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Abstract

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease affecting ~5

million people globally. We have constructed an accurate model of IPF disease status using

elastic net regularized regression on clinical gene expression data. Leveraging whole tran-

scriptome microarray data from 230 IPF and 89 control samples from Yang et al. (2013),

sourced from the Lung Tissue Research Consortium (LTRC) and National Jewish Health

(NJH) cohorts, we identify an IPF gene expression signature. We performed optimal feature

selection to reduce the number of transcripts required by our model to a parsimonious set of

15. This signature enables our model to accurately separate IPF patients from controls. Our

model outperforms existing published models when tested with multiple independent clinical

cohorts. Our study underscores the utility of elastic nets for gene signature/panel selection

which can be used for the construction of a multianalyte biomarker of disease. We also filter

the gene sets used for model input to construct a model reliant on secreted proteins. Using

this approach, we identify the preclinical bleomycin rat model that is most congruent with

human disease at day 21 post-bleomycin administration, contrasting with earlier timepoints

suggested by other studies.

Introduction

Idiopathic Pulmonary Fibrosis (IPF) is a fatal disease of unknown etiology characterized by

scarring of the lung parenchyma resulting in progressive loss of lung function and eventual

death [1]. Although two recently approved drugs, pirfenidone and nintedanib, reduce lung

function decline in IPF, their efficacy is limited and mechanism of action poorly understood

[2–4]. Even though meta analyses of large clinical trials suggest that pirfenidone reduces risk

of mortality [5], lung transplant still remains the only option to significantly prolong survival

in IPF, suggesting a dire need for new therapies. Development of new drugs for IPF is

extremely challenging due to complicated diagnosis, limited disease understanding, lack of

robust pre-clinical models predictive of human disease as well as biomarkers of disease pro-

gression and drug treatment. Current diagnosis of IPF requires careful integration of
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radiographic findings (honeycombing and presence of fibroblast foci), lung function (FVC,

FEV1 and 6-minute walk test) and clinical data and the rational exclusion of other potentially

similar interstitial lung diseases [6]. Often, the disease is diagnosed at an advanced stage when

it is refractory to treatment. Therefore, there is a pressing need to develop newer, less-invasive

and robust methods to efficiently diagnose IPF and enable early intervention strategies. Tran-

scriptomic and proteomic disease signatures generated from clinically-relevant human sam-

ples including tissue and plasma, combined with robust in silico modeling can enable

translational disease understanding, diagnosis and stratification of patients for effective drug

treatments. Several studies have utilized microarray profiling of IPF-patient derived lung tissue

to define genes and/or pathways that are differentially-regulated in comparison to healthy con-

trols or patients with other lung diseases [4,7–9] and define signatures for disease classifica-

tion. Peripheral blood profiling across small cohorts of patients have also identified potential

biomarkers of disease such as MMP1 and MMP7 [10–12].

Comparative gene expression profiles of preclinical models of fibrosis with human tissue

derived profiles have provided useful information on the utility of the models as well as

insights into pathways or mechanisms that are altered during the induction, progression and

resolution of fibrosis [13,14]. In many of these studies, gene/protein expression profiles have

been correlated to clinical diagnosis, disease severity and measures of lung function [15].

In the most commonly studied preclinical model of IPF, the chemotherapeutic antibiotic

bleomycin is intratracheally injected into rodents to induce an inflammatory response in the

lung, damaging the epithelium, activating fibroblasts and ultimately leading to a fibrotic phase

of increased collagen deposition and loss of alveolar structures [16]. The induced fibrosis man-

ifests over the course of 7–14 days post-bleomycin treatment, and several studies have sug-

gested different time points where congruence between the model and IPF are highest [16].

Chaudhary et al. (2006) measured profibrotic gene expression including pro-collagen I, TGF-

β1, fibronectin and collagen deposition, determining the fibrotic phase to begin between days

9 and 14 post bleomycin treatment. Bauer et al. (2015) found the most congruent rat bleomy-

cin model (day post-treatment) by first extracting a differential-expression signature from the

rat and subsequently using that gene set to construct a translational signature from IPF sam-

ples. Day 7 was identified as having the highest similarity to IPF based on gene expression

measurements [13]. The authors suggest that day 7 is the time point to administer antifibrotic

compounds in order to best assess potential clinical outcomes.

Here, we have leveraged microarray profiling data from an extensive cohort of IPF and con-

trol samples within the Lung Tissue Research Consortium (LTRC) to develop an unbiased sta-

tistical model that defines a parsimonious 15-gene disease signature for IPF. The model has

been trained and validated to accurately predict disease status across several IPF data sets. In

addition, we identified a 29-gene secreted protein plasma signature for IPF and show that the

Table 1. Clinical samples.

Study GEO Accession Microarray platform # IPF # Normal

LTRC (Yang et al. (2013)) GSE32537 Affymetrix 1.0 ST 119 50

NJH (Yang et al. (2013)) NA Affymetrix 1.0 ST 111 39

LGRC GSE47460 Agilent-014850; Agilent-028004 160 108

Konishi et al. (2009) GSE10667 Agilent-014850 23 15

Melzter et al. (2011) GSE24206 Affymetrix U133 11 6

DePianto et al. (2015) GSE53845 Agilent-014850 40 8

Models were trained and tested using these public cohorts of expression data for IPF and normal healthy patient lung samples. Sample counts are from the original

studies.

https://doi.org/10.1371/journal.pone.0215565.t001
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bleomycin model of lung fibrosis at 21 days shows the largest congruence to the disease signa-

ture. Our work defines a robust genetic signature for IPF providing a potential multi-analyte

biomarker panel for validation, as well as enables the identification of preclinical models that

most closely resemble human IPF.

Materials and methods

Clinical data

Expression data for IPF and normal healthy patient lung samples were derived from 6 distinct

cohorts (Table 1). The bulk of these expression data was available via the NCBI Gene Expres-

sion Omnibus (GEO). The clinical expression data include the Lung Tissue Research Consor-

tium (LTRC; GSE32537) cohort [9,17], the Lung Genomics Research Consortium (LGRC;

GSE47460) [17,18], the National Jewish Health (NJH) cohort [9] (data via personal communi-

cation, Ivana Yang) and several smaller cohorts, GSE10667 [7], GSE24206 [19] and GSE53845

[20]. Transcript abundances were measured on both Affymetrix and Agilent microarray plat-

forms. The LGRC and LTRC share samples, and these were excluded appropriately during

model testing. We also excluded non-IPF or normal patient samples such as non-IPF intersti-

tial lung diseases and Chronic Obstructive Pulmonary Disease (COPD) (these can be found in

the LGRC). We note that due to insufficient annotation information across all studies, we did

not correct for cellular composition or type in lung tissue samples.

In order to predict disease status of patients in the test cohorts we had to map Agilent

expression measurements to the Affymetrix measurement space. This is similar to the scaling

approach used byMeltzer et al. (2011) when mapping GSE24206 Affymetrix training features

to the GSE10667 Agilent features. Conveniently, due to the common source of LTRC lung tis-

sue used to generate both GSE32537 and GSE47460, there exist 85 common patient samples

with both Affymetrix and Agilent data, allowing us to directly map expression signal across

platforms. We generated gene-level scaling factors, which were possible because the ratios of

Affymetrix/Agilent for each gene had very low variance. Genes included in the model were

present on both Affymetrix and Agilent platforms.

Preclinical model data

Bleomycin preclinical rat model data was publicly available (GSE48455) [13]. Bauer et al.
(2013) intratracheally administered Sprague Dawley rats with a single instillation of saline or

bleomycin and sacrified the animals along a time course of 3, 7, 14, 21, 28, 42, and 56 days

post-treatment (Table 2). Rat-Human orthologs were mapped using NCBI HomoloGene [21].

For simplicity in interpretation, only orthologs with a one-to-one mapping were included

(excluding one-to-many mappings).

Identifying secreted proteins

Secreted genes were annotated using Gene Ontology (GO) cellular component annotations

[22,23]. Genes were included if identified as existing in the extracellular space (GO:0005615)

Table 2. Bleomycin preclinical rat model samples.

3 7 14 21 28 42 56

Bleomycin 5 5 5 5 5 5 5

Vehicle 5 5 4 5 5 5 5

Sample breakdown of bleomycin preclinical rat model (GSE48455) [13]. The time course experiment contains

samples from 3, 7, 14, 21, 28, 42, and 56 days post-treatment.

https://doi.org/10.1371/journal.pone.0215565.t002
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and not on the cell surface (GO:0009986). Our motivation was to exclude genes found on the

cellular surface which were annotated as secreted.

Computational and statistical processing

R version 3.4.1 and Bioconductor were used for expression data retrieval from GEO, normali-

zation, filtering and scaling [24,25]. When present, batch/microarray platform effects were

removed using the sva package [26]. Differential expression contrasts were computed using

the limma package [27]. Regularized regression using elastic nets was computed using the

glmnet package [28]. Balanced and repeated cross-validation was executed using the caret

package [29].

All code and data required to execute the analysis described in this manuscript have been

deposited in GitHub (https://github.com/ronammar/ipf_signature_elastic_net).

Model construction and optimization

Disease status (IPF or normal) was used as a categorial response with two possible outcomes in

logistic regression, which models the probability of response using a binomial link function to

define a model of disease. However, logistic regression can be unreliable when n�p or p>n. By

linearly combining both l1 and l2 penalties of the lasso and ridge regression methods, respec-

tively, elastic net regularization improves model performance and simultaneously selects fea-

tures [28,30–32] (Appendix A1). Regularized regression techniques shrink coefficient

estimates towards zero, and the use of the l2 penalty in our model forces some coefficient esti-

mates to be equal to exactly zero. Coefficient estimates that are non-zero are selected for inclu-

sion in the model [32].

All models were trained on the LTRC lung tissue expression data. Only gene expression

data were used for modeling, and clinical or demographic data were not included as these

covariates are not always available and of uniform quality. Disease classification was accom-

plished using an elastic net regularized regression model [28]. Elastic net training requires the

selection of both a lasso and ridge mixing parameter, α, and a penalty strength parameter, λ
(Appendix A1). To identify the optimal combination with the highest performance, we con-

ducted 10-fold balanced cross-validation for each α,λ pair in a grid search on the LTRC train-

ing data (S1 Fig).

The grid search appears to indicate no significant performance associated with α, which

controls the number of features included in the model. This means we can increase α to make

the model more lasso-like, while maintaining high performance by adjusting λ accordingly.

We chose α = 0.95 based on the suggestion in the glmnet documentation to set α = 1−� for

some small �>0 [31]. The rationale is to improve numerical stability and reduce the degenera-

cies cause by high correlations between covariates.

Once we set α, we performed 1000 repeats of 10-fold cross-validation in caret to select the λ
that yielded the highest performing model (lowest misclassification error) on the LTRC train-

ing data. This generated the final model and set of selected features (genes). For completeness,

we computed the inclusion frequencies for each feature (S1 Supporting Information) [33,34].

We do not calculate significance of features in our model, as this is a relatively new and active

area of statistics research [35]. Due to the challenges in computing appropriate estimates of the

degrees of freedom, this significance test is currently in development for elastic nets.

This same approach was used to construct a model for each subset of genes including all,

secreted genes, genes differentially-expressed in the bleomycin rat model and a combination

of secreted and differentially-expressed genes. Four models were constructed in total, and

these are available as serialized R objects in our code respository.

Elastic nets define a genomic signature for IPF
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Results

Feature selection and model construction

We chose the LTRC and NJH cohorts for model training and initial testing, respectively,

because they represented distinct patient populations, but were processed on the same

expression platform (Affymetrix) by the same authors [9]. These two cohorts also each con-

tained a relatively large number of samples, which is ideal for training and testing statistical

models.

Before training, we compared patients to one another in an unbiased manner with t-Dis-

tributed Stochastic Neighbor Embedding (t-SNE), a nonlinear dimensionality reduction

method capable of reducing the entire transcriptome signal into just two (or three) dimensions

for visualization [36]. With transcription data for all IPF and normal patient samples in the

LTRC and NJH cohorts, we observed distinct grouping of patient samples by disease status

with no clear trend indicating a grouping by cohort (Fig 1, S2 and S5 Figs). A few outliers were

identified with this method, but were not excluded from the subsequent work.

The LTRC lung tissue expression data was used to train all models (see Materials and Meth-

ods). Four models were constructed in total based on different gene subsets as input. These

include models built with all genes (M, 13896 initial features), secreted genes (Msecreted, 910

initial features), genes differentially-expressed in the bleomycin rat model (Mbleomycin, 1677

initial features) and the intersection of secreted and differentially-expressed genes

(Msecreted\bleomycin, 210 initial features) (S1–S3 Tables). 15 gene features were selected by M
(Table 3).

When the expression of these 15 genes is hierarchically-clustered, we observe a very clear

separation between IPF and normal patient samples (Fig 2 and S6–S9 Figs). While clustering is

not used for disease status classification, the use of this orthogonal data-driven approach inde-

pendently demonstrates that the 15 gene panel can be used to effectively discriminate between

IPF and normal using transcript abundance alone.

Model validation on independent clinical cohorts

We first validated all models (M; Msecreted; Mbleomycin; Msecreted\bleomycin) on the NJH cohort.

Due to the identical platform and processing, the NJH cohort provided a novel patient sample

set while reducing variance from technical factors. All models were also tested on four other

independent cohorts (Fig 3). As expected, the most unbiased model (no subsetting of genes

before regularization), M, performed the best, while reducing the number of genes for subse-

quent regularization generally reduced performance. Based on the area under the curve

(AUC) metrics, M is the most performant published model of IPF disease status [13,19,37].

Identifying the most congruent rat bleomycin model

The IPF signatures derived from each of our four models could be used to identify the preclini-

cal rat bleomycin model with the highest congruence to IPF. Before comparing ortholog

expression across species, we attempted to normalize species-specific expression by comparing

ratios from rat to human, computed as log2(bleomycin/saline) for rat samples and log2(IPF/con-
trol) for human samples. During initial comparisons between rat and IPF using the M feature

set, we noticed that many rat genes were not differentially-expressed (|log2(bleomycin/sal-
ine)|�0), introducing noise when computing similarity between rat and IPF expression.

Therefore, when comparing rat to IPF, we used the Mbleomycin feature set (30 gene features),

which includes only genes that were differentially-expressed at any of the days in the bleomy-

cin time course. Similarity was computed using Pearson correlation between each day post-
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bleomycin treatment and IPF samples (using the LGRC samples, to compare our results more

directly with those previously published [13]). We found model-IPF congruence increased

from days 3 to 14 with maximum similarity between the model and IPF at day 21 (S3 Fig). It is

important to note that multiple other murine models of pulmonary fibrosis exist [39], and we

have only chosen the rat bleomycin model to compare to the disease, but other model compar-

isons may be the subject of future work.

Discussion

Given the challenges associated with the diagnosis of IPF and the inaccuracy of clinical predic-

tion tools, it is imperative to explore new methods for diagnosis, classification and patient

stratification. We have effectively leveraged microarray data from a large cohort of IPF patients

within the LTRC to generate a new computational classifier of IPF disease. Although IPF dis-

ease signatures have been described before [9,13,19,20], the strength of our approach is the

number of samples used, the unbiased computational model developed to define the signature

and the extensive validation across multiple IPF cohorts. Our model outperforms several other

previous models based on the near 100% prediction of disease status across multiple validation

Fig 1. t-SNE models each high-dimensional observation into just two dimensions such that similar observations are modeled by nearby points and dissimilar

objects are modeled by distant points. Applying t-SNE to our clinical samples from the LTRC and NJH, We observe distinct grouping of IPF and normal samples with

a few outliers. There does not appear to be any grouping of patients by cohort.

https://doi.org/10.1371/journal.pone.0215565.g001
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cohorts. Bauer et al. (2015) described a 12-gene signature identified from about 100 IPF sam-

ples compared with control lungs and established the commonality of this signature with that

derived from the rat model of bleomycin induced fibrosis at the 7-day time point. Our study

complements and extends these findings by developing alternate signatures and establishing

congruence with the rat model of bleomycin induced fibrosis. Tissue and peripheral gene/pro-

tein expression signatures provide complex information that could be poorly or incompletely

understood in the absence of effective computational modeling. Our study identifies a novel

15-gene signature that accurately predicts IPF disease status (Table 3). The signature contains

several genes previously not associated with IPF as well as genes such as MMP7 which is a

known biomarker for IPF [10,11] and sFRP2, a Wnt-signaling molecule described as a pro-

spective therapeutic target [40]. Notably, MMP7 knockout mice do not develop fibrosis in

response to bleomycin treatment [41]. Also, active MMP7 has been detected in IPF lungs but

not healthy lungs and has been implicated as a profibrotic metalloprotease [42,43]. Glutathione

Peroxidase-3 (GPX3) identified in our signature has been shown to be present in the epithelial

lining fluid in the bleomycin-induced fibrosis model and upregulated in IPF [44].

Peripheral blood-derived biomarkers and expression signatures are more clinically translat-

able and developable as diagnostic tools as opposed to tissue-derived signatures, especially in

diseases like IPF where tissues are hard to obtain and gene expression patterns are spatially

restricted within the tissue. Profiling of plasma proteome in IPF has identified minimal protein

signatures of IPF, as well as potential biomarkers [10,11,45,46] of disease progression including

MMP1, MMP7, and surfactant protein-D. In a recent study [47], a 52-gene signature was

developed from gene expression profiling of peripheral blood mononuclear cells from a cohort

of IPF patients and validated for outcome prediction across two additional cohorts. Many of

the identified genes were involved in defense response, wound healing and protein phosphory-

lation. In our study, we generated a 29-gene secreted protein signature from the tissue micro-

array data. This signature is enriched for genes in immune response and cell-matrix

interaction pathways. Additionally, several extracellular matrix genes such as COMP,

Table 3. 15-gene signature for IPF.

Coefficient Accession Symbol Description

-0.3644650 54829 ASPN Asporin

1.0505567 875 CBS Cystathionine-beta-synthase

0.3145191 1131 CHRM3 cholinergic receptor muscarinic 3

0.0221471 114805 GALNT13 Polypeptide N-acetylgalactosaminyltransferase 13

0.2791872 374378 GALNT18 polypeptide N-acetylgalactosaminyltransferase 18

0.0460736 2878 GPX3 Glutathione peroxidase 3

0.0214608 4047 LSS lanosterol synthase (2,3-oxidosqualene-lanosterol cyclase)

0.0028236 56922 MCCC1 methylcrotonoyl-CoA carboxylase 1

0.0747452 8972 MGAM Maltase-glucoamylase

-0.0382877 4316 MMP7 matrix metallopeptidase 7

0.0546881 5028 P2RY1 purinergic receptor P2Y1

-0.1286685 6423 SFRP2 secreted frizzled related protein 2

0.3537117 25777 SUN2 Sad1 and UNC84 domain containing 2

0.0437323 10579 TACC2 transforming acidic coiled-coil containing protein 2

-0.0245404 64393 ZMAT3 zinc finger matrin-type 3

-10.1203104 (Intercept) NA NA

Gene features selected by elastic nets defining the IPF gene signature when no genes have been filtered, using M. The coefficients are extracted from M. Accessions are

Entrez gene identifiers.

https://doi.org/10.1371/journal.pone.0215565.t003
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SPOCK1, Laminin C1 and ECM2 were identified as signature genes in our study. A secreted

protein signature from tissue derived expression data could represent a robust and specific

reflection of disease status. Future studies should validate the protein-level expression of these

genes in serum/plasma.

In our study, we also show that the rat bleomycin model at day 21 has the highest congru-

ence to the human IPF signature. This contrasts with the results of Bauer et al. (2015) wherein

the rat model of fibrosis day 7 was determined to be the most similar to human disease. This is

likely due to our similarity being assessed only using the IPF-derived gene signatures and not

larger sets of genes (S3 and S4 Figs). We determined that using 30 genes to define similarity is

more informative than using the entire set of genes that are differentially expressed in IPF and

mapped to rat. After day 21, similarity is reduced, but remains relatively high, suggesting a per-

sistent fibrotic state.

In future work, we propose to predict disease progression or severity of IPF with the inclu-

sion of FVC or DLCO lung function measures. This would be analogous to the PROFILE

study whereMaher et al. (2017) showed that a 4 serum biomarker panel could be used to pre-

dict mortality and distinguish between stable and progressive IPF [48]. We also note that end-

point gene expression measurements represent a functional vignette of a biological system.

Having access to gene expression changes over time along with protein abundances among

Fig 2. Hierarchical clustering of 15 gene signature used by model M to classify disease status. A clear separation is observed between IPF and normal

patient samples. Note that this is just for visualization purposes, and M uses logistic regression to classify samples, not clustering. Row-scaled log intensity

units are plotted. We use the complete linkage method for hierarchical clustering with a Euclidean distance measure.

https://doi.org/10.1371/journal.pone.0215565.g002
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other measures would shed more light on mechanisms behind IPF, and this is the subject of

future work.

We have discriminated effectively between IPF and control lung tissues which is relevant in

translational models of disease, but the complexity in diagnosing IPF manifests largely in dis-

tinguising it from other idiopathic interstitial pneumonias (IIPs) [49]. While the LGRC con-

tains gene expression from lung samples of control and IPF patients, it also contains COPD

and other IIP samples. However, given the paucity of similar data sets, it is challenging to vali-

date a model trained to discriminate between COPD and respiratory bronchiolitis-associated

interstitial lung disease or desquamative interstitial pneumonia. Promising modeling efforts

are underway, but are limited by the number and diversity of available patient samples (eg. 115

samples across 14 pathology diagnoses, with most diagnoses matching very few patients) [50].

For future work, given the appropriate training and test data, we propose to construct models

similar to our own with the ability to distinguish between IIPs.

Appendix

A1. Elastic nets: Logistic regression with a binomial distribution

From the glmnet elastic nets R package [28,31], we define the following:

The response variable takes a value in G ¼ 1; 2. Denote yi = I(gi = 1).

We model Pr G ¼ 2jX ¼ xð Þ þ eb0þb
Tx

1þeb0þb
Tx,

With the log-odds transformation log PrðG¼2jX¼xÞ
PrðG¼1jX¼xÞ ¼ b0 þ b

Tx.

The objective function for the penalized logistic regression uses the negative binomial log-

likelihood minðb0 ;bÞ2Rpþ1 � 1

N

PN
i¼1
yi � ðb0 þ xTi bÞ � logð1þ eðb0þxTi bÞÞ

� �
þ l 1 � að Þjjbjj

2

2
=2þ

�

ajjbjj
1
�, where the elastic net penalty is controlled by the mixing parameter α combining both

lasso (l1, α = 1) and ridge (l2, α = 0) penalties. The tuning parameter λ corresponds to the

strength of the penalty.

We note that due to the presence of multicollinearity in high-dimensional expression data,

where p�n, regularized regression may be used to construct an accurate disease classifier

Fig 3. Model performance is assessed on the test data and evaluated with Receiver Operating Characteristic (ROC) curves. We compute the area under the curve

(AUC) for each model and each cohort, where a perfect classifier has an AUC = 1 and a random classifier has an AUC = 0.5 (the diagonal line). The ROC curves and

AUCs were calculated by passing the true positive fraction (the probability of a test positive among the diseased population) and false positive fraction (the probability

of a test positive among the normal population) to the plotROC package (S5 Table) [38]. We performed 1000 bootstraps of the data for each cohort to establish a null

distribution yielding a mean AUC of approximately 0.5, as expected. Based on the empirical p-values from these bootstrap AUCs, we find that all our reported AUCs

are statistically significant, confirming the performance of our models across all test cohorts (S4 Table).

https://doi.org/10.1371/journal.pone.0215565.g003

Elastic nets define a genomic signature for IPF

PLOS ONE | https://doi.org/10.1371/journal.pone.0215565 April 18, 2019 9 / 15

https://doi.org/10.1371/journal.pone.0215565.g003
https://doi.org/10.1371/journal.pone.0215565


based on transcript abundance, but each model represents one of many possible models [32].

We establish confidence in an individual model (and set of features) by validating/testing it on

multiple independent cohorts.

Supporting information

S1 Fig. Elastic net grid search performance. We iterated over a grid of possible paired α and

λ parameters for the elastic net module to determine optimal performance while reducing the

number of features to create a minimal gene signature. Minimum classification error can be

achieved at any value of α given an optimization for λ. The number of features included is

annotated for each pair of parameters. The large red block represents a 0 gene feature model

(only including an intercept β0).

(TIF)

S2 Fig. PCA dimensionality reduction. The proportions of variance accounted for by each of

the first two principal components are indicated in parentheses. In this instance, t-SNE was

more informative than Principal Components Analysis (PCA) because PCA yields n−1 princi-

pal components for an observation matrix of n×p where p�n (n is the number of observations

and p is the number of variables), where the variance is non-uniformly distributed across these

eigenvectors. Instead the variance is typically spread across more than the first two or three

eigenvectors yielding poorer separation between disease and control patients when only taking

these eigenvectors into account.

(TIF)

S3 Fig. Congruence between bleomycin model and IPF. For the 30 gene expresion signature

from Mbleomycin, the similarity between the rat and IPF expression increased from days 3 to 14

post-bleomycin treatment with maximum similarity at day 21. After day 21, similarity is

reduced, but remains relatively high, suggesting a possible fibrotic state. r = Pearson correla-

tion coefficient where −1�r�1, with 1 meaning perfectly correlated and -1 perfectly anticorre-

lated.

(TIF)

S4 Fig. Congruence between bleomycin model and IPF using all differentially-expressed

genes. If we examine only those genes that are differentially-expressed in IPF relative to con-

trols ( IPF
control � 1:5 and FDR<0.1), and identify the orthologs in the rat, we do not observe

increased similarity at any time point post-bleomycin treatment to suggest maximal congru-

ence with IPF. This motivates the use of a smaller gene expression signature to extract only

IPF-relevant gene expression.

(TIF)

S5 Fig. t-SNE dimensionality reduction for all test cohorts.

(TIF)

S6 Fig. Hierarchical clustering of 15 gene signature used by model M to classify disease

status for all test cohorts. We use the complete linkage method for hierarchical clustering

with a Euclidean distance measure.

(TIF)

S7 Fig. Hierarchical clustering of gene signature used by model Msecreted to classify disease

status for all test cohorts. We use the complete linkage method for hierarchical clustering

with a Euclidean distance measure.

(TIF)
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S8 Fig. Hierarchical clustering of gene signature used by model Mbleomycin to classify disease

status for all test cohorts. We use the complete linkage method for hierarchical clustering

with a Euclidean distance measure.

(TIF)

S9 Fig. Hierarchical clustering of gene signature used by model Msecreted\bleomycin to classify

disease status for all test cohorts. We use the complete linkage method for hierarchical clus-

tering with a Euclidean distance measure.

(TIF)

S1 Table. Gene features selected by elastic nets defining the IPF gene signature when only

secreted genes are included in Msecreted. The coefficients are extracted from Msecreted.

(CSV)

S2 Table. Gene features selected by elastic nets defining the IPF gene signature when only

differentially-expressed genes from the bleomycin model are included in Mbleomycin. The

coefficients are extracted from Mbleomycin.

(CSV)

S3 Table. Gene features selected by elastic nets defining the IPF gene signature when

secreted and differentially-expressed genes from the bleomycin model are included in

Msecreted\bleomycin. The coefficients are extracted from Msecreted\bleomycin.

(CSV)

S4 Table. Mean AUC from 1000 bootstraps of the test cohort data.

(CSV)

S5 Table. True positive fraction (the probability of a test positive among the diseased pop-

ulation) and false positive fraction (the probability of a test positive among the normal

population) passed to the plotROC package to plot Fig 3.

(CSV)

S1 Supporting Information. For each model, we report inclusion frequencies of each gene

feature using the method of Meinshausen & Bühlmann [33].

(XLSX)
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