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The emerging pathogen, Borrelia miyamotoi, is a relapsing fever spirochete vectored by 
the same species of Ixodes ticks that carry the causative agents of Lyme disease in the 
US, Europe, and Asia. Symptoms caused by infection with B. miyamotoi are similar to 
a relapsing fever infection. However, B. miyamotoi has adapted to different vectors and 
reservoirs, which could result in unique physiology, including immune evasion mech-
anisms. Lyme Borrelia utilize a combination of Ixodes-produced inhibitors and native 
proteins [i.e., factor H-binding proteins (FHBPs)/complement regulator-acquiring surface 
proteins, p43, BBK32, BGA66, BGA71, CD59-like protein] to inhibit complement, while 
some relapsing fever spirochetes use C4b-binding protein and likely Ornithodoros-
produced inhibitors. To evade the humoral response, Borrelia utilize antigenic variation 
of either outer surface proteins (Osps) and the Vmp-like sequences (Vls) system (Lyme 
borreliae) or variable membrane proteins (Vmps, relapsing fever borreliae). B. miyamotoi 
possesses putative FHBPs and antigenic variation of Vmps has been demonstrated. 
This review summarizes and compares the common mechanisms utilized by Lyme 
and relapsing fever spirochetes, as well as the current state of understanding immune 
evasion by B. miyamotoi.

Keywords: Borrelia miyamotoi, spirochetes, relapsing fever, Lyme disease, complement, factor H, antigenic 
variation, immune response

iNTRODUCTiON

Tick-borne diseases are among the top reported diseases to the US Centers for Disease Control 
and Prevention. This group of diseases include an array of viral, bacterial, and parasitic pathogens 
(e.g., Lyme disease, tick-borne relapsing fever, anaplasmosis, rickettsiosis, Powassan virus, tick-
borne encephalitis virus, Colorado tick fever, Heartland virus, babesisosis) transmitted by the bite 
of certain species of hard and soft shell ticks from four genera (Ixodes, Dermacentor, Amblyomma, 
Ornithodoros) (1–3).

Intense research efforts are occurring worldwide in an attempt to understand, detect, control, 
treat, and eradicate these pathogens and their diseases. One step toward preventing and treat-
ing infectious diseases is to understand how pathogens evade host defenses to establish infec-
tion. Pathogenic Lyme and relapsing fever borreliae establish infection through one or more of 
the following mechanisms: physical barriers (e.g., slime layer of glycoproteins), migration to 
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immunoprivileged sites, and hijacking host processes [e.g., 
inactivation of complement with factor H-binding proteins 
(FHBPs)]. The mechanisms utilized by the emerging relapsing 
fever pathogen, Borrelia miyamotoi, are currently uncharacter-
ized. Herein, we review some mechanisms Lyme and relapsing 
fever Borrelia utilize to inhibit and evade host complement and 
humoral immune responses and relate these to mechanisms that 
might be used by B. miyamotoi.

Lyme Disease and Tick-Borne Relapsing 
Fever: Spirochetes, vectors, and Diseases
Approximately 20 closely related pathogenic and non-pathogenic 
species of Borrelia form the B. burgdorferi sensu lato complex. 
Of these 20 species, at least five are classified as causative agents 
of Lyme disease (US: B. burgdorferi sensu stricto; Europe and 
Asia: B. afzelii, B. garinii, B. spielmanii, B. bavariensis) (4–10). 
Lyme borreliae are carried and transmitted by several species 
of Ixodes ticks (Ixodidae, hard shell) though the most common 
species are I. scapularis and I. pacificus in the US and I. ricinus and  
I. persulcatus in Europe and Asia.

Species of Ornithodoros ticks (Argasidae, soft shell) carry and 
transmit relapsing fever spirochetes. Several Borrelia spp. cause 
relapsing fever but B. hermsii, B. turicatae, B. crocidurae, B. his-
panica, B. duttonii are more commonly encountered.

While the general rule is Ixodes transmit spirochetes of the 
B. burgdorferi s.l. complex and Ornithodoros transmit relapsing 
fever borreliae, there are exceptions. B. recurrentis is a louse-
borne relapsing fever spirochete endemic mainly to sub-Saharan 
Africa. B. theileri causes bovine borreliosis and is transmitted 
by Rhipicephalus microplus, a hard shell tick that parasitizes 
livestock (11). B. lonestari and B. turcica, spirochetes genetically 
similar to relapsing fever borreliae, are found in the hard shell 
ticks, Amblyomma americanum and Hyalomma aegyptium, 
respectively (12, 13). Finally, B. miyamotoi is a relapsing fever 
spirochete vectored by the same Ixodes spp. that transmit species 
of the B. burgdorferi s.l. complex.

In terms of disease, several tick-borne diseases are associ-
ated with non-specific symptoms (i.e., a possibly self-limiting 
“influenza-like” illness characterized by malaise, fatigue, aches, 
fever, and chills) (Table  1). While infection with Borrelia spp. 
generally results in similar symptoms, some species-specific 
symptoms can arise (14, 15). Erythema migrans and arthritis are 
commonly associated with a B. burgdorferi s.s. infection but rarely 
with B. afzelii infection, which more commonly manifests in the 
dermatological condition, acrodermatitis chronica atrophicans. 
B. garinii is more commonly associated with neurological symp-
toms. Relapsing fever is characterized by recurring spirochetemia 
corresponding to recurrent episodes of high fever not seen with 
B. burgdorferi s.l. infections.

Borrelia miyamotoi
Borrelia miyamotoi s.s. strains were first isolated and cultured 
in Japan in 1995 from I. persulcatus and the blood of Apodemus 
argenteus (small Japanese field mouse) (16). Since this initial 
isolation, B. miyamotoi DNA has been identified in I. scapularis, 

I. pacificus, I. ricinus, and I. persulcatus across the Northern 
hemisphere (17–84). B. miyamotoi DNA has also been identi-
fied in humans with a suspected tick-borne disease; while  
B. miyamotoi is associated with disease, teasing out the details of 
an infection with this spirochete has proven difficult for several 
reasons (85–92).

First, diagnoses based on serology can be problematic and lead 
to false-negative diagnoses. Several antigens, including 4 of the 10 
assayed in a Lyme Western blot, are shared among Lyme, relapsing 
fever, and B. miyamotoi spirochetes (93, 94). Although Lyme and 
relapsing fever Borrelia cause different diseases and occupy dif-
ferent niches, species in this genus share a high degree of genetic 
homology (95–98). Therefore, some degree of cross-reactivity 
occurs between B. miyamotoi antibodies and B. burgdorferi s.l. 
antigens (91).

Second, an adequate and appropriate immunocompetent 
animal model to study B. miyamotoi infection is only now begin-
ning to take shape. Without an optimal animal model to identify 
characteristic symptoms and pathologies, we are left to interpret 
and extrapolate symptoms from complex human cases where 
disease pathology can be complicated by underlying or unre-
ported medical conditions or coinfections. Previous attempts 
to infect immunocompetent Peromyscus leucopus mice (a com-
mon reservoir for B. burgdorferi in the US) with B. miyamotoi 
s.l. LB-2001 (US strain) had been unsuccessful leaving severe 
combined immune deficient (SCID) mice as the only available 
animal model (17). SCID mice infected with B. miyamotoi exhibit 
sustained spirochetemia, similar to infection with relapsing fever 
spirochetes (99). Recently, however, Wagemakers et  al. (100) 
were able to successfully infect immunocompetent C3H/HeN 
mice with LB-2001 and demonstrate spirochetemia 2 days post 
infection (dpi). Three of the eight mice infected exhibited relaps-
ing spirochetemia at 5 and 6 dpi. More studies are required to 
determine the optimal animal model for B. miyamotoi infection 
(101–103).

Finally, B. miyamotoi’s status as a pathogen has only recently 
been established. The first confirmed human infections were 
reported in Russia in 2011 (85) with more cases subsequently 
described in the US, Europe, and Japan (86–91, 104–107).

B. miyamotoi Infection and Disease
Much of the data available on B. miyamotoi infections come from 
retrospective serological analyses of banked patient samples, 
which provide valuable epidemiological information but can 
lack the detailed patient history or clinical aspects required to 
sufficiently define a disease. The available data depict an illness, 
currently termed B. miyamotoi disease or hard tick-borne relaps-
ing fever that is similar to relapsing fever.

The patients described by Platonov et  al. (85) reported tick 
bites, developed moderate or severe disease, and were hospital-
ized as a precautionary measure against more severe tick-borne 
diseases, particularly viral tick-borne encephalitis. In total, 46 
patients were classified as having a confirmed B. miyamotoi 
infection with no detected current B. burgdorferi s.l. coinfection 
by PCR. Sera from all 46 patients reacted with whole cell lysates 
of B. burgdorferi, B. afzelii, and B. garinii. The most common 
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TABLe 1 | Overview of Borrelia diseases.

Disease vectora Causative agent(s)a Clinical symptom(s)

Lyme disease I. scapularis (USA) B. burgdorferi sensu stricto (USA) Symptom onset after exposure: early stage generally 3–30 days
Influenza-like (e.g., mild fever, malaise, myalgia/arthralgia; B. burgdorferi s.s.)
Erythema migrans (B. burgdorferi s.s., B. afzelii)
Symptom onset after exposure: late stage generally >30 days
Arthritis
Acrodermatitis chronica atrophicans (B. afzelii)
Neurological (Lyme neuroborreliosis, e.g., numbness, Bell’s palsy, stiffness 
of neck, declining memory, sleep disorders; B. burgdorferi s.s., B. bavariensis)

I. pacificus (USA) B. afzelii (Europe, Asia)
I. ricinus (Europe, 
Asia)

B. bavariensis (Europe, Asia; formerly  
B. garinii OspA serotype 4)

I. persulcatus 
(Europe, Asia)

B. garinii (Europe, Asia)
B. spielmanii (Europe, Asia)

Tick-borne relapsing 
fever

O. hermsi B. hermsii Symptom onset: ca. 7 days
Influenza-like
Recurring high fever
Headache
Myalgia
Arthritis
Approximately 3–10 febrile episodes (relapses) occur; mortality rates are 
variable but generally less than 5%

O. turicata B. turicatae
O. parkeri B. parkerii
O. moubata B. duttonii

Hard tick-borne 
relapsing fever/Borrelia 
miyamotoi disease

I. scapularis B. miyamotoi Symptom onset after exposure: ca. 15 days (85)
Influenza-like
Most common:
Fever
Malaise
Headache
Chills
Arthritis/arthralgia
Meningoencephalitis (immunocompromised patients)
Rare (less than 10% of patients):
Rash/erythema migrans
Gastrointestinal (e.g., vomiting, nausea, diarrhea)
Cardiac/respiratory (shortness of breath)
Neurological (e.g., dizziness, confusion)
Stiffness of neck

I pacificus
I ricinus
I. persulcatus

Louse-borne relapsing 
fever

P. humanus 
humanus

B. recurrentis Symptom onset after exposure: ca. 4–8 days
Recurring high fever
Malaise
Headache
Chills
Meningism
Myalgia
Nausea
Vomiting
Approximately 3–5 relapses occur; mortality rate varies greatly  
(30–70% without treatment during outbreaks)

aCommonly encountered and studied vectors and causative agents are listed.
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symptoms were fever, headache, and malaise or fatigue (Table 2). 
Five patients reported recurrent fever with an average duration of 
3.4 days, and 9 days between relapses, similar to infections with 
relapsing fever spirochetes. All patients were successfully treated 
with ceftriaxone or doxycycline.

A similar series of cases were reported in the US in 2015 
(91). Ninety-seven of 11,515 patient samples submitted by 
clinical laboratories for tick-borne disease analysis were PCR-
positive for B. miyamotoi. Patients with known or suspected  
B. burgdorferi coinfection or a history of Lyme disease were 
omitted from further analysis. Fever, headache, and malaise were 
commonly reported among US patients with two patients report-
ing recurrent fever (Table 2). The duration of febrile episodes and 

the time between relapses were not reported. Spirochetemia was 
noted in US patients but was either not reported or documented 
in Russian patients. Strikingly, a rash or single erythema migrans 
of unknown origin was reported in 8 and 9% of US and Russian 
patients, respectively.

Some symptoms were different between the US and Russia 
patients, which suggest clinical manifestations vary by B.  miy-
amotoi strain, similar to that seen with B. burgdorferi s.l. strains 
(Table  2) (108). Arthralgia was more common in US (76%) 
compared to Russian patients (28%), and leukopenia, thrombo-
cytopenia, and elevated liver enzymes were found in some US 
patients but in none of the Russian patients. These differences 
may be explained by genetic differences between American 
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TABLe 2 | Comparison of symptoms reported from US (91) and Russian 
(85) patients.

Symptom US (n = 51) Russia (n = 46)

Fever, chills 96% 98%, 35%a

Headache 96%b 89%
Myalgia 84% 59%
Arthralgia 76% 28%
Malaise/fatigue 82% 98%
Rash/EMc 8% 9%
Gastrointestinal symptomsd 6% 30% (nausea)

7% (vomiting)
Respiratory symptomse 6% naf

Neurological symptoms  
(dizziness, confusion, vertigo)

8% na

Stiff neck na 2%

aFever and chills were reported in separate categories.
bAuthors noted in most patients the headaches were severe.
cUS patients were described as having a rash. Russian patients were noted for having 
a single erythema migrans.
dFor US patients, GI symptoms included nausea, abdominal pain, diarrhea, anorexia. 
For Russian patients, GI symptoms included nausea and vomiting.
eLabored breathing or short of breath.
fNot reported.
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and Asian type B. miyamotoi. Genetic analyses of B. miyamotoi 
isolates have revealed heterogeneity between, and a high degree 
of homology among, strains from the US (American types;  
I. scapularis, I. pacificus), Europe (European type; I. ricinus), and 
Asia (Asian type; I. persulcatus) (59, 109).

Detailed case reports are currently available for nine 
patients in the US, Europe, and Japan. For immunocompetent 
patients, symptoms were similar to those observed in the 
aforementioned studies (e.g., fever, headache, malaise) (86, 89, 
90, 106, 107). One US patient did not seek treatment, providing 
additional evidence that B. miyamotoi can result in recurrent 
fever and be self-resolving, similar to other relapsing fever 
infections (92, 110). This patient experienced two episodes of 
fever separated by 3 weeks, significantly longer than in other 
B. miyamotoi or relapsing fever patients, with each episode 
lasting 4–5 days, on par with B. miyamotoi or relapsing fever 
patients.

The pathology of B. miyamotoi infection is dramatically 
different in immunocompromised patients, specifically those 
treated for non-Hodgkin’s lymphoma (NHL) with rituximab. 
Two patients treated with rituximab for NHL, one from the 
US (88) and one from the Netherlands (87), with reported 
recent tick bites developed meningoencephalitis. Motile spi-
rochetes were detected in cerebral spinal fluid in both cases. 
Interestingly, glpQ was amplified and sequenced from both 
patient’s samples yet no anti-GlpQ antibodies were detected in 
the blood or cerebral spinal fluid of the European patient. IgM 
against B. burgdorferi was negative for both patients. Neither 
patient reported any of the commonly associated symptoms of a 
B. miyamotoi infection (e.g., fever, headache, myalgia, malaise). 
Instead, both patients exhibited neurological symptoms (cogni-
tive processing defects, disturbed gait). A third patient from 
Germany, also treated with rituximab for NHL, developed 
Lyme neuroborreliosis-like symptoms (dizziness, vomiting, 
and headache) (111).

THe COMPLeMeNT SYSTeM

The complement system, composed of the classical, lectin, and 
alternative branches, is a crucial component of the immune 
system (Figure  1). Components of complement continuously 
circulate in blood making complement one of the first lines of 
defense against pathogens. Complement initiates an immune 
response by: (1) triggering phagocytosis through opsonization, 
(2) mediating inflammation through the release of chemotactic 
peptides, and (3) lysing cells via the membrane attack complex 
(MAC, also called the terminal complement complex or TCC) 
(Figure 1) (112).

The classical pathway is generally mediated by non-specific 
antibodies, immunoglobulin G (IgG) or IgM, binding a bacte-
rial antigen. Importantly, recent studies have shown Borrelia-
specific IgM is produced by a subset of B cells during infection 
and plays a crucial role in clearing Borrelia (113–121). The C1 
complex, composed of C1q, C1r, and C1s, forms upon recogni-
tion of bound IgG or IgM. C1 cleaves C2 (C2a, C2b) and C4 
(C4a, C4b). C4b covalently binds the target’s cell surface and 
complexes with C2a to form C3 convertase, which cleaves C3 
into C3a and C3b. C3b covalently binds the target cell surface 
(opsonization, facilitates phagocytosis of foreign cells and cel-
lular debris), while C3a remains soluble to act as a mediator 
of inflammation. C5 convertase forms when C3b binds C3 
convertase. Not surprisingly, C5 convertase cleaves C5 into C5a, 
a soluble inflammatory mediator, and C5b. C5b binds the target 
cell surface and C6 forming C5b6, which binds C7 (C5b–7) 
then C8. The C5b–8 complex binds C9 (C5b–9) and facilitates 
polymerization of several additional C9 proteins. These polym-
erized C9 proteins form the transmembrane pore of the MAC 
allowing an influx of extracellular fluid and subsequent lysis of 
the target cell.

The lectin pathway is very similar to the classical pathway, dif-
fering only in the initiation steps. The lectin pathway is typically 
initiated through mannose-binding lectins, a group of pattern 
recognition receptors (PRRs) on host cells, binding specific sets 
of carbohydrates on foreign cells (pathogen-associated molecular 
patterns, PAMPs). The lectin and classical pathways converge at 
the cleavage of C2 and C4 by different mechanisms. In the lectin 
pathway, C4 and C2 cleavage occurs through mannose-binding 
lectin-associated serine proteases (112).

Like the classical and lectin pathways, the alternative path-
way forms a C3 convertase, C5 convertase, and results in the 
formation of the MAC. Unlike the classical and lectin pathways, 
the alternative pathway may not require antibody–antigen or 
PAMP–PRR interactions for activation. Rather, this pathway is 
initiated through hydrolysis of C3 to C3(H2O), which is thought 
to occur continuously at low levels. The pathway is propagated 
through interactions with bacterial antigens or a lack of host 
surface markers (e.g., sialic acid, glycosaminoglycans, sulfated 
polysaccharides) (112).

Factor B, after binding C3(H2O), is cleaved by factor D into Ba 
and Bb resulting in C3(H2O)Bb, the fluid-phase C3 convertase 
(cleaves C3 to C3a and C3b). C3b binds the bacterial cell surface 
where it complexes with additional factor B. Factor D again 
cleaves factor B, which results in the second, predominant and 
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FiGURe 1 | Activation and regulation of complement pathways relevant to Borrelia spp. infection. (A) Classical pathway. (B) Mannose–lectin pathway. (C) 
Alternative pathway. Points of complement inhibition utilized by Borrelia spp. are indicated by red octagons. Red arrows indicate borrelial proteins that interact with 
host regulatory proteins.
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cell-bound C3 convertase (C3bBb). This cell-bound C3 con-
vertase is stabilized by properdin (C3bBbP). Binding of additional 
C3b to C3 convertase results in the formation of C5 convertase 
(C3bBbC3b), which cleaves C5 and initiates the formation of the 
MAC as described above.

iNHiBiTiON OF THe MAMMALiAN 
COMPLeMeNT SYSTeM BY 
Borrelia AND Ixodes

Regulation of complement is critical for survival of host cells (122, 
123). Numerous mechanisms have evolved in hosts to prevent 

aberrant activation of complement on host cells including the use 
of complement regulatory factors and host cell surface compo-
nents (e.g., sialic acid). Pathogens that inhibit host complement 
use mechanisms that are inextricably tied to host regulatory 
processes. Borrelia use several native proteins to inhibit comple-
ment [i.e., FHBPs or complement regulator-acquiring surface 
proteins (CRASPs), p43, BBK32, BGA66, BGA71, CD59-like 
protein] (124). The following sections focus on the complement 
regulators factor H (FH), factor H-like protein-1 (FHL-1), factor 
I (FI), C4b-binding protein (C4BP), and CD59.

At least for Lyme borreliae, resistance to complement varies 
by strain and species (125–130). Roughly, 10% of B. burgdorferi 
s.s. are serum resistant, and 90% are intermediately resistant 
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to serum; 75% of B. afzelii isolates are resistant, and 25% are 
intermediate; 100% of B. garinii isolates are sensitive (specifically, 
OspA serotypes 3, 5, 6, 7); B. bavariensis (formerly B. garinii OspA 
serotype 4) is intermediately resistant. To the best of our knowl-
edge, similar comparisons of multiple strains and species have not 
been published for relapsing fever Borrelia, though complement 
resistance is not universal among relapsing fever species among 
the strains observed. Resistance to complement is important for 
the transmission, survival, and dissemination of some Borrelia 
spp. in mammalian and rodent hosts and reservoirs (131). Many 
Borrelia  spp., particularly Lyme borreliae, are masters of comple-
ment evasion due to the native anticomplement proteins some 
possess and the ability all infectious strains possess to co-opt tick 
and host complement regulatory proteins.

FH, FHL-1, and Fi
Factor H is an ubiquitous 150-kDa soluble protein produced 
by diverse cell types throughout the human body (e.g., 
hepatic cells, fibroblasts, monocytes, endothelial cells) (132). 
FH consists of 20 short consensus repeats, while FHL-1 is a 
truncated variant of FH consisting of the FH N-terminal short 
consensus repeats 1 through 7. Both FH and FHL-1 are major 
direct regulators of the alternative complement pathway. In 
addition, FH and FHL-1 can directly regulate the classical and 
lectin pathways, though the regulatory roles in these pathways 
are minor compared to other classical and lectin regulatory 
mechanisms. Regulation is achieved through the recognition of 
self and non-self molecules via domains located on the C- and 
N-terminals, respectively (133–135). The C-terminal discrimi-
nates self from non-self through interactions with sialic acids, 
glycosaminoglycans, and sulfated polysaccharides, which are 
typically found only on host cells (136–140). FH binds self 
molecules with high affinity to prevent activation of comple-
ment. FH regulates the classical and lectin pathways by acting 
as a co-factor for FI. In this capacity, FH facilitates the serine 
protease activity of FI in cleaving and inactivating C3b. The 
alternative pathway is regulated through FH targeting factor 
Bb, which prevents the formation of fluid-phase C3 convertase 
and promotes decay (“decay acceleration activity”) of C3 and 
C5 convertases (141). For comprehensive reviews of FH and 
FHL-1, see Ref. (132, 141, 142).

FHBPs and CRASPs
Interactions with FH are the best-studied mechanism for 
Borrelia complement inactivation, and complement resistance 
is correlated with binding FH (143). Borrelia spp. bind FH and/
or FHL-1 through various native proteins collectively termed 
FHBPs or CRASPs (125, 144, 145). CRASPs can be grouped by 
their ability to bind only FH or both FH and FHL-1 as well as the 
species specificity of binding (that is, whether a FHBP can bind 
FH from only one or several host species) (125, 145): CRASP-1 
(CspA) and CRASP-2 (CspZ) bind both FH and FHL-1, while 
CRASP-3 (ErpP), CRASP-4 (ErpC), and CRASP-5 (ErpA) bind 
only FH. CRASPs bind soluble FH and maintain it in an active 
conformation thereby allowing FH to inhibit completion of the 
complement response (i.e., MAC formation).

Several relapsing fever spirochetes bind FH in  vitro (125, 
146–151). Two FHBPs, FhbA and BhCRASP-1, have been identi-
fied in B. hermsii strains YOR and HS1, respectively (152, 153). 
However, binding FH is not as important for relapsing fever 
spirochetes to establish infection as it is for Lyme disease Borrelia 
(154, 155). Further supporting the non-essential nature of bind-
ing FH, Woodman et  al. (154) found that despite FhbA being 
surface exposed and strongly binding FH in vitro, only 16% of 
B. hermsii recovered from the blood of infected mice had detect-
able levels of bound FH.

C4b-Binding Protein
C4b-binding protein (C4BP) has regulatory roles in all three 
pathways, though is the major regulator of the classical and 
lectin pathways. C4BP facilitates inactivation of C4b (classical, 
lectin) and fluid-phase C3b (alternative) by binding C4b, displac-
ing C2a, and facilitating FI-mediated inactivation of C3 and C5 
convertases (156).

Some Lyme and relapsing fever Borrelia spp. bind human and 
various animal C4BP (143, 148, 149, 157, 158). A comprehen-
sive analysis identified outer surface proteins (Osps) associated 
with C4BP including OspA, Vlps, variable membrane proteins 
(Vmps), and several unidentified Osps (159). However, other 
studies have observed no binding of C4BP by Borrelia spp (143, 
150, 160). These contradictory data may be due to differences in 
experimental design including the use of different strains, growth 
medium, temperatures, growth phases, and the use of recombi-
nant versus native human C4BP. A putative C4BP receptor, p43, 
has been identified in B. burgdorferi s.l. (157). The relapsing fever 
spirochetes B. recurrentis and B. duttonii produce CihC, a surface 
lipoprotein homologous in sequence and function to fibronectin-
binding proteins of other relapsing fever spirochetes, which also 
binds C4BP (148).

FHBP, C4BP, and Borrelia Niche
Resistance to complement is positively correlated to the infectivity 
of some Borrelia strains (130). With a higher resistance to com-
plement, the more likely a bacterium can survive, disseminate, 
and proliferate. Co-opting tick proteins will protect spirochetes 
during the initial stages of transmission and dissemination but 
sustained dissemination requires Borrelia to resist complement 
via its own native mechanisms.

This leads to the question of how complement sensitive strains 
can cause infection. An interesting hypothesis was developed 
regarding complement resistance and spirochete niche when 
a relationship was noted between binding of the complement 
inhibitors, C4BP and FH (157, 158, 161). Neurotropic strains 
(e.g., B. bavariensis, B. garinii, B. turicatae, B. duttonii, and to 
a lesser extent B. hermsii) do not have to be highly resistant 
to complement in immunoprivileged sites, such as the central 
nervous system. Finding neurotropic species strongly bind 
C4BP and very weakly bind FH and FHL-1, while species that 
are not neurotropic bind C4BP but preferentially bind FH and/
or FHL-1 supports this hypothesis (157). Alitalo et al. (162) did 
find B. garinii strains isolated from neuroborreliosis patients not 
only express FHBPs not expressed by strains cultured in vitro 
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for an extended time but the FHBPs also bind FH. This implies 
complement resistance, though this was not reported and one of 
the isolates (LU59) was later reported to be highly but not com-
pletely sensitive to complement (163). It is possible that strong 
binding of FH is an artifact seen in vitro, similar to that observed 
with relapsing fever spirochetes (see FHBPs and CRASPs). Thus, 
binding FH is not required for neurotropic strains. Perhaps 
C4BP is sufficient to prevent complement activation during 
migration of neurotropic species from the site of inoculation to 
immunoprivileged sites. On the other hand, binding FH may be 
important for neurotropic strains to resist complement during 
migration and the incomplete sensitivity observed by Sandholm 
et  al. (158) may be due to in  vitro culturing resulting in the 
population losing its ability to bind FH. It could also be that 
neither C4BP nor FHBPs play a role in complement-sensitive 
borreliae disseminating and a novel mechanism is utilized by 
complement-sensitive strains.

CD59-Like Protein
Little information is available regarding the CD59-like protein 
of B. burgdorferi. Pausa et al. (164) demonstrated an increase 
in serum sensitivity and MAC formation in a serum-resistant 
B.  burgdorferi isolate treated with anti-CD59 antibodies 
compared to the control treated B. burgdorferi and the serum-
sensitive B. garinii isolate. In eukaryotic cells, CD59 is a surface-
exposed membrane protein that prevents C9 polymerization 
and thus the formation of the MAC (19, 20). Still, it is not 
clear Borrelia possesses a protein homologous to mammalian 
or rodent CD59. While human anti-CD59 antibodies bound 
a surface-exposed integral membrane protein (29  kDa), this 
protein has never been identified though several known bor-
relial proteins can and have been ruled out based on molecular 
weight (e.g., BGA66, BGA71, OspA, OspB, OspC) (124). Given 
the demonstrated complement resistance conferred by this 
unknown borrelial protein, more attention should be given to 
identifying and clarifying the role this protein plays in comple-
ment resistance.

Complement inhibition by Ixodes and 
Ornithodoros Salivary Proteins
A large number of proteins with a vast array of functions have 
been identified in the saliva of feeding Ixodes spp. with more being 
identified and characterized (165–169). While the details and 
mechanisms for some of these proteins remain to be elucidated, 
the beneficial nature of Ixodes salivary proteins to spirochete 
transmission and survival has been established (170–177). Ixodes 
saliva contains adaptive and innate immunomodulatory and 
anticomplement proteins (165, 178–183). A recent study dem-
onstrated changes in the salivary protein profile over the course 
of a feeding, which has implications for the efficacy of the host 
immune response at the feeding pit and for transmitting spiro-
chetes (168). Currently, several members of the anticomplement 
family of proteins have been characterized from I. scapularis, 
I. ricinus, and I. persulcatus including Salp15, Salp20, Isac, Irac I, 
Irac II, and Ixac-B1, -2, -3, -4, -5.

Salp15 is able to inhibit both adaptive and innate immune 
responses (184, 185). Salp15 binds OspC, which both serum-
resistant and serum-sensitive B. burgdorferi s.l. produce, to 
inhibit deposition of the MAC and block the recognition and 
binding of antibodies to OspC (172, 186–188). In addition, 
Salp15 expression increases when ticks are infected with B. 
burgdorferi (172). Interestingly, mice passively immunized with 
anti-Salp15 antibodies were protected from infection with B. 
burgdorferi (189).

Salp20 inhibits the alternative complement pathway through 
binding properdin, which prevents stabilization of C3 convertase 
and propagation of the alternative pathway (183, 190, 191). In 
addition, Salp20 enhances the activity of FH to inhibit the alterna-
tive pathway (183). Incubating a serum-sensitive B. garinii strain 
with Salp20 protected the strain from complement activation and 
lysis (190). The mechanism(s) by which Salp20 confer(s) protec-
tion to B. garinii is unknown.

The Isac-like family of proteins include Ixodes scapularis 
anticomplement (Isac), I. ricinus anticomplement (Irac I), Irac 
II, and Ixac-B1 through -5 (I. ricinus anticomplement). Proteins 
in this family are similar in function to Salp20 (180, 182, 192). 
Inhibition of the alternative complement pathway is achieved 
through targeting C3 convertase via interactions with properdin, 
as Salp20 does, and by preventing factor B from binding C3b or 
displacing factor B from C3 convertase.

Ornithodoros salivary gland extracts also possess proteins 
that inhibit the host immune response (193). To date, however, 
one complement inhibitor has been identified and character-
ized from one Ornithodoros spp. O. moubata, found in Africa, 
is the vector of the relapsing fever spirochete B. duttonii (194). 
O. moubata complement inhibitor (OmCI) is a lipocalin that 
binds to and prevents cleavage of C5 (195, 196). OmCI was 
found to be effective at inhibiting C5 cleavage in different 
mammalian and rodent hosts (196). It is unknown if OmCI 
protects B. duttonii or if homologous proteins are found in 
other Ornithodoros spp.

evASiON BY Borrelia OF THe 
MAMMALiAN HUMORAL iMMUNe 
ReSPONSe BY SURFACe PROTeiN 
vARiATiON

Evasion of complement is undoubtedly a vital mechanism to 
ensure spirochetes survive and establish infection. However, 
Borrelia will elicit an humoral immune response, and there are 
clear roles for this immune response in controlling and prevent-
ing Borrelia infection (113–118, 197, 198). These responses form 
the basis of an intense research effort for effective Lyme vaccines. 
Fortunately for Borrelia, they are quite adept at evading the host 
humoral response primarily through variation of surface-exposed 
proteins. Lyme disease Borrelia possess Osps and variable mem-
brane protein-like [Vmp-like sequences (Vls)] proteins, while 
relapsing fever Borrelia possess Vmps (includes variable large and 
variable small proteins) (199–203). Some species hide antigens by 
inducing erythrocyte rosetting (204).
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Osps and vlse of Lyme Borrelia
The Osps, particularly OspC, are one of the most studied group 
of Borrelia proteins. For comprehensive reviews of Borrelia Osps, 
see Ref. (145, 205, 206). OspE and OspF are discussed above with 
FHBPs. Less is known about OspA, a protein predominantly 
involved in uptake and survival in ticks. OspA is immunogenic 
and able to block antibody binding to another surface-exposed 
protein, P66 (207, 208).

OspC has diverse roles, many of which are essential for 
transmission from Ixodes and establishing infection in mam-
mals (209–216). These studies were key in demonstrating 
that ospC is upregulated during the early stages of infection, 
downregulated after infection has been established, and deleting 

or overexpressing ospC results in spirochetes that are quickly 
cleared from a host.

A handful of immune evasion functions have been identified 
for OspC. As discussed above, OspC protects Borrelia by bind-
ing Salp15. OspC also prevents phagocytosis by macrophages 
(216). In addition, several OspC types have been identified and 
correlated with a strains ability to establish infection in hosts and 
reservoirs (217–222). However, as each Osp is present as a single-
copy locus, genetic variation is seen at the population level. That 
is, outside of random mutation or horizontal gene transfer events, 
a single spirochete cannot produce different OspC types in situ.

In contrast, the Vls system can change the expressed surface 
antigen in situ (Figure 2). Antigenic recombination of VlsE is 
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important in maintaining infection in mammals and helps Lyme 
Borrelia evade the humoral immune response (223–236). The 
Vls system is composed of approximately 16 vls cassettes (the 
exact number varies by strain) and one expression locus, vlsE. 
All of the identified vls cassettes are located on the same plasmid 
(lp28-1) in close proximity to but in the opposite direction of 
vlsE. Expression at vlsE occurs through the random recombina-
tion of segments of multiple vls cassettes rather than recombina-
tion of an entire, single vls cassette. Thus, recombination events 
result in thousands of unique VlsE variants, all approximately 
36 kDa.

vmps of Relapsing Fever Borrelia
Variable membrane proteins, a system similar to Vls, are one of the 
best characterized immune evasion mechanisms (199, 237–240). 
B. hermsii has approximately 60 unique and promoterless vmp 
cassettes (i.e., silent cassettes) scattered throughout its genome 
and one promoter-driven vmp expression locus (Figure  2).  
A single vmp cassette is expressed when the entire cassette is 
moved to the expression locus.

The majority of spirochetes are cleared from the host through 
specific anti-Vmp IgM antibodies raised against the predomi-
nantly expressed Vmps, which results in a significant decrease 
in spirochete load (from approximately 105–107to <104  spi-
rochetes/mL). The remaining spirochetes consist of a small 
population expressing different cassettes. Since the host has 
not raised a strong antibody response to these non-dominantly 
expressed Vmps, this minority population of spirochetes can 
proliferate to high concentrations until an antibody response is 
mounted and the majority of spirochetes are once again cleared. 
This cycle of vmp conversion, peaking spirochete loads, and 
antibody-mediated clearing repeats a minimum of two times 
resulting in the characteristic symptoms of a relapsing fever 
illness.

MeCHANiSMS OF iMMUNe evASiON  
BY B. miyamotoi: wHeRe we ARe

Given the genetic similarity of B. miyamotoi to relapsing fever 
spirochetes, it is likely B. miyamotoi utilizes some homolo-
gous mechanisms to evade host immune responses. While 
B. miyamotoi is resistant to complement in  vitro (241, 242), 
complement inactivation is not required for relapsing fever 
spirochetes to establish infection. OspE homologs have been 
identified in B.  miyamotoi FR64b (isolated from the blood 
of A. argenteus); however, McDowell et  al. were unable to 
demonstrate FH-binding (125). This suggests, as is the case for 
relapsing fever spirochetes, inactivation of complement may 
not be required to resolve spirochetemia during infection with 
B. miyamotoi (115, 243).

Instead, it appears B. miyamotoi utilizes a Vmp system (244), 
and Wagemakers et  al. (100) recently demonstrated antigenic 
variation of Vmps in B. miyamotoi. C3H/HeN mice infected 
with B. miyamotoi LB-2001 produced anti-Vsp1 IgM and IgG 
antibodies that were effective in clearing the initial spiroche-
temic peak of B. miyamotoi from SCID mice. Despite this 

clearing, a second spirochetemic relapse occurred. Analyses of 
the secondary B. miyamotoi population revealed expression of 
vlpC2, not vsp1, as would be expected in the case of antigenic 
variation. They also noted vlpC2 was present in the initial B. 
miyamotoi population in a much lower prevalence compared 
to vsp1.

MeCHANiSMS OF iMMUNe evASiON BY 
B. miyamotoi: wHeRe we NeeD TO Be

Even though B. miyamotoi is genetically similar to relapsing 
fever spirochetes, it has evolved and exists in different vec-
tors (Ixodes not Ornithodoros) with different enzootic cycles 
and different co-pathogens compared to relapsing fever 
spirochetes. We should not assume B. miyamotoi utilizes the 
same set of mechanisms as other relapsing fever spirochetes. 
B. miyamotoi may use a combination of relapsing fever 
and Lyme Borrelia mechanisms as well as completely novel 
mechanisms.

The role of IgM in clearing B. miyamotoi has not been dem-
onstrated. As discussed above, IgM is key in clearing relapsing 
fever infections. During B. hermsii infections, IgM targets 
FhbA and other surface proteins (113). IgM likely is important 
in clearing B.  miyamotoi. All immunocompromised patients 
diagnosed with a B. miyamotoi infection developed menin-
goencephalitis. A shared factor with these patients has been 
treatment with rituximab, a monoclonal anti-CD20 antibody 
targeting IgM-producing CD20-positive B cells. Depletion of 
B cells may explain how B. miyamotoi is able to migrate to the 
CNS and causes meningoencephalitis in patients treated with 
rituximab. The presence of unknown complement inhibi-
tors, however, could contribute to the complement resistance  
of B. miyamotoi and may be useful in establishing infection 
(241, 242).

The effects of tick saliva on B. miyamotoi survival have not 
yet been studied. However, being vectored by Ixodes, B. miy-
amotoi likely takes advantage of the protective proteins in tick 
saliva. In addition, understanding interactions between host, 
vector, and pathogen will aid in the development of Lyme and 
relapsing fever prevention strategies and thus requires more 
attention.

CONCLUDiNG ReMARKS

Infection with B. miyamotoi in immunocompetent patients gen-
erally results in non-specific symptoms (e.g., headache, malaise), 
recurrent fever, and spirochetemia characteristic of relapsing 
fever. However, additional symptoms characteristic of relaps-
ing fever have not been demonstrated, namely rapid symptom 
onset with a crisis event suggesting B. miyamotoi infection is 
not synonymous with relapsing fever and is rather a relapsing 
fever-like illness (90). This should not be surprising given the 
different lifestyle of B. miyamotoi compared to the vast majority 
of relapsing fever spirochetes.

The ability to evade the immune response is important for any 
successful pathogen but many of the mechanisms B. miyamotoi 
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utilizes remain undiscovered. Hindered by the lack of a robust 
animal model, the relatively long-standing inability to culture 
in vitro, and being unaware of its pathogenicity, our understand-
ing of B. miyamotoi is still in its infancy. However, we are making 
large strides forward with recent advances in culture techniques, 
animals models, physicians actively considering B. miyamotoi 
infection, as well as a growing wealth of epidemiological data 
that will allow us to clarify the details of infection, genetics, and 
physiology of this emerging pathogen.
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