no longer able to phosphorylate LKB1. PP2A also dephosphorylates LKB1, which results in LKB1 translocation to
the cytoplasm. LKB1 phosphorylates AMP-activated protein kinase (AMPK) in the form of the AdipoR1/APPL1/PP2A/
PKCζ/LKB1 complex.

Using a human cDNA screening in a yeast two-hybrid system approach, APPL1 was
found to interact with Rab5, which is a small guanosine-5’-triphosphatase downstream of
APPL1. It facilitates glucose transporter 4 (GLUT4)-containing vesicle translocation toward
the plasma membrane and internalization, leading to an increase in glucose uptake [56].

4.2. Adiponectin Mediated p38 MAPK Activation

APPL1 also acts as a scaffold protein in p38 MAPK-mediated signaling pathways.
Transforming growth factor-β-activated kinase 1 (TAK1) weakly associates with APPL1
when not bound to AdipoR (Figure 2A). Upon adiponectin signaling, APPL1 binds to
AdipoR1, resulting in TAK1 phosphorylation. Upon TAK1 activation, mitogen-activated
protein kinase kinase 3 (MKK3) and p38 MAPK are recruited to form the AdipoR1/APPL1/
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TAK1/MKK3/p38 MAPK complex (Figure 2B). After MKK3 is phosphorylated by TAK1,
TAK1 dissociates from APPL1 and loses its activity. Concurrently with this, APPL1 dissoci-
ates from AdipoR1, and MKK3 phosphorylates p38 MAPK. Phosphorylated p38 MAPK
dissociates from APPL1 and mediates subsequent MAPK pathway events, including in-
creases in fatty acid oxidation and Rab5/GLUT4-mediated glucose uptake (Figure 2C) [59].
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Figure 2. Mechanism of adiponectin-dependent MAPK activation. (A) In the non-stimulated state, adaptor protein
containing pleckstrin homology domain, phosphotyrosine binding domain, and leucine zipper motif (APPL1) weakly
interacts with transforming growth factor-β-activated kinase 1 (TAK1). (B) Upon adiponectin (APN) binding to the
adiponectin receptor 1 (AdipoR1), APPL1 and phosphorylated TAK1 are recruited to the receptor site. This triggers the
recruitment of two further proteins: p38 mitogen-activated protein kinase (p38 MAPK) and mitogen-activated protein kinase
kinase 3 (MKK3). (C) TAK1 phosphorylates MKK3 and dissociates from the complex. MKK3 phosphorylates p38 MAPK,
and both proteins dissociate from the complex. Phosphorylated p38 MAPK subsequently induces fatty acid oxidation and
glucose uptake.

4.3. Interaction between Adiponectin and Insulin Signaling Pathways

Adiponectin also improves insulin sensitivity by inducing APPL1 to interact with
insulin receptor substrate 1/2 (IRS1/2) and Akt. Under basal, non-stimulated conditions,
APPL1 remains in a non-phosphorylated state in the cell and forms a complex with IRS1/2
and Akt kinase (Figure 3A). In response to adiponectin or insulin stimulation, protein kinase
C (PKC) phosphorylates APPL1 at Ser407, driving the APPL1/IRS1/2/Akt complex to
translocate toward the plasma membrane and bind to the insulin receptor (IR) (Figure 3A).
After the binding of insulin to the IR, the APPL1/IRS1/2/Akt complex dissociates, allowing
the binding of IRS1/2 to the IR, and facilitating Akt translocation to the plasma membrane
(Figure 3B). After binding of insulin to IR, APPL1 is dephosphorylated, and dissociates
from the IR (Figure 3C). Insulin signaling is then initiated without further interactions with
APPL1 (Figure 3D) [60].
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Figure 3. Integration of insulin and adiponectin signaling pathways. (A) Upon adiponectin or insulin stimulation, PKC
phosphorylates APPL1. This results in insulin receptor 1/2 (IRS1/2) and Akt recruitment, resulting in APPL1/IRS1/2/Akt
complex formation. This complex then associates with the insulin receptor (IR). (B) After the binding of insulin (INS) to the
IR, APPL1 “piggybacks” Akt and IRS1/2 on the IR. (C) Dephosphorylated APPL1 dissociates from the complex. (D) IRS1/2
phosphorylates phosphatidylinositol-3 kinase (PI3K), and PI3K phosphorylates Akt, which activates its further substrates in
the insulin signaling pathway.

4.4. APPL1 Independent Actions of Adiponectin

Three years after APPL1 was first described, its apparent antagonist, APPL2, was
identified by the same research group [61]. The interplay between APPL1 and APPL2 was
termed “Yin-Yang” regulation because of their opposing effects on adiponectin signaling
and cellular metabolism. APPL2 inhibits the actions of APPL1 by competing for AdipoR1
binding and hindering the APPL1-AdipoR1 interaction through APPL1 sequestration,
which leads to a decrease in the phosphorylation of adiponectin intracellular messen-
gers, such as AMPK and p38 MAPK. Additionally, APPL2 hinders adiponectin-mediated
insulin-sensitizing qualities. Notably, exogenous adiponectin administration restores
APPL1-mediated adiponectin signaling and increases insulin sensitivity [61]. Although
APPL1 is indisputably important for adiponectin signaling, it is not crucial. Adiponectin
can act in an APPL1-independent manner by increasing intracellular Ca2+ ion concentra-
tion by either inducing extracellular Ca2+ influx or increasing intracellular Ca2+ release.
Adiponectin was shown to activate AMPK and calmodulin-dependent protein kinase
kinase B (CaMKKB) by phospholipase C-mediated inositol-3-phosphate production in
skeletal muscles [50]. Adiponectin and AdipoR1 signaling was also shown to be important
for peroxisome proliferator-activated receptor γ coactivator-1α (PGC1α) signaling. Upon
the release of Ca2+ ions from the endoplasmic reticulum, CaMKKB, in concert with LKB1,
activates AMPK. In the next step, AMPK, together with sirtuin 1 (SIRT1) deacetylase, acti-
vates PGC1α, thereby initiating the transcription of genes that are implicated in oxidative
metabolism and mitochondrial biogenesis. The adiponectin- and AdipoR1-dependent
activation of CaMKKB also drives the expression of PGC1α itself by phosphorylating
calmodulin-dependent protein kinase (CaMK) [36,62]. The aberrant accumulation of ce-
ramides, which are elevated in obesity, often remain in opposition to adiponectin’s actions
and sphingosine 1-phosphate (S1P) levels, which is known for its anti-apoptotic properties.
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S1P is converted from ceramide, glucosylceramide, and monosialodihexosylganglioside
(GM3 ganglioside) [63]. Exogenous adiponectin administration using a leptin-deficient
ob/ob and high-fat diet-fed mouse model of metabolic disorder was shown to promote
ceramidase activity through both AdipoR1 and AdipoR2 activation, thereby improving
insulin resistance and preventing caspase-8-mediated apoptosis in pancreatic β-cells, car-
diomyocytes, and hepatocytes. This effect was independent of AMPK activation [64].
Recent studies proposed a mechanism by which adiponectin participates in regulating
ceramidase activity. Both AdipoRs possess structural properties that suggest ceramidase
activity, which can be enhanced upon adiponectin binding. Additionally, AdipoR2 has the
ability to bind cellular ceramidase and enhance beneficial S1P production in cells [65]. This
is consistent with a study that showed that in vitro myoblast treatment with AdipoRon
(a small synthetic molecule that is known to activate both AdipoR1 and AdipoR2 [66])
enhanced ceramidase activity, resulting in higher cellular S1P levels and protecting cells
against palmitate-induced lipotoxicity [67].

5. Effects of PVAT-Derived Adiponectin on Vascular Smooth Muscle Cell Contraction
5.1. Activation of AMPK Signaling

One feature that accompanies both obesity and type 2 diabetes is a chronic increase in
blood pressure that leads to hypertension, mediated by constriction of the tunica media and
a decrease in the secretion of vasorelaxant molecules [68,69]. Adiponectin knockout mice
exhibited an increase in hypertension as a result of chronic endothelial dysfunction [70].
Therefore, PVAT was postulated to participate in adipocyte-mediated vasodilation [71].
PVAT-derived gaseous molecules, such as nitric oxide [72] and hydrogen sulfide [73], were
shown to exert vasodilatory effects. Adiponectin is known to activate AMPK [36]. Some
AMPK activators (e.g., AICAR), in turn, were shown to have vasodilatory properties in
VSMC [74]. Adiponectin appeared to also have a vasodilatory effect [75–77]. AMPKα1
knockout mice exhibited no alterations of histological properties of perivascular adipose
tissue or the arterial wall, but knockout mice exhibited loss of the vasodilatory effect in
PVAT. Moreover, knockout mice showed markedly lower levels of circulating adiponectin,
suggesting that AMPK is crucial for adiponectin secretion and adiponectin-mediated
vasorelaxation [78]. Gathered data clearly show that adiponectin signaling takes part in
VSMC relaxation through AMPK pathway.

5.2. Large-Conductance Ca2+-Activated K+ Channels

A study used large-conductance Ca2+-activated K+ (BKCa) channel knockout mice
and pharmacologically inhibited BKCa channels and found that adiponectin facilitated
vasodilation in pressurized mesenteric arteries, presumably by activating BKCa, in which
their ablation had no effect [79]. Furthermore, PVAT from BKCa knockout mice was
unable to induce vasodilation in wildtype arteries, suggesting the possible involvement of
these channels in adiponectin signaling. As mentioned above, three different adiponectin
receptors have been identified: AdipoR1, AdipoR2, and T-cadherin [30,31]. AdipoR1 is
abundantly expressed on endothelial cells and VSMCs. Adiponectin nitric oxide production
has been proposed to occur via AdipoR1 in an endothelial cell-and VSMC-dependent
manner [79] and play a pivotal role in acetylcholine-mediated vasodilation [80]. However,
as more recent data have emerged, the direct activation of BKCa channels in VSMCs by
adiponectin has been challenged. For example, Baylie et al. [81] failed to replicate the results
of Lynch et al. [79]. Although pressurized arteries exhibited similar levels of vasodilation in
response to adiponectin administration, patch–clamp recording in a single VSMC revealed
that adiponectin administration only slightly activated BK channels, resulting in currents
that were insufficient to exert a physiological response. This suggests the existence of
another layer of complexity in the pathway by which PVAT-derived adiponectin acts on
the vessel wall, presumably through the nervous system or other cell types, considering
that only intact PVAT led to vascular relaxation [79].
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5.3. Do β3-Adrenoreceptors Affect Adiponectin Signaling?

Over the years, PVAT has been considered to exert a vasorelaxant effect on vascular
walls. But more recent findings refute this possibility. A study of isolated rat mesenteric
arteries reported that PVAT may inhibit acetylcholine-mediated vasodilation by physically
not allowing acetylcholine to penetrate through PVAT to VSMCs in the artery [82]. This
physical barrier model of PVAT, however, was later questioned by Saxton et al. [83], who
showed that PVAT secreted adiponectin and exerted actions on an artery that was mounted
in a myograph in a paracrine manner. Furthermore, adiponectin was suggested to be se-
creted from PVAT as a result of β3-adrenoreceptor activation. β3-adrenoreceptor activation
in PVAT was previously reported to induce nitric oxide production, and adiponectin expres-
sion remained unchanged upon β3-adrenoreceptor activation [84]. Adiponectin knockout
mice exhibited higher blood pressure and alterations of glucose clearance, confirming that
adiponectin is vital for blood pressure normalization in both mice and humans. The in-
volvement of β3-adrenoreceptors in the regulation of adiponectin gene expression remains
to be elucidated [83,85]. Further evidence of adiponectin-mediated vascular relaxation was
provided by a recent study that confirmed previously reported results using an in vivo
rat model [86].

6. Role of PVAT-Derived Adiponectin in Endothelial Cells

Endothelial cells comprise the tunica media, an inner layer of cells within the vessel.
Therefore, the tunica media functions as a barrier between blood, the vessel, and adjacent
tissues, thereby ensuring the regulation of such processes as vascular tone, immune cell
recruitment, angiogenesis, blood fluidity, and blood clot formation [87]. Endothelial
dysfunction is characterized by a state in which vascular endothelial cells lose their ability
to induce vasodilation.

6.1. Vasodilation Regulation

Adiponectin is known to facilitate vasodilation through AMPK-mediated endothelial
nitric oxide synthase (eNOS) phosphorylation [88] and promote angiogenesis by inducing
crosstalk between AMPK and Akt pathways [89]. The action of adiponectin on endothelial
cells is ensured by both AdipoRs and T-cadherin [90,91]. Given the anatomical proximity
of PVAT to the vascular endothelium, PVAT may be presumed to act as a sensor and
regulator of the physiological state of endothelial cells. Indeed, among other fat tissues,
PVAT was found to be the most susceptible to JNK pathway activation during the onset
of type 1 diabetes, as well as adiponectin and AdipoR1 downregulation. JNK activation
exerted a significant effect on endothelial cells, particularly nitric oxide production [92].
The role of exercise in the alleviation of obesity-related disorders is well established [93],
the main beneficial outcomes of which arise from eNOS activity in endothelial cells [94,95].
However, PVAT eNOS activity was only recently shown to have a significant impact
on endothelial function as well. In rats that were fed a high-fat/high-sucrose diet and
were subjected to exercise, adiponectin levels significantly increased compared with non-
exercised control rats. Interestingly, this increase was associated with an increase in eNOS
phosphorylation in both PVAT and endothelial cells, which led the authors to conclude
that adiponectin-mediated vasodilation originates in both periadventitial adipocytes and
the vascular endothelium [96]. PVAT may also act as a backup source of nitric oxide in the
case of endothelial dysfunction. PVAT-derived adiponectin might be involved in this com-
pensatory effect. Obese patients with a body mass index of 25–30 kg/m2 presented higher
adiponectin PVAT expression compared with lean patients [97]. Hypercholesterolemic
low-density lipoprotein receptor (LDLr) knockout mice exhibited the rescue of vascular
relaxation in thoracic aortas with intact PVAT compared with PVAT-denuded aortas. This
effect, however, was not associated with alterations of adiponectin expression [98]. This
effect may be related to adipocyte β3-adrenoreceptor activation, which was shown to
mediate vasorelaxation-induced norepinephrine release [84]. Gestational intermittent hy-
poxia that was caused by obstructive sleep apnea was shown to influence PVAT-mediated
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endothelial dysfunction. Male offspring of women who experienced obstructive sleep
apnea exhibited impairments in endothelium-dependent vasodilation, which also corre-
lated with a higher susceptibility to insulin resistance [99]. PVAT-mediated vasodilation
was also absent in male offspring of female mice that were subjected to hypoxia during
pregnancy and in male offspring of female rats that were fed a high-fat diet before and
during pregnancy. In both cases, loss of the vasorelaxant effect of PVAT was associated with
lower adiponectin content in PVAT. These findings suggest that adiponectin secretion can
decrease when PVAT is exposed to hypoxic conditions. Intriguingly, this effect is heritable,
presumably through epigenetic modifications that may include adiponectin gene promoter
hypermethylation [100,101]. Another interesting example of the complex regulation of
vascular tone that is mediated by the adipovascular axis is early life stress. A previous
study using a rat model of maternal separation, showed that PVAT adiponectin induced
relaxation in the early life stress group that was subjected to a high-fat diet compared with
the non-stressed control group [102]. This finding may be related to the fact that although
adiponectin is downregulated in obese adipose tissue, its mRNA and protein expression
can be detected in the tunica intima, suggesting an adipose tissue-independent source of
this adipokine [103]. Considering the immediate proximity of PVAT and endothelial cells,
several attempts have been made to therapeutically induce the adiponectin-dependent
improvement of endothelial dysfunction. For example, methotrexate was shown to in-
duce activation of the AMPK/eNOS pathway in both PVAT and endothelial cells [104].
Calycosin is a major bioactive isoflavonoid with known anti-inflammatory and antiox-
idative properties. Calycosin treatment reversed obesity-induced PVAT inflammation
and improved adiponectin-dependent vasodilation [105]. A group of flavonoids, termed
anthocyanins, that are present in a large number of colorful fruits, red wine, and vegetables
was shown to improve insulin resistance and lower the risk of type 2 diabetes [106,107]
and cardiovascular disease [108]. Anthocyanin cyanidin-3-O-β-glucoside (C3G) is another
molecule with a proven ability to improve endothelial function through adiponectin in
diabetic mice via the SIRT1/forkhead box protein O1 (FOXO1) pathway [109]. C3G also
exerted a beneficial effect on the endothelium in atherogenic LDLr knockout mice [110].
Despite the need for further studies to fully elucidate the aforementioned phenomena,
adiponectin signaling in PVAT has clearly emerged as a potential therapeutic target for
cardiovascular and metabolic disorders.

6.2. Angiogenesis Process

Adipose tissue exhibits robust volume plasticity. Its ability to change its volume during
life is an exceptional property among other tissues. This flexibility, however, must be orches-
trated with sufficient blood vessel formation during expansion and involution in the case
of adipose tissue shrinkage. Inadequate angiogenesis during adipose tissue development
results in hypoxia, which is a hallmark of obesity [111]. A major controller of angiogenesis
is the vascular endothelial growth factor (VEGF). Mice that overexpressed VEGF exhibited
an increase in adipose tissue vascularization and were protected against obesity-induced
metabolic syndrome [112–114]. Consistent with these findings, VEGF ablation resulted in
an increase in WAT inflammation, BAT lipid accumulation, and impairments in insulin
sensitivity [115,116]. Recent studies also showed that VEGF-A ablation exclusively in
adipose tissue had a negative impact on PVAT vascularization and collagen deposition
within adipose tissue, suggesting its fibrosis. Moreover, VEGF ablation decreased UCP1
expression, suggesting that the BAT phenotype of thoracic PVAT is maintained by VEGF.
Importantly, the aforementioned alterations were associated with adiponectin downregula-
tion and a decrease in aortic relaxation, implying that PVAT micro vascularization may be
responsible for macrovascular responsiveness through adiponectin signaling [117].

7. Role of PVAT-Derived Adiponectin in Atherosclerosis

Atherosclerosis development is a multifactorial process that occurs in blood vessels,
resulting in narrowing of the arterial lumen that can lead to severe ischemia. This is
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particularly interesting because when atherosclerosis occurs in coronary arteries, it can
cause myocardial infarction. Atherosclerotic plaque formation is initiated when endothelial
cells in the arterial tunica intima begin to capture passing leukocytes and allow them to
penetrate the extracellular matrix. Extracellular matrix invasion by leukocytes is facilitated
by cell–cell junction relaxation between endothelial cells, which increases endothelial cell
permeability. This then results in cholesterol deposition that is bound to LDL within
the extracellular matrix. Recruited monocytes, which are most abundant within nascent
plaques, differentiate into macrophages and engulf LDL deposits, forming lipid-laden
mononuclear phagocytes called foam cells. In the next stage, smooth muscle cells from
the tunica media migrate toward newly forming plaques and change their phenotype
from contractile to synthetic. This phenotypic switch has been described as an increase in
extracellular matrix protein expression and secretion, which leads to atherosclerotic lesion
formation. The physical disruption of atherosclerotic lesion triggers blood clot formation,
which can later detach from the vascular wall and block blood flow in narrower sections of
the vessel [118].

Adiponectin is known for its antiatherosclerotic properties [119], consisting of its ability
to inhibit the proinflammatory, classic activation of macrophages (i.e., M1 macrophages)
and promote their alternative, anti-inflammatory activation (i.e., M2 macrophages) [120,121],
prevent macrophage-to-foam cell formation [122–125], impede VSMC proliferation and
migration [126], and inhibit endothelial cell activation upon proinflammatory stimulation,
such as by tumor necrosis factor α (TNFα), in a nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB)-dependent manner [127,128]. Occlusion of the arterial lumen
in atherosclerosis often occurs when growing plaques detach from the disease-altered
vessel and travel with blood. Within atherosclerotic lesions, immobilized LDL undergoes
oxidation as a result of reactive oxygen species biogenesis. This leads to oxLDL formation,
which in turn induces matrix metalloproteinase-9 (MMP-9) activity. MMP-9 plays an im-
portant role in plaque rupture. Adiponectin was reported to inhibit this process in VSMCs,
partially by maintaining proper antioxidant levels (e.g., glutathione) and partially by in-
hibiting MMP-9 activity [129,130]. Most studies of adiponectin signaling in atherosclerosis
have focused on systemic adiponectin or adiponectin signaling itself [131]. Accumulating
evidence, however, suggests that the origin of adiponectin is also important in this process.
Autophagy is considered beneficial in terms of defending against atherosclerosis because
of its ability to induce intracellular debris degradation and promote cell survival [132]. Au-
tophagy has mainly been studied in VSMCs and endothelial cells [133,134]. PVAT-derived
adiponectin was reported to have antiatherogenic properties because of its ability to induce
Akt/FOXO3 dependent autophagy in macrophages in a model of collar-induced carotid
atherosclerosis [135]. In humans, a special PVAT depot that surrounds coronary vasculature
is termed epicardial adipose tissue. Epicardial adipose tissue in individuals who suffer
from coronary artery disease exhibits an increase in proinflammatory cytokines, such as
leptin and interleukin-6, with a simultaneous decrease in the epicardial adipose tissue-
specific production of adiponectin. This emphasizes the fact that low adiponectin levels are
a marker of poor prognosis in cardiovascular disease [136]. Vitamin A is a well-established
regulator of lipid metabolism, inflammation, and many other factors that contribute to
cardiovascular disease [137]. Among a plethora of different vitamin A metabolites, two
appear to have particular clinical importance: 9-cis retinoic acid and all-trans-retinoic acid
(ATRA) [138]. Among these two, ATRA was shown to exert protective effects against
cardiovascular conditions through anti-inflammatory and antioxidant actions [139,140].
ATRA treatment was shown to significantly increase adiponectin secretion in PVAT using
an apolipoprotein E knockout mouse model of atherosclerosis. Interestingly, this effect was
not observed in visceral adipose tissue, thus underscoring the importance of local adipose
tissue depots in cardiovascular disease [141].
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8. Adiponectin Signaling as a Potential Therapeutic Target

Emerging evidence suggests that adiponectin that is secreted into the circulation by
remote fat pads is clinically important in terms of vascular biology. Local adiponectin
secretion from PVAT appears to act on vascular wall layers in presumably a paracrine
fashion or through the network of small blood vessels supplying walls of large blood
vessels (vasa vasorum).

8.1. Strategies for Increasing Circulating Adiponectin

Most research efforts to test adiponectin as a therapeutic target have focused on
increasing its plasma levels [142]. Pharmacological manipulations to increase plasma
adiponectin levels have included thiazolidinediones, such as rosiglitazone, which are
PPARγ agonists [143,144]. The insulin-sensitizing properties of thiazolidinediones are
reported to be at least partially mediated by adiponectin [145]. Despite promising out-
comes of thiazolidinedione treatment, some safety concerns have been raised. Prolonged
thiazolidinedione treatment was associated with a higher risk of heart failure [146], edema
development in type 2 diabetic patients [147], and lower bone density, and a higher risk of
bone fracture [148]. Because of these negative outcomes, other agents have been tested that
can selectively activate PPARγ. For example, INT131 is a non-thiazolidinedione PPARγ
modulator that has significantly fewer side effects with preserved insulin-sensitizing
properties [149]. Moreover, selective targeting of the renin–angiotensin–aldosterone axis
increased adiponectin levels in obese Zucker rats [150]. The pharmacological blockade of
angiotensin receptors was shown to activate PPARγ in humans [151]. Some plant-derived
agents that can increase adiponectin have also been identified. In rats that were fed a
high-fructose diet, Zataria multiflora extract treatment increased adiponectin levels [152].
Similar effects were found in a human study, in which garlic extract increased adiponectin
levels in patients with metabolic syndrome [153]. Aerobic exercise is another therapeutic
strategy that has well-established beneficial outcomes. In male subjects, adiponectin levels
significantly increased after sculling exercise [154,155], suggesting a promising way to
increase adiponectin levels without the need for pharmacological interventions. Phys-
iological levels of adiponectin are relatively high, and its production is diminished in
obesity [23,156]. Clinical trials have tested exogenous adiponectin administration to im-
prove metabolic outcomes. However, the half-life of this adipokine is relatively short
(~75 min) [157], which makes it unappealing for administration. Furthermore, despite
correct folding and posttranslational modifications, recombinant adiponectin failed to
impact glucose levels in diabetic db/db and ob/ob mice [158].

8.2. Adiponectin Paradox

When considering adiponectin as a potential therapeutic target, it is worth mention-
ing the so-called ‘adiponectin paradox’ phenomenon which is described by high plasma
concentrations of adiponectin in patients suffering from severe cardiovascular dysfunc-
tion [156,159]. Given adiponectin’s anti-inflammatory and antiatherosclerotic properties,
higher concentrations of this adipokine should be inversely correlated with the prevalence
of cardiovascular events [159]. However, in some cases, higher adiponectin levels show a
correlation with increased cardiovascular risk, especially in patients with other metabolic
conditions, e.g., type 2 diabetes [160–162]. This phenomenon can be at least partly ex-
plained by impaired liver function in studied subjects since adiponectin is degraded in
the liver [157,159]. It seems plausible that higher adiponectin levels in those patients are a
result of impaired liver function and are a secondary feature of metabolic disorders rather
than a primary cause of cardiovascular complications. Another possible explanation for the
adiponectin paradox is that high molecular weight (HMW) adiponectin is the most active
form, with most cardioprotective properties, and available studies mostly focus on total
adiponectin levels rather than its quality [159]. However, it has been shown that HMW
adiponectin is not a good predictor of chronic heart failure, indicating that the form of
adiponectin in circulation may play a vital role in cardiovascular disorders rather than
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only its plasma concentrations [163,164]. More studies, possibly utilizing molecular and
genetic approaches, are required to fully address this issue since presented data only show
associations without any mechanistic insights.

8.3. Pharmacological Activation of AdipoRs

AdipoRon, a small-molecule dual agonist of both AdipoR1 and AdipoR2, was de-
veloped by Okada-Iwabu et al. [66]. AdipoRon exerted actions on muscle and liver cells
by activating the PPARα and AMPK pathways and ameliorated insulin resistance in di-
abetic mice [66]. Since the discovery of AdipoRon, it has been shown to exert various
effects in such conditions as diabetic nephropathy [165], post-ischemia-reperfusion heart
failure [166], depression [167], and cancer [168,169]. AdipoRon also has actions on vascular
relaxation through a direct action on VSMCs. It was demonstrated to still be effective in
endothelium-denuded arteries. Its actions were shown to be mediated by BKCa channel
activation rather than through AMPK, in which compound C did not inhibit the observed
phenomenon. Intriguingly, AdipoRon appears to be an even more potent vasodilator than
adiponectin itself [170].

8.4. Adiponectin in Aging

Most efforts concerning adiponectin signaling in murine models were focused on
metabolic outcomes of adiponectin in relatively young animals (around 20 weeks). A recent
study conducted by Li et al. provided an insight into the potential role of adiponectin in
the longevity of mice older than 100 weeks [171]. It has been demonstrated, using both
adiponectin knockout mice and mice overexpressing adiponectin, that lack of adiponectin
induces fibrosis in multiple organs, including kidneys and liver, and this effect is mediated
partly by an increased inflammatory response in knockout mice. This effect is reversed
in mice overexpressing adiponectin. Moreover, mice overexpressing adiponectin showed
an increased lifespan by 9%, and adiponectin knockout led to shortened lifespan and
acceleration of age-related disorders occurrence. These findings are supported by previous
human research examining the effects of TZDs on age-related tissue damage [172,173].

9. Conclusions

In summary, we presented that adiponectin is involved in many physiological pro-
cesses and that it plays beneficial roles in maintaining vascular homeostasis. The vast
majority of studies concerning adiponectin signaling are focused on the endocrine function
of this adipokine. Here, we emphasized the evidence that paracrine actions of adiponectin,
especially in PVAT, must not be omitted when considering adiponectin’s therapeutic ap-
plications. Possibly, future experiments should be more focused on local adiponectin
signaling activation, which would allow for the development of selective adiponectin
activators. Another interesting approach, presented by Zhao et al. [159], implies that novel
therapeutics should encompass not only adiponectin signaling but also other adipokines,
e.g., leptin, which are also dysregulated in obesity and CVD. Such findings could lead
to the discovery of therapeutic strategies allowing for more efficient treatment of such
conditions as aneurysms, atherosclerosis, or hypertension.
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