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Background: Given the age relevance of prostate cancer (PCa) and the role of
mitochondrial dysfunction (MIDS) in aging, we orchestrated molecular subtypes and
identified key genes for PCa from the perspective of MIDS.

Methods: Cluster analysis, COX regression analysis, function analysis, and tumor
immune environment were conducted. We performed all analyses using software R
3.6.3 and its suitable packages.

Results: CXCL14, SFRP4, and CD38 were eventually identified to classify the PCa patients
in The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO)
dataset into two distinct clusters. Patients in the cluster 2 had shorter BCR-free survival than
those in the cluster 1 in terms of both TCGA database and GEO dataset. We divided the
patients from the TCGA database and the GEO dataset into high- and low-risk groups
according to themedian of MIDS-related genetic prognostic index. For patients in the TCGA
database, the biochemical recurrence (BCR) risk in high-risk group was 2.34 times higher
than that in low-risk group. Similarly, for patients in the GEO dataset, the risk of BCR and
metastasis in high-risk group was 2.35 and 3.04 times higher than that in low-risk group,
respectively. Cluster 2 was closely associated with advanced T stage and higher Gleason
score for patients undergoing radical prostatectomy or radiotherapy. For patients
undergoing radical prostatectomy, the number of CD8+ T cells was significantly lower in
cluster 2 than in cluster 1, while cluster 2 had significantly higher stromal score than cluster 1.
For patients undergoing radical radiotherapy, cluster 2 had significantly higher level of CD8+ T
cells, neutrophils, macrophages, dendritic cells, stromal score, immune score, and estimate
score, but showed lower level of tumor purity than cluster 1.

Conclusions: We proposed distinctly prognosis-related molecular subtypes at genetic
level and related formula for PCa patients undergoing radical prostatectomy or
radiotherapy, mainly to provide a roadmap for precision medicine.

Keywords: molecular subtype, prostate cancer, mitochondria dysfunction, biochemical recurrence, radical
prostatectomy, radical radiotherapy
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INTRODUCTION

Prostate cancer (PCa) is the most common non-skin malignant
tumor diagnosed among American men in 2021, accounting for
26% (1). For localized PCa, radical radiotherapy and radical
prostatectomy are the preferred treatment options. However,
three-quarters of men will experience biochemical recurrence
(BCR) after receiving radical treatment without evidence of overt
metastatic disease (2). There has been no agreement on the
definition of BCR (3). However, for recurrence patients, the
median time to metastasis is 8 years, and the median time from
metastasis to death is 5 years (4). Due to the lack of prospective
randomized trials with a high level of evidence, the best
management for BCR has not yet been confirmed since no
intervention is currently considered to extend survival, which
highlights the importance of personalized therapy and deciding
when to start which treatment.

Very little has been known about the cause of PCa, among
which aging is the only definite risk factor (1). Cellular
senescence is a driver of aging and age-related diseases. The
increase of age is accompanied by the accumulation of senescent
cells in the tissues and the appearance of cellular senescence (5).
Cell senescence is a cellular stress response caused by irradiation
and other macromolecular damage which was once considered
to be a tumor suppressor mechanism, but recent studies have
shown that senescent cells are metabolically active, and the
inflammatory mediators they secrete are called senescence-
associated secretory phenotype (SASP) or senescence messaging
secretome (6). Senescent cells exacerbate inflammation through
SASP, which is called “inflammageing” (7, 8).

Mitochondria have been identified as one of the key
regulators of the development of aging phenotypes, especially
the pro-inflammatory SASP (9). The role of mitochondria in
PCa has gradually become clear with a large number of studies
on various nuclear-encoded pathways. There is considerable
crosstalk between the nucleus and mitochondria through the
retrograde signal from the mitochondria to the nucleus and the
anterograde signal from the nucleus to the mitochondria
through the translocation of cytoplasmic translation proteins
to the mitochondria (10). Mitochondrial damage has been
shown to be involved in the pathophysiology of PCa (11),
which is a highly hereditary disease (12). Changes in the
mitochondrial genome have been proven to be related to
predictors of tumor proliferation, metastasis, and BCR (11).
Next-generation sequencing of mitochondrial DNA from 115
men showed a positive correlation between the total burden of
acquired mitochondrial DNA variants and the elevated
Gleason score at diagnosis and BCR (13). Given the age
Abbreviations: PCa, Prostate cancer; BCR, biochemical recurrence; SASP,
senescence-associated secretory phenotype; ROS, reactive oxygen species; MMR,
mismatch repair; TIM-3, T-cell immunoglobulin domain and mucin domain-
containing molecule 3; TME, tumor immune microenvironment; MIDS,
mitochondrial dysfunction; DEGs, Differentially expressed genes; GEO, Gene
Expression Omnibus; CTRP, cancer therapeutics response portal; GDSC,
genomics of drug sensitivity in cancer; GSEA, Gene set enrichment analysis;
FDR, false discovery rate; MDGPI, MIDS-related genetic prognostic index.
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relevance of PCa and the role of mitochondrial dysfunction
(MIDS) in aging, we orchestrated molecular subtypes and
identified key genes for PCa from the perspective of MIDS,
so as to provide a roadmap for the evolution of precision
medicine. In addition, we also developed an independent
genetic prognosis index to quantify the recurrence risk of
patients. Our study has been registered in the ISRCTN
registry (No. ISRCTN11560295).
METHODS

Data Preparation
For the combination of GSE46602 (14), GSE32571 (15), GSE62872
(16), and GSE116918 (17) from the Gene Expression Omnibus
(GEO) datasets (18), R package “inSilicoMerging” (19) was used
and “removeBatchEffect” function of the “limma (version 3.42.2)”
package was used to remove the batch effects (Supplementary
Figure 1). Subsequently, we extracted the differentially expressed
mRNAs between tumor and normal tissues from the GSE46602
(14), GSE32571 (15), and GSE62872 (16), and further conducted
the prognosis analysis through log-rank test using the GSE116918
(17). Similar methods were used to proceed the PCa data from the
TCGA database in the UCSC XENA (20). Differentially expressed
genes (DEGs) were defined as llogFCl ≥0.4 and p.adj. <0.05. P-value
of BCR-free survival or metastasis-free survival was restricted to less
than 0.05. MIDS-related genes were obtained from the GeneCards
(21). The candidate genes were identified through the intersection of
DEGs and prognosis-related genes in the GEO and TCGA
databases, and the MIDS-related genes. The gene interactions and
drug analysis of the candidate genes were performed through the
STRING database (22) and GSCALite (23) which included drug
data of the cancer therapeutics response portal (CTRP) and
genomics of drug sensitivity in cancer (GDSC).

Molecular Subtypes and Genetic
Prognosis Index
R packages “ConsensusClusterPlus” and “limma” were used to
subtyping the patients who underwent radical prostatectomy in
the TCGA database or underwent radical radiotherapy in the
GSE116918 (17) through the three candidate genes. The
consensus matrix k value denoted the number of clusters.
Subsequently, we analyzed the correlations between the clinical
parameters and two clusters and prognostic value of the clusters
for PCa patients from the TCGA database and GSE116918 (17).
Gene set enrichment analysis (GSEA) of the two clusters was
conducted, and p-value of <0.05 and a false discovery rate (FDR)
of <0.25 were considered statistically significant (24, 25). Besides,
we constructed a MIDS-related genetic prognostic index
(MDGPI) according to the results of multivariate COX
regression analysis for PC patients in the TCGA database to
quantify the BCR risk of patients. The MDGPI formula was as
follows: risk score = −1.601 + 0.063 ∗ CXCL14 + 0.176 − SFRP4 −
0.095 ∗ CD38. Then, we used the 248 tumor patients in the
GSE116918 (17) to confirm the prognostic value of the
MDGPI score.
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Tumor Immune Microenvironment (TME)
and Checkpoints
We analyzed the tumor immune microenvironment (TME)
through the TIMER and ESTIMATE algorithms (26, 27). In
addition, 54 and 47 common immune checkpoints were analyzed
for PCa patients from the TCGA and GEO databases,
respectively. Comparisons between TME components and
immune checkpoints and the two clusters were performed
through the Wilcoxon rank sum test. The Spearman analysis
was used to explore the relationship between MDGPI and TME
components and immune checkpoints. Immune checkpoints,
which were differentially expressed between the two clusters and
were significantly associated with the BCR-free survival for
patients in the TCGA database and GSE116918 (17), were
identified as well. We presented the flowchart of this study
in Figure 1.

Statistical Analysis
We performed all analyses using software R 3.6.3 and its suitable
packages. We utilized Wilcoxon test under the circumstance of
Frontiers in Oncology | www.frontiersin.org 3
non-normal data distribution. Variables could be entered into
multivariate COX regression analysis if p-value <0.1 in the
univariable Cox regression analysis. Survival analysis was
conducted through log-rank test and presented as Kaplan–
Meier curve. Besides, the Spearman analysis was used to assess
the correlations among continuous variables if they did not meet
Shapiro–Wilk normality test. Statistical significance was set as
two-sided p <0.05. Significant marks were as follows: ns, p ≥0.05;
*, p <0.05; **, p <0.01; ***, p <0.001.
RESULTS

Molecular Subtype and its Clinical Values
The GSE46602 (14), GSE32571 (15), and GSE62872 (16) had 209
normal and 360 tumor samples, and the GSE116918 (17)
contained 248 PCa patients undergoing radical radiotherapy
with complete data of BCR and metastasis. Besides, we also
obtained 498 tumor and 52 normal samples of PCa from the
TCGA database, among which 430 PCa patients undergoing
FIGURE 1 | The flowchart of this study. GSEA, gene set enrichment analysis; MDGPI, mitochondrial dysfunction genetic prognostic index; GEO, Gene Expression
Omnibus; mRNA, messenger RNA.
April 2022 | Volume 12 | Article 858479
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FIGURE 2 | Molecular subtype and MDGPI score. (A) Venn plot showing the interaction of differentially expressed genes between tumor and normal samples in the
TCGA and GEO datasets, and mitochondrial dysfunction-related genes; (B) forest plot showing genes associated with BCR-free survival in the TCGA database;
(C) forest plot showing genes associated with BCR-free survival in the GSE116918 (17); (D) cluster plot showing distinct two groups in the TCGA database;
(E) Kaplan–Meier curve presenting the BCR-free survival difference of the two clusters in the TCGA database; (F) cluster plot showing distinct two groups in the
GSE116918 (17); (G) Kaplan–Meier curve presenting the BCR-free survival difference of the two clusters in the GSE116918 (17); (H) Kaplan–Meier curve presenting
the metastasis-free survival difference of the two clusters in the GSE116918 (17); (I) Kaplan–Meier curve presenting the BCR-free survival difference of the high- and
low-risk groups based on the median of MDGPI in the TCGA database; (J) Kaplan–Meier curve presenting the BCR-free survival difference of the high- and low-risk
groups based on the median of MDGPI in the GSE116918 (17); (K) Kaplan–Meier curve presenting the metastasis-free survival difference of the high- and low-risk
groups based on the median of MDGPI in the GSE116918 (17); (L) comparisons between cluster 2 and cluster 1 in the TCGA database for CXCL14, SFRP4, CD38,
and MDGPI score; (M) comparisons between cluster 2 and cluster 1 in the GSE116918 (17) for CXCL14, SFRP4, CD38, and MDGPI score. BCR, biochemical
recurrence; MDGPI, mitochondrial dysfunction-related genetic prognostic index. ***, p <0.001.
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radical prostatectomy had complete data of BCR. After the
intersection of DEGs and prognosis-related genes in the GEO
and TCGA databases, and theMIDS-related genes (Figures 2A–C),
CXCL14, SFRP4, and CD38 were eventually identified to classify the
PCa patients in the TCGA database into two distinct clusters
(Figure 2D; consensus matrix k = 2). Moreover, patients in cluster 2
had shorter BCR-free survival than those in cluster 1 (HR: 2.18, 95%CI:
1.29–3.69, p = 0.003; Figure 2E). Similarly, we observed that these three
genes could obviously distinguish cluster 2 from cluster 1 for patients
undergoing radical radiotherapy in the GSE116918 (17) (Figure 2F;
consensus matrix k = 2), and patients in cluster 2 were more prone to
BCR (HR: 2.37, 95% CI: 1.39–4.04, p = 0.001; Figure 2G) and
metastasis (HR: 2.94, 95% CI: 1.26–6.84, p = 0.013; Figure 2H) than
their counterparts. We divided the patients from the TCGA database
and the GSE116918 (17) into high- and low-risk groups according to
the median of MDGPI score. For patients in the TCGA database, the
BCR risk in high-risk group was 2.34 times higher than that in low-risk
group (95% CI: 1.40–3.91; Figure 2I). Similarly, for patients in the
GSE116918 (17), the risk of BCR andmetastasis in high-risk groupwas
2.35 and 3.04 times higher than that in low-risk group, respectively
(Figures 2J, K). In addition, patients in cluster 2 had significantly
higher levels of CXCL14, SFRP4, and MGPI score, and lower level of
CD38 than those in cluster 1 for PCa patients from the TCGAdatabase
(Figure 2L) and GSE116918 (17) (Figure 2M).

For patients undergoing radical prostatectomy, we found that
cluster 2 was significantly associated with older age, BCR, higher
N stage, positive residual tumor, higher Gleason score, and
advanced T stage (Table 1). Similarly, for patients undergoing
radical radiotherapy, we observed that cluster 2 was significantly
related to BCR, metastasis, higher Gleason score, and advanced T
stage (Table 2). One rather interesting outcome was that cluster
2 was an independent risk factor for patients undergoing radical
radiotherapy (Figure 3A).
Frontiers in Oncology | www.frontiersin.org 5
TME and Immune Checkpoints Analysis
For patients undergoing radical prostatectomy, the number of CD8+

T cells was significantly lower in cluster 2 than cluster 1 (p <0.001),
while cluster 2 had significantly higher stromal score than cluster 1
(Figure 3B). Moreover, MDGPI score was closely associated with
CD4+ T cells (r: 0.16), CD8+ T cells (r: −0.1), macrophages (r: 0.13),
dendritic cells (r: 0.18), stromal score (r: 0.37), immune score (r:
0.19), and estimate score (r: 0.32) (Figure 3C). For patients
undergoing radical radiotherapy, cluster 2 had significantly higher
level of CD8+ T cells (p = 0.002), neutrophils (p <0.001),
macrophages (p <0.001), dendritic cells (p <0.001), stromal score
(p <0.001), immune score (p <0.001), and estimate score (p <0.001),
but showed lower level of tumor purity than cluster 1 (p <0.001)
(Figure 3D). In addition, MDGPI score showed significantly
correlations with CD8+ T cells (r: 0.23), neutrophils (r: 0.35),
macrophages (r: 0.31), dendritic cells (r: 0.35), stromal score (r:
0.53), immune score (r: 0.36), estimate score (r: 0.47), and tumor
purity (r: −0.47) (Figure 3E).

In terms of immune checkpoints, 23 and 18 checkpoints were
significantly differentially expressed between cluster 2 and cluster
1 for PCa patients from the TCGA database (Figure 3F) and the
GSE116918 (17) (Figure 3G), respectively. For patients from the
TCGA database, MDGPI was highly associated with CTLA4 (r:
0.23), CD276 (r: 0.12), KLRD1 (r: −0.11), CD44 (r: −0.19), IDO2
(r: 0.15), TNFRSF4 (r: 0.17), NRP1 (r: 0.19), TNFRSF18 (r: 0.28),
TNFSF18 (r: 0.21), CD80 (r: 0.33), CD86 (r: 0.32), CD40 (r:
−0.13), CD70 (r: 0.17), LAIR1 (r: 0.28), HAVCR2 (r: 0.33), and
BTNL2 (r: −0.21) (Figure 3H). For patients from the GSE116918
(17), MDGPI was closely related to BTNL2 (r: −0.18), CD2 (r:
0.20), CD226 (r: 0.14), CD40 (r: −0.24), CD70 (r: −0.22), CD86
(r: 0.26), CD96 (r: 0.26), HAVCR2 (r: 0.31), ICOSLG (r: −0.23),
LAG3 (r: −0.18), LAIR1 (r: 0.22), LAYN (r: 0.13), LGALS9 (r:
0.22), SIGLEC15 (r: −0.20), TIGIT (r: −0.17), TNFRSF18
(r: −0.26), TNFRSF8 (r: −0.21), TNFSF14 (r: −0.21), and
VTCN1 (r: −0.19) (Figure 3I). Among the above genes
TABLE 1 | The correlations between clinical indicators and clusters in the
TCGA database.

Characteristic Cluster 1 Cluster 2 P-value

Samples (n) 243 187
Age, median (IQR) 61 (56, 65) 63 (57, 67) 0.010
Biochemical recurrence, n (%) 0.018
No 219 (50.9%) 153 (35.6%)
Yes 24 (5.6%) 34 (7.9%)

N stage, n (%) <0.001
N0 182 (48.5%) 124 (33.1%)
N1 23 (6.1%) 46 (12.3%)

Residual tumor, n (%) 0.003
No 170 (40.6%) 103 (24.6%)
Yes 68 (16.2%) 78 (18.6%)

Gleason score (GS), n (%) <0.001
GS = 6 30 (7%) 9 (2.1%)
GS = 7 149 (34.7%) 57 (13.3%)
GS = 8 29 (6.7%) 30 (7%)
GS = 9 35 (8.1%) 91 (21.2%)

T stage, n (%) <0.001
T2 111 (26.2%) 44 (10.4%)
T3 128 (30.2%) 133 (31.4%)
T4 0 (0%) 8 (1.9%)
IQR, interquartile range; GS, Gleason score.
TABLE 2 | The correlations between clinical indicators and clusters in the
GSE116918 (17).

Characteristic Cluster 1 Cluster 2 P-value

Samples (n) 136 112
Age, median (IQR) 67 (64, 72) 69 (62, 73) 0.632
T stage, n (%) <0.001
T1 39 (17.5%) 12 (5.4%)
T2 42 (18.8%) 34 (15.2%)
T3 41 (18.4%) 51 (22.9%)
T4 0 (0%) 4 (1.8%)

Gleason score (GS), n (%) <0.001
GS = 6 37 (14.9%) 5 (2%)
GS = 7 60 (24.2%) 39 (15.7%)
GS = 8 26 (10.5%) 26 (10.5%)
GS = 9 13 (5.2%) 42 (16.9%)

Biochemical recurrence, n (%) 0.005
No 115 (46.4%) 77 (31%)
Yes 21 (8.5%) 35 (14.1%)

Metastasis, n (%) 0.041
No 129 (52%) 97 (39.1%)
Yes 7 (2.8%) 15 (6%)
April 2022 | V
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FIGURE 3 | Tumor immune microenvironment and checkpoints analysis. (A) COX regression analysis showing the results of clusters and other clinical parameters in
the GSE116918 (17); (B) comparison between the two clusters for immune cells in the TCGA database; (C) radar plot showing the correlations between MDGPI
score and immune cells in the TCGA database; (D) comparison between the two clusters for immune cells in the GSE116918 (17); (E) radar plot showing the
correlations between MDGPI score and immune cells in the GSE116918 (17); (F) comparison between the two clusters for immune checkpoints in the TCGA
database; (G) comparison between the two clusters for immune checkpoints in the GSE116918 (17); (H) radar plot showing the correlations between MDGPI score
and immune checkpoints in the TCGA database; (I) radar plot showing the correlations between MDGPI score and immune checkpoints in the GSE116918 (17);
(J) forest plot showing checkpoints associated with BCR-free survival in the TCGA database and GSE116918 (17). BCR, biochemical recurrence; MDGPI,
mitochondrial dysfunction-related genetic prognostic index. ns, p ≥0.05; *, p <0.05; **, p <0.01; ***, p <0.001.
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(Figures 3F–I), patients who had higher expression of CD96
(HR: 1.79, 95% CI: 1.06–3.03) in the GSE116918 (17), and higher
level of TNFSF18 (HR: 2.31, 95% CI: 1.38–3.86), CD80 (HR:
1.75, 95% CI: 1.05–2.93), and CD160 (HR: 2.22, 95% CI: 1.32–
3.72) in the TCGA database were more prone to BCR than their
counterparts (Figure 3J).
Frontiers in Oncology | www.frontiersin.org 7
Function and Drug Analysis
In order of the predicted scores from the highest to the lowest in
the STRING database (22), the predicted functional partners of
CD38 were PECAM1, CBL, NAMPT, NMNAT1, NMNAT2,
NMNAT3, ENPP1, NNMT, ENPP3, and FCGR3A (Figure 4A);
for CXCL14, the predicted interaction genes were CXCR4,
A B

D E

F G

C

FIGURE 4 | Function and drug analysis. (A) predicted functional partners of CD38; (B) predicted functional partners of CXCL14; (C) predicted functional partners of
SFRP4; (D) GSEA analysis of the two clusters in the TCGA database; (E) GSEA analysis of the two clusters in the GSE116918 (17); (F) correlation between CTRP
drug sensitivity and mRNA expression of CXCL14, CD38, and SFRP4; (G) correlation between GDSC drug sensitivity and mRNA expression of CXCL14, CD38, and
SFRP4. GSEA, gene set enrichment analysis; CTRP, cancer therapeutics response portal; GDSC, genomics of drug sensitivity in cancer.
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CXCL12, CXCR3, CXCR2, CCR2, CCR1, CXCR5, CCR7, CXCR1,
and CCR5 (Figure 4B); for SFRP4, the predicted interaction genes
were WNT2, WNT3A, WNT7A, WNT8A, WNT1, WNT5A,
WNT2B, WNT16, WNT4, and WNT10B (Figure 4C). For
patients undergoing radical prostatectomy, the highly enriched
pathways in cluster 2 were cell cycle, mismatch repair,
spliceosome, oocyte meiosis, nucleotide excision repair, base
excision repair, homologous recombination, and RNA
degradation (Figure 4D). For patients undergoing radical
radiotherapy, the highly enriched pathways in cluster 2 were
extracellular matrix (ECM) receptor interaction, cell cycle, TGF
beta signaling pathway, antigen processing and presentation, Toll
like receptor signaling pathway, complement and coagulation
cascades, Wnt signaling pathway, chronic myeloid leukemia,
lysosome, Notch signaling pathway, circadian rhythm mammal,
Fc gamma R-mediated phagocytosis, colorectal cancer, P53
signaling pathway, focal adhesion, apoptosis, small cell lung
cancer, neurotrophin signaling pathway, and pancreatic
cancer (Figure 4E).

In terms of drug analysis, CTRP drug sensitivity showed that
CR-1-31B, Merck60, SB-743921, SR-II-138A, decitabine,
leptomycin B, and necrosulfonamide were potentially sensitive
to CXCL14, SFRP4, and CD38 (Figure 4F), while GDSC drug
sensitivity showed that methotrexate and vorinostat were
potentially sensitive to CXCL14, SFRP4, and CD38 (Figure 4G).
DISCUSSION

Although the 5-year relative survival rate of PCa is as high as 98%
in America, its estimated death toll is second only to lung cancer
and its long-term decline in cancer mortality since 1993 has
stopped (1). The global population of individuals over 65 years
old is growing rapidly and about 20% of the world population
will be aged 65 or older by 2030 (28). PCa, as an aging-related
cancer with a high incidence in men over 65 (1), will affirmatively
attract considerable attention with an aging population
worldwide. Mitochondria are highly evolved organelles that
govern energy production, distribution and biosynthesis (29).
MIDS is one of the typical phenotypes of aging, which could lead
to reactive oxygen species-(ROS) driven lipid damage, deposits,
and lipofuscin accumulation (6). Except for oxidation, lipid-
derived aldehyde byproducts, such as 4-hydroxy-2-nonenal have
been reported in senescent cells (6, 30). Furthermore, increased
senescence has been observed in the mouse models of MIDS and
elevated oxidative stress (31). Decreased NAD+/NADH ratios
were observed in senescent cells, the possible mechanism was the
accumulated pro-inflammatory M1-like macrophages in
metabolic tissues during aging which expressed high level of
NAD-consuming enzyme CD38 and thereby reduced tissue
NAD levels (31, 32). Given the important role of MIDS in
cellular senescence, it is reasonable to link MIDS to cellular
senescence and senescence-related diseases, the most important
of which are tumors. From the perspective of cancergenesis,
MIDS may be the result of mutations in oncogenes and tumor
suppressor genes, since changes in the expression levels of
Frontiers in Oncology | www.frontiersin.org 8
oncogenes and tumor suppressor genes such as TP53, which is
discussed in next paragraph, and also bcl-2, HIF-1amay directly
affect mitochondrial respiration and metabolism, resulting in
MIDS (33, 34). In prostate, zinc in normal prostate epithelial cells
slows the tricarboxylic acid cycle (TCA) and ATP production,
whereas PCa cells observe TCA and ETC activation (35, 36).
Despite cancergenesis, there is growing evidence that MIDS is
associated with cancer cell survival, proliferation, recurrence and
metastasis, the strongest evidence of which attributes to
mitochondrial-derived ROS (mROS) (37). The binding of
mitochondrial to SUMO-deficient hexokinase 2 (HK2)
enhanced glucose consumption and lactate production, along
with reduced mitochondrial respiration, resulted in PCa cell
proliferation (38). Oxidative phosphorylation-related sulfite
oxidase in mitochondria was found to be associated with BCR
in post-prostatectomy patients, and the elevated Ki-67 LI score
suggested that the mechanism of recurrence may be related to the
activation of oxidative phosphorylation and the induction of cell
proliferation (39). Porporato et al. proposed a hyper-invasive and
hyper-metastatic tumor cell phenotype centered on multiple
mitochondrial pathways, including ETC overload or partial
ETC inhibition and increased succinate and superoxide
production, with protein tyrosine kinases Src and Pyk2 as
downstream effectors (40). Furthermore, understanding the
relationship between MIDS and cancer also opens up
therapeutic opportunities, for example, new evidence suggests
that mitochondrial remodeling is critical in apoptosis and
programmed death (41–43), suggesting that MIDS may be a
marker for cancer detection and a target for treatment, especially
radiation and chemotherapy, which achieves its therapeutic
purpose by inducing apoptosis (44). Treatment with the
mitochondria-specific superoxide scavenger mitoTEMPO can
prevent metastasis in vitro (40). 5-(4-methoxyphenyl)-3H-1,2-
dithiole-3-thione (AOL), a member of a new class of mROS
inhibitors, reduces steady-state cellular ROS levels in human
lung cancer cells, expressing anticancer properties (45). MIDS,
while being a metabolic marker of cancer cells (46), establishes a
pathway for drug resistance in tumor cells. For example,
biguanides, tigecycline and gamitinib inhibit tumor cell energy
synthesis by reducing the mitochondrial electron transport chain
(ETC), but the upregulation of glycolytic genes compensates for
the lack of ATP production, resulting in drug insensitivity (47–
49). In addition, mitochondrial metabolism-related enzymes
such as SUMO-deficient HK2 and mitochondrial 2,4-dienoyl-
CoA reductase (DECR1) mentioned above also associated with
resistance to docetaxel (38) and resistance to bicalutamide,
apalutamide, or enzalutamide (50). Radioresistance is an adaptive
response to radiation-induced damage by altering several cellular
processes that sustain tumor growth. Mitochondria and metabolic
reprogramming have been implicated in many cellular processes
involved in radioresistance (51, 52). For example, enzymes
important in base excision repair are localized to mitochondria or
actively transported to mitochondria (53). In addition, cell cycle,
oncogenes, tumor suppressor genes, autophagy, cellular
metabolism, and ROS are also sites for mitochondria-mediated
radioresistance (52). For PCa, lactate dehydrogenase A (LDHA), a
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major metabolic enzyme that produces lactate, is an enzyme that
has been shown to be closely related to the glycolytic pathway and
PCa radioresistance, and LDHA-targeted therapy combined with
radiotherapy can improve the radiosensitivity of radioresistant PCa
cells (54). It is clear that PCa undergoes metabolic reprogramming,
in this process, MIDS is indeed cross-linked with the occurrence,
development, recurrence, metastasis and treatment resistance.

Pelicano et al. (55) found that MIDS and ROS imbalance
promoted breast cell motility and the mechanism was that
overexpressed CXCL14 could cell motility through elevation of
cytosolic Ca (2+) by binding to the inositol 1,4,5-trisphosphate
receptor on the endoplasmic reticulum. Besides, SFRP4 was an
important Wnt signaling antagonist, and activation of SFRP4 could
lead to Wnt signaling suppression and histone modification in PCa
stem cells and thereby sensitized tumor cells to chemotherapeutic
drugs, enhancing cell death (56). The decrease in mitochondrial
ATP could reduce calcium uptake into the endoplasmic reticulum,
leading to endoplasmic reticulum stress and to impaired Wnt
signaling; in turn, the recovery of the ATP level or the inhibition
of endoplasmic reticulum stress restored Wnt activity (57). Thus,
CXCL14, CD38, and SFRP4 were closely associated with MIDS. In
this study, using the above three genes, we firstly proposed distinct
prognosis-related molecular subtypes from the fresh perspective of
MIDS for PCa patients undergoing radical prostatectomy or
radiotherapy. Moreover, the molecular subtype was highly
associated with the T stage and Gleason score, both of which
were closely related to the prognosis of PCa (58). In addition, this
classification was an independent risk factor for patients undergoing
radical radiotherapy.

It is worth noting that we have observed different or even
opposite results for the infiltrated immune cells under the two
different treatments for PCa patients. This requires us to critically
look at the role of inflammation in PCa progression. For patients
undergoing radical radiotherapy, various immune cells, namely,
CD8+ T cells, neutrophils, macrophages, and dendritic cells are
more enriched in cluster 2, the group with a worse prognosis, and
the tumor purity is lower. Besides, MDGPI had highly positive
correlations with these immune cells. Radiotherapy can trigger and
induce inflammation/immune response through factors such as
DNA damage, cell death and senescence, immune cell response,
cellular stress, hypoxia, and tumor antibodies (59). Oxidative stress
and DNA damage caused by radical radiotherapy are both
considered the initiation events of PCa (60, 61). Furthermore, for
PCa patients with severe inflammation, it was observed that their
recurrence-free survival was shorter (62). In addition, Schoenfeld
et al. found that the single nucleotide polymorphisms of RNASEL, a
gene implicated in inflammation, significantly reduces the risk of
BCR in patients with radical radiotherapy, but no significant impact
on patients with radical prostatectomy (63). Research has observed
that increased T cell density has been associated with PTEN loss and
poorer outcome in African American men with PCa, with lower
BCR-free survival, which is partly consistent with our research
results (64, 65). This also explains why in our study, the stromal
score and immune score are higher, and cluster 2 with lower tumor
purity has a worse prognosis for PCa patients after radical
radiotherapy. However, for patients undergoing radical
Frontiers in Oncology | www.frontiersin.org 9
prostatectomy, we did not observe any statistically significant
results except for CD8+ T cells between cluster 2 and cluster 1,
and a negative correlation between MDGPI and CD8+ T cells was
detected. CD8+ T cells are the most powerful effectors in the
anticancer immune response (66), and the reduced CD8+ T cells
might contribute to the worse prognosis of cluster 2 undergoing
radical prostatectomy. An interesting finding was the completely
opposite trends in CD8+ T cells between radical prostatectomy and
radical radiotherapy groups. For radical prostatectomy, the poor
prognosis group (cluster 2) showed low levels of CD8+ T cells, CD8+

T cells were higher in the radiotherapy group. CD8+ effector cells are
the main effector cells for targeting antitumor immune response
(67). In the radical prostatectomy patient population, low levels of
CD8+ T cells may predict clearance of tumor antigens and low
antitumor immune responses, leading to fewer recurrences and
metastases. Studies have found that the proportion of CD8+ cells
transiently decreased after the first four weeks of radiotherapy, while
the proliferation rate of CD8+ T cells increases at the end of radical
radiotherapy for PCa and persists until three months after
treatment, and the frequency and function of antigen-specific
CD8+ T cells remained stable during treatment (68). Radiation
has proinflammatory and immunomodulatory effects and, contrary
to popular belief, promotes antitumor immune responses, namely,
T cell homing and tumor infiltration (69, 70). Lin et al. found that
PD-1 expression began to increase after chemotherapy-induced
increases in the number of CD8+ tumor-infiltrating lymphocytes
immediately after radiotherapy, suggesting that these CD8+ T cells
began to become functionally exhausted (71). In addition, we
observed a higher positive correlation between MDGPI and
stromal score, which indicated the role of stromal components in
the progression of PCa patients undergoing radical prostatectomy.
Reactive stroma has been used to assess the PCa-specific mortality
in diagnostic prostate needle biopsies (72). TNFRSF18, CD86,
CD40, CD70, LAIR1, HAVCR2, and BTNL2 were common
checkpoints which were differentially expressed between the two
clusters and associated withMDGPI for patients undergoing radical
prostatectomy or radiotherapy. However, TNFRSF18 and CD70
showed opposite results after receiving the different treatments, both
of which seemed to be involved in interactions between activated T-
lymphocytes (73). The paradoxical results of the two genes could
partially explain the progression mechanism of PCa patients
undergoing different treatment when combined the opposite
results of immune-infiltrating cells. Furthermore, CD96,
TNFSF18, CD80, and CD160 identified in this study might be the
potential targets of PCa due to their prognostic values. CD96 may
play a role in the adhesion interaction between activated T cells and
NK cells in the late immune response. According to Biograph’s
knowledge base, in the context of CD96, PCa ranks 4th among 6021
disease concepts, strongly indicating the potential role of this gene in
the development of PCa (74). The expression of T-cell
immunoglobulin domain and mucin domain-containing molecule
3 (TIM-3) encoded by HAVCR2 in CD4+ and CD8+ T cells of the
PCa patients was significantly increased compared with benign
prostatic hyperplasia, suggesting that it may affect the development
and progression of PCa (75). In addition, TIM-3 expression is also
related to the poor prognosis of PCa (76, 77). In the TCGA group,
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CD80 mRNA expression is correlated with BCR, suggesting that
genetic variation and mRNA expression in CD80 may be a
predictor and potential target of local PCa (78). In fact, several
clinical studies targeting CD80 (B7-1) have approved, for example,
ipilimumab, an antagonistic monoclonal antibody that binds CD80
on antigen-presenting cells, providing options for PCa patients in
the future (79). The findings of these immune checkpoints are
helpful to the choice of medications for adjuvant treatment of
patients undergoing radical prostatectomy or radiotherapy.

GSEA analysis shows that the results of our research are
related to a variety of cancers, such as colorectal cancer, small cell
lung cancer, etc., which further proves the clinical significance of
our molecular subtypes. In addition, it was also found to be
related to the p53 signaling pathway. Li et al. found that p53-
mediated mitochondrial dysfunction can promote PCa cell
apoptosis in vitro (80). In addition, abnormal activation of
Notch signal has also been shown to be closely related to the
occurrence and development of PCa (81). The deletion of TP53,
a tumor suppressor gene, can regulate mitochondrial respiration
by promoting the Warburg effect in cancer cells, while increase
the uptake of glucose in cancer cells through the repression of
transcription of glucose transporter (GLUT) isoforms 1 and 4
and inhibition of the expression of glycolytic enzymes (82–
85).TP53 gene improves the fidelity of DNA replication and
homologous recombination through transcriptional activation of
mismatch repair (MMR) genes. Abnormal MMR protein
expression may be involved in the progression of PCa (86). In
addition, cluster 2 was found to be related to lysosome in both
TCGA and GEO groups. Lysosomes are known to be involved in
a variety of cancer processes. Various risk factors for PCa, such as
ionizing radiation and oxidative stress, can activate the activity of
lysosomal enzymes, which may cause cancer to occur by
destroying proteins and other components of cells (87).
Meanwhile, abiraterone can inhibit the proliferation of PCa
cells in vitro, thus promoting apoptosis by regulating
mitochondrial autophagy (88). Basic autophagy genes are
ubiquitous in tumors including PCa, and autophagy defects
promote tumorigenesis (89). On the other hand, tumor cells
are also dependent on autophagy, and the loss of autophagy gene
inhibits the formation and metastasis of the primary tumor (90,
91). In this study, we also found some sensitive drugs to the
investigated three genes, which needed to be further studied in
vivo and in vitro.

As the aging of the global population continues to develop in
the coming decades, PCa in elderly men will bring a huge burden
of disease. At present, there is no optimal plan for the
management of BCR. In this paper, we calculated that the gene
prognostic index composed of CXCL14, SFRP4, and CD38, can
well predict the pathogenesis of individual patients with PCa
after radical prostatectomy and radiotherapy. In this way, from a
clinical perspective, a timely warning can be given before the
thorny problem of insufficient treatment methods and poor
prognosis for BCR and metastasis patients. At the same time,
the discovery of the three targeted genes also avoided tedious and
expensive whole-genome sequencing. Our research integrates
two high-throughput sequencing and microarray sequencing
Frontiers in Oncology | www.frontiersin.org 10
platforms, as mutual verification, the results are more reliable
and have strong clinical relevance.

Conclusions
We proposed distinctly prognosis-related molecular subtypes at
genetic level and related formula for PCa patients undergoing
radical prostatectomy or radiotherapy, mainly to provide a
roadmap for precision medicine.
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