research communications

Received 12 November 2014 Accepted 16 November 2014

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; cycloaddition; autoxidation; double addition; thiophene

CCDC reference: 1034481

Supporting information: this article has supporting information at journals.iucr.org/e

CrossMark

Wayland E. Noland,* Neil J. Kroll, Matthew P. Huisenga, Ruixian A. Yue, Simon B. Lang, Nathan D. Klein and Kenneth J. Tritch

Department of Chemistry, University of Minnesota, Minneapolis, MN 55455-0431, USA. *Correspondence e-mail: nolan001@umn.edu

The title tetrone compound, $C_{32}H_{22}N_2O_4S \cdot 0.5C_8H_{10}$, is the major product (50% yield) of an attempted Diels–Alder reaction of 2-(α -styryl)thiophene with *N*-phenylmaleimide (2 equivalents) in toluene. Recrystallization of the resulting powder from *p*-xylene gave the title hemisolvate; the *p*-xylene molecule is located about an inversion center. In the crystal, the primary tetrone contacts are between a carbonyl O atom and the four flagpole H atoms of the bicyclo[2.2.2]octene core, forming chains along [001].

1. Chemical context

The title compound, (3), is the first reported double-Diels– Alder adduct obtained from a one-pot reaction of a 2-vinylthiophene (Fig. 1). This methodology may have use in the synthesis of novel ligands, zeolites, or polyamides.

Diels–Alder methodology: Reactions between vinylheterocycles and dienophiles have been useful in natural product synthesis and in the development of potential medicinal compounds (Booth *et al.*, 2005; Kanai *et al.*, 2005). Reported heterocycles include indole, pyrrole (Le Strat *et al.*, 2005; Noland *et al.*, 2013), furan (Brewer *et al.*, 1971; Brewer & Elix, 1975b; Davidson & Elix, 1970), benzofuran, and benzothiophene (Marrocchi *et al.*, 2001; Pihera *et al.*, 1999). A Diels– Alder reaction was attempted between 2-(α -styryl)thiophene (1) (Tasch *et al.*, 2013) and N-phenylmaleimide (2) in an effort to expand this methodology (Fig. 2). Based on work by Watson (2012), the expected products were adduct (4), aromatized adduct (5), or (6) *via* ene addition of (2) to (4). Given the scope of simpler products from these reactions, it was surprising to obtain tetrone (3) in such a high yield.

Mechanism: Mechanisms proposed for double adducts (7) (Lovely et al., 2007) and (8) (Noland et al., 1993) suggest a

OPEN d ACCESS

Figure 1

The molecular structure of compound (3), with atom labelling (nonlabelled atoms in the p-xylene solvent molecule are related to the labelled atoms by inversion symmetry). Displacement ellipsoids are drawn at the 50% probability level.

Diels–Alder reaction (Fig. 3), with loss of H_2 by an unknown pathway, and then a second cycloaddition. Noland *et al.* (1993) observed that formation of (8) was accelerated by exposure to oxygen, and aromatization to (9) was favored over (8) in acid. Brewer & Elix (1975*a*) reported a double adduct (10) and a hydroperoxy intermediate thereof; they proposed loss of H_2 in an autoxidation followed by elimination of H_2O_2 , a pathway that fits both observations made by the Noland group. The crystal structures of (3) and the hydroperoxide (11) (Noland *et al.*, 2014), and preliminary HRMS and ¹H NMR evidence that (12) is an intermediate to (3), all support the mechanism proposed by Brewer & Elix (1975*a*).

Applications: Compounds related to (3) are used as bridging ligands in organometallic complexes (see: §4. *Database survey*), synthesis of zeolites (Cantín *et al.*, 2006; Inagaki *et al.*, 2013), and polyamides (Faghihi & Shabanian, 2010). Most examples are derived from dianhydride (13) (Hu, 2008) or a similar substrate, reacting with ammonia or primary amines, limiting variability to imido substitution. Domino methodology has been developed that could give more diverse functionality (Strübing *et al.*, 2005).

Figure 2 Synthesis of the title compound (3). Structures (4)–(6) were the expected products.

Figure 3

Contextual compounds. Double adducts (7) and (8) were previously reported. In acid, aromatized adduct (9) was favored over double addition. Double adduct (10) is the closest reported kin of (3). Recently reported (11) supports the proposed mechanism. Hydroperoxide (12) is a likely intermediate to (3). Dianhydride (13) is commonly used for ligand synthesis.

2. Structural commentary

In compound (3) (Fig, 1), the *N*-phenyl rings (C24–C29) and (C30–C35) are twisted out of the plane of their respective succinimido rings, (N4/C3/C2/C6/C5) and (N10/C9/C8/C12/C11), by 54.83 (8) and 54.97 (8)°, respectively, with the same chirality, giving helical character along the major axis (C27 to C33). Figs. 4 and 5 show a left-handed molecule. The bicyclo[2.2.2]octene rings have a typical boat shape. The other rings are nearly planar; the r.m.s. deviations from their respective mean planes are 0.026 and 0.030 Å for the succinimido rings (N4/C3/C2/C6/C5) and (N10/C9/C8/C12/C11),

A molecule of (3) viewed near $[1\overline{14}]$, normal to the pyrrolo[3,4-g]isoindole ring system. The styrylthiophene unit (C21, C18, C17, C16, S15, C14) is forward. The *N*-phenyl rings are twisted so C26 and C32 are forward, C29 and C35 are behind.

research communications

Figure 5

Twisting of *N*-phenyl rings (C27 forward, C33 behind) viewed along [514], normal to the thiophene moiety.

respectively, and 0.01 Å for the 3-hydrothieno ring (S15/C16/C1/C13/C14). The two succinimido rings are inclined to one another by 29.24 (8)° and the N-phenyl rings are inclined to one another by 54.55 (8)°. The phenyl ring (C18–23) is inclined to the the *N*-phenyl rings, (C24–C29) and (C30–C35), by 89.89 (8) and 64.82 (8)°, respectively. There is an intra-molecular C–H···O hydrogen bond present (Table 1).

3. Supramolecular features

In the crystal of (3), the carbonyl atom O5 forms weak hydrogen bonds with the *endo* face of the bicyclo[2.2.2]octene unit, contacting H2, H6, H8, and H12. These contacts form

Figure 6

The crystal packing of compound (3) viewed along [100]. Chains of $O5\cdots H_{endo}$ hydrogen bonds form along [001]. *p*-Xylene and inversion-related pairs (O11 \cdots H14) of molecules form a checker-board pattern.

Table 1		
Hydrogen-bond geometry	(Å, °).	

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C23-H23···O9	0.95	2.59	3.435 (2)	149
$C2-H2\cdots O5^{i}$	1.00	2.46	3.158 (2)	126
$C6-H6\cdots O5^{i}$	1.00	2.56	3.206 (2)	122
$C8-H8\cdots O5^{i}$	1.00	2.66	3.269 (2)	131
$C12-H12\cdots O5^{i}$	1.00	2.47	3.182 (2)	128
$C14-H14\cdots O11^{ii}$	0.95	2.50	3.413 (2)	162

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) -x + 1, -y + 1, -z.

chains along [001] (see Figs. 6 and 7, and Table 1). Weak $O11 \cdots H14$ hydrogen bonds form inversion dimers (Table 1).

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, Update November 2013; Groom & Allen, 2014) was performed for *meso* structures derived from the parent structure (14); see Fig. 8. Fifteen organometallic entries were found, including interpenetrating nets (Zhang *et al.*, 2011), container complexes (Liu *et al.*, 2007), and other multi-metal-center complexes (Yu *et al.*, 2012; Zhang, 2012). Thirteen organic entries were found, including the aforementioned (7), (8), and (11); an ammonia derivative (15) used as a ligand for

Figure 7

A view along the *c* axis of the crystal packing of compound (3). *p*-Xylene molecules and inversion-related pairs (O11 \cdots H14) of molecules occupy alternating layers about inversion centers.

Figure 8

Selected database survey entries: substructure (14) was the basis of the survey. The diimide (15) has been reported several times as a ligand. The coumarin-derived double adduct (16) is the only entry that is *spiro*-fused to a six-membered ring.

Experimental details.	
Crystal data	
Chemical formula	C32H22N2O4S·0.5C8H10
M _r	583.65
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	123
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.5944 (14), 26.529 (4), 10.4286 (14)
β (°)	99.675 (2)
$V(Å^3)$	2889.4 (7)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.16
Crystal size (mm)	$0.45 \times 0.22 \times 0.22$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Sheldrick, 1996)
T_{\min}, T_{\max}	0.685, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	33190, 6576, 5803
R _{int}	0.025
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.648
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.109, 1.00
No. of reflections	6576
No. of parameters	388
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.38, -0.36

Table 2

Computer programs: APEX2 and SAINT (Bruker, 2007), SHELXS97, SHELXL2014 and SHELXTL2008 (Sheldrick, 2008), Mercury (Macrae et al., 2008), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

interpenetrating nets (Song *et al.*, 2012); and a coumarinderived double-Diels–Alder adduct (16) (Nicolaides *et al.*, 1997).

5. Synthesis and crystallization

2-(a-Styryl)thiophene (200 mg, Tasch et al., 2013) and Nphenylmaleimide (372 mg, 2 equiv.) were partially dissolved in toluene (5 mL). The resulting mixture was refluxed open to air for 100 h. Upon cooling to room temperature, the resulting suspension was separated by column chromatography (SiO_2 , hexane:ethyl acetate, gradient from 1:0 to 1:1). The desired fraction ($R_f = 0.09$ in 1:1) was concentrated at reduced pressure giving compound (3) as a white powder (287 mg, 50%, m.p. 554–555 K). ¹H NMR (500 MHz, CD₂Cl₂) δ 7.498 (dd, J = 8.0, 1.5 Hz, 2H, H19, H23), 7.388 (tt, J = 7.0, 2.5 Hz, 4H, H26, H28, H32, H34), 7.374 (*td*, *J* = 5.0, 1.5 Hz, 2H, H20, H22), 7.351 (*tt*, *J* = 7.0, 1.5 Hz, 2H, H27, H33), 7.263 (*tt*, *J* = 4.5, 1.5 Hz, 1H, H21), 6.987 (dd, J = 7.0, 1.5 Hz, 4H, H25, H29, H31, H35), 6.600 (d, J = 6.0 Hz, 1H, H14), 6.446 (d, J = 6.5 Hz, 1H, H13),4.607 (t, J = 3.3 Hz, 1H, H7), 3.435 (d, J = 8.5 Hz, 2H, H2, H12),3.379 (dd, J = 8.3, 3.3 Hz, 2H, H6, H8); ¹³C NMR (126 MHz, CD₂Cl₂) § 175.04 (C5, C9), 172.73 (C3, C11), 136.98 (C18), 135.21 (C16), 132.06 (C24, C30), 129.66 (C26, C28, C32, C34), 129.42 (C27, C33), 129.34 (C20, C22), 128.42 (C21), 127.71 (C17), 126.92 (C25, C29, C31, C35), 126.71 (C14), 126.63 (C19, C23), 126.16 (C13), 62.32 (C1), 47.35 (C2, C12), 41.72 (C6, C8), 40.47 (C7); IR (KBr, cm⁻¹) 3065 (C–H), 2926 (C–H), 2853 (C-H), 1717 (C=O), 1497 (C=C), 1379 (C=C), 1188 (C-N), 743, 727; MS (ESI, PEG, m/z) $[M+H]^+$ calculated for $C_{32}H_{22}N_2O_4S$ 531.1373, found 531.1383.

Recrystallization from many solvent combinations was attempted. The first good crystals were obtained from toluene:1,2-dichloroethane (DCE) [ratio 19:1]. These were empirically $(3) \cdot 0.5C_7H_8 \cdot 0.5DCE$, with toluene on inversion centers and DCE on twofold axes; both solvents were disordered. Recrystallization from *p*-xylene gave orderly crystals of (3) by suction filtration after 5 days of slow evaporation at room temperature. No conditions were found that gave neat crystals of (3).

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2. C-bound H atoms were placed in calculated positions and refined as riding atoms, with C-H =0.0.95–0.98 Å and with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and = $1.2U_{eq}(C)$ for other H atoms.

Acknowledgements

The authors thank Victor G. Young Jr (X-Ray Crystallographic Laboratory, University of Minnesota) for assistance with the crystal structure and helpful consultation, and the Wayland E. Noland Research Fellowship Fund at the University of Minnesota Foundation for generous financial support of this project.

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Booth, R. J., Lee, H. H., Kraker, A., Ortwine, D. F., Palmer, B. D., Sheehan, D. J. & Toogood, P. L. (2005). US Patent 20050250836.

Brewer, J. D., Davidson, W. J., Elix, J. A. & Leppik, R. A. (1971). Aust. J. Chem. 24, 1883–1898.

- Brewer, J. D. & Elix, J. A. (1975a). Aust. J. Chem. 28, 1059-1081.
- Brewer, J. D. & Elix, J. A. (1975b). Aust. J. Chem. 28, 1083–1096.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cantín, A., Corma, A., Diaz-Cabanas, M. J., Jordá, J. & Moliner, M. (2006). J. Am. Chem. Soc. 128, 4216–4217.
- Davidson, W. J. & Elix, J. A. (1970). Aust. J. Chem. 23, 2119-2131.
- Faghihi, K. & Shabanian, M. (2010). J. Chil. Chem. Soc. 55, 491-496.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Hu, T. (2008). Acta Cryst. E64, o1021.
- Inagaki, S., Tsuboi, Y., Nishita, Y., Syahylah, T., Wakihara, T. & Kubota, Y. (2013). *Chem. Eur. J.* **19**, 7780–7786.
- Kanai, F., Murakata, C., Tsujita, T., Yamashita, Y., Mizukami, T. & Akinaga, S. (2005). US Patent 20050070591 A1.
- Le Strat, F., Vallette, H., Toupet, L. & Maddaluno, J. (2005). *Eur. J. Org. Chem.* pp. 5296–5305.
- Liu, Z.-M., Liu, Y., Zheng, S.-R., Yu, Z.-Q., Pan, M. & Su, C.-Y. (2007). *Inorg. Chem.* 46, 5814–5816.
- Lovely, C. J., Du, H., Sivappa, R., Bhandari, M. R., He, Y. & Dias, H. V. R. (2007). J. Org. Chem. 72, 3741–3749.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

- Marrocchi, A., Minuti, L., Taticchi, A. & Scheeren, H. W. (2001). *Tetrahedron*, **57**, 4959–4965.
- Nicolaides, D. N., Bezergiannidou-Balouctsi, C., Awad, R. W., Litinas, K. E., Malamidou-Xenikaki, E., Terzis, A. & Raptopoulou, C. P. (1997). J. Org. Chem. 62, 499–502.
- Noland, W. E., Gullickson, G. C., Dickson, R. R., Groess, L. L. & Tritch, K. J. (2014). Acta Cryst. E70, 192–195.
- Noland, W. E., Konkel, M. J., Tempesta, M. S., Cink, R. D., Powers, D. M., Schlemper, E. O. & Barnes, C. L. (1993). J. Heterocycl. Chem. 30, 183–192.
- Noland, W. E., Lanzatella, N. P., Dickson, R. R., Messner, M. E. & Nguyen, H. H. (2013). J. Heterocycl. Chem. 50, 795–808.
- Pihera, P., Dvořáková, H. & Svoboda, J. (1999). Collect. Czech. Chem. Commun. 64, 389–407.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Song, X.-Z., Qin, C., Guan, W., Song, S.-Y. & Zhang, H.-J. (2012). New J. Chem. 36, 877–882.
- Strübing, D., von Wangelin, A. J., Neumann, H., Gördes, D., Hübner, S., Klaus, S., Spannenberg, A. & Beller, M. (2005). *Eur. J. Org. Chem.* pp. 107–113.
- Tasch, B. O. A., Bensch, L., Antovic, D. & Müller, T. J. J. (2013). Org. Biomol. Chem. 11, 6113–6118.
- Watson, L. J. (2012). Pericyclic Reactions of Vinyl-Heteroaromatics: Multi-Component Domino and Sequential Processes. Dissertation, Newcastle University, England.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yu, Z.-Q., Pan, M., Jiang, J.-J., Liu, Z.-M. & Su, C.-Y. (2012). Cryst. Growth Des. 12, 2389–2396.
- Zhang, Y. (2012). Acta Cryst. E68, m1275.
- Zhang, Z.-J., Shi, W., Niu, Z., Li, H.-H., Zhao, B., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2011). *Chem. Commun.* 47, 6425–6427.

supporting information

Acta Cryst. (2014). E70, 550-554 [doi:10.1107/S1600536814025094]

Crystal structure of (1*S*,2*R*,6*R*,7*R*,8*S*,12*S*)-4,10,17-triphenyl-15-thia-4,10-diazapentacyclo[5.5.5.0^{1,16}.0^{2,6}.0^{8,12}]heptadeca-13,16-diene-3,5,9,11-tetrone *p*-xylene hemisolvate

Wayland E. Noland, Neil J. Kroll, Matthew P. Huisenga, Ruixian A. Yue, Simon B. Lang, Nathan D. Klein and Kenneth J. Tritch

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXTL2008* (Sheldrick, 2008), *enCIFer* (Allen *et al.*, 2004) and *publCIF* (Westrip, 2010).

(1*S*,2*R*,6*R*,7*R*,8*S*,12*S*)-4,10,17-Triphenyl-15-thia-4,10-diazapentacyclo[5.5.5.0^{1,16}.0^{2,6}.0^{8,12}]heptadeca-13,16-diene-3,5,9,11-tetrone *p*-xylene hemisolvate

Crystal data C₃₂H₂₂N₂O₄S·0.5C₈H₁₀ $M_r = 583.65$ Monoclinic, $P2_1/c$ a = 10.5944 (14) Å b = 26.529 (4) Å c = 10.4286 (14) Å $\beta = 99.675$ (2)° V = 2889.4 (7) Å³ Z = 4F(000) = 1220

Data collection

Bruker APEXII CCD diffractometer Radiation source: sealed tube φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.685$, $T_{\max} = 0.746$ 33190 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.109$ $D_x = 1.342 \text{ Mg m}^{-3}$ Melting point: 554 K Mo *Ka* radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2771 reflections $\theta = 3.1-27.4^{\circ}$ $\mu = 0.16 \text{ mm}^{-1}$ T = 123 KPlate, colourless $0.45 \times 0.22 \times 0.22 \text{ mm}$

6576 independent reflections 5803 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 27.4^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -13 \rightarrow 13$ $k = -34 \rightarrow 34$ $l = -13 \rightarrow 13$

S = 1.006576 reflections 388 parameters 0 restraints

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.0547P)^2 + 1.9057P]$
neighbouring sites	where $P = (F_o^2 + 2F_c^2)/3$
H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.001$
-	$\Delta ho_{ m max} = 0.38 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.36 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic	coordinates	and isotropic or	equivalent isotropic	displacement	parameters ((A^2)

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	
C1	0.47103 (13)	0.62662 (5)	0.07444 (13)	0.0168 (3)	
C2	0.56246 (13)	0.67315 (5)	0.10206 (13)	0.0171 (3)	
H2	0.6037	0.6805	0.0246	0.021*	
O3	0.74841 (10)	0.63409 (4)	0.23636 (11)	0.0275 (2)	
C3	0.66409 (13)	0.66474 (5)	0.22147 (13)	0.0188 (3)	
N4	0.64349 (11)	0.70008 (4)	0.31639 (11)	0.0183 (2)	
05	0.51276 (10)	0.76804 (4)	0.33509 (10)	0.0237 (2)	
C5	0.54585 (13)	0.73378 (5)	0.27202 (13)	0.0174 (3)	
C6	0.48591 (13)	0.71923 (5)	0.13506 (13)	0.0168 (3)	
H6	0.4931	0.7475	0.0733	0.020*	
C7	0.34372 (13)	0.70480 (5)	0.13224 (13)	0.0171 (3)	
H7	0.2938	0.7341	0.1573	0.020*	
C8	0.29297 (13)	0.68806 (5)	-0.00915 (13)	0.0186 (3)	
H8	0.2980	0.7166	-0.0709	0.022*	
09	0.06508 (10)	0.69309 (4)	0.00144 (11)	0.0270 (2)	
C9	0.15643 (13)	0.66936 (5)	-0.02085 (13)	0.0202 (3)	
N10	0.15215 (11)	0.61919 (4)	-0.06089 (11)	0.0195 (2)	
O11	0.28909 (10)	0.56023 (4)	-0.12507 (11)	0.0262 (2)	
C11	0.27107 (13)	0.60134 (5)	-0.08300 (13)	0.0196 (3)	
C12	0.36946 (13)	0.64258 (5)	-0.04520 (13)	0.0181 (3)	
H12	0.4127	0.6511	-0.1206	0.022*	
C13	0.53628 (13)	0.57771 (5)	0.05823 (14)	0.0215 (3)	
H13	0.5845	0.5721	-0.0095	0.026*	
C14	0.52206 (14)	0.54274 (6)	0.14507 (15)	0.0246 (3)	
H14	0.5584	0.5101	0.1437	0.030*	
S15	0.43063 (4)	0.56125 (2)	0.26360 (4)	0.02309 (10)	
C16	0.40457 (13)	0.62075 (5)	0.19169 (13)	0.0166 (3)	
C17	0.33937 (12)	0.66069 (5)	0.22472 (13)	0.0168 (3)	
C18	0.27549 (13)	0.66453 (5)	0.34017 (13)	0.0186 (3)	
C19	0.33888 (16)	0.64756 (7)	0.46108 (15)	0.0296 (3)	
H19	0.4224	0.6336	0.4683	0.035*	
C20	0.28055 (19)	0.65094 (8)	0.57056 (17)	0.0400 (4)	
H20	0.3243	0.6393	0.6522	0.048*	
C21	0.15919 (18)	0.67111 (7)	0.56115 (18)	0.0378 (4)	

H21	0 1191	0.6731	0.6359	0.045*
C22	0.09641 (16)	0.68835(7)	0.44274(18)	0.0332(4)
H22	0.0127	0.7021	0.4361	0.040*
C23	0.15467 (15)	0.68579 (6)	0.33309 (16)	0.0262(3)
H23	0.1115	0.6987	0.2526	0.031*
C24	0.71510 (13)	0.70018 (6)	0.44597 (13)	0.021
C25	0.71973 (16)	0.65636(7)	0.51885 (16)	0.0202(3)
H25	0.6760	0.6269	0.4835	0.036*
C26	0.78922 (18)	0.65597 (8)	0.64436 (17)	0.030 0.0413(4)
H26	0.7930	0.6262	0.6953	0.050*
C27	0.85297 (16)	0.69899 (8)	0.69534 (16)	0.020
H27	0 9007	0.6985	0 7810	0.048*
C28	0.84726 (15)	0.74241 (8)	0.62212 (16)	0.0344(4)
H28	0.8905	0.7719	0.6579	0.041*
C29	0.77860 (13)	0.74341 (6)	0.49609 (15)	0.0244(3)
H29	0.7753	0.7732	0.4452	0.029*
C30	0.03938 (13)	0.58848 (5)	-0.06870(14)	0.0201 (3)
C31	-0.02016 (15)	0.58564 (6)	0.03952 (15)	0.0261 (3)
H31	0.0120	0.6044	0.1156	0.031*
C32	-0.12704 (15)	0.55524 (6)	0.03589 (17)	0.0299 (3)
H32	-0.1686	0.5531	0.1096	0.036*
C33	-0.17302 (15)	0.52803 (6)	-0.07528 (17)	0.0284 (3)
H33	-0.2459	0.5070	-0.0776	0.034*
C34	-0.11321 (15)	0.53137 (6)	-0.18289 (16)	0.0288 (3)
H34	-0.1456	0.5127	-0.2591	0.035*
C35	-0.00598 (15)	0.56179 (6)	-0.18087 (15)	0.0247 (3)
H35	0.0352	0.5642	-0.2549	0.030*
C36	-0.0645 (2)	0.53975 (8)	0.43607 (17)	0.0449 (5)
H36	-0.1088	0.5675	0.3918	0.054*
C37	0.0665 (2)	0.54081 (8)	0.46333 (18)	0.0451 (5)
H37	0.1114	0.5690	0.4375	0.054*
C38	0.1347 (2)	0.50084 (8)	0.52868 (17)	0.0449 (5)
C39	0.2786 (2)	0.50191 (11)	0.5586 (2)	0.0633 (7)
H39A	0.3098	0.5334	0.5262	0.095*
H39B	0.3067	0.4997	0.6529	0.095*
H39C	0.3131	0.4733	0.5163	0.095*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S15	0.0287 (2)	0.01758 (17)	0.02321 (18)	0.00367 (13)	0.00515 (14)	0.00323 (13)
O3	0.0221 (5)	0.0302 (6)	0.0284 (6)	0.0087 (4)	-0.0012 (4)	-0.0075 (4)
O5	0.0243 (5)	0.0242 (5)	0.0216 (5)	0.0044 (4)	0.0006 (4)	-0.0065 (4)
09	0.0203 (5)	0.0227 (5)	0.0357 (6)	0.0046 (4)	-0.0021 (4)	-0.0033 (4)
O11	0.0239 (5)	0.0247 (5)	0.0301 (6)	-0.0002 (4)	0.0047 (4)	-0.0097 (4)
N4	0.0175 (5)	0.0207 (6)	0.0162 (5)	0.0013 (4)	0.0013 (4)	-0.0022 (4)
N10	0.0186 (6)	0.0191 (6)	0.0198 (6)	0.0000 (4)	0.0000 (4)	-0.0019 (4)
C1	0.0176 (6)	0.0177 (6)	0.0150 (6)	0.0006 (5)	0.0022 (5)	-0.0018 (5)

C2	0.0174 (6)	0.0183 (6)	0.0159 (6)	0.0003 (5)	0.0034 (5)	-0.0014 (5)
C3	0.0174 (6)	0.0210 (7)	0.0181 (6)	0.0002 (5)	0.0034 (5)	-0.0027 (5)
C5	0.0164 (6)	0.0186 (6)	0.0173 (6)	-0.0013 (5)	0.0026 (5)	-0.0002 (5)
C6	0.0181 (6)	0.0162 (6)	0.0159 (6)	0.0000 (5)	0.0024 (5)	-0.0003 (5)
C7	0.0169 (6)	0.0164 (6)	0.0170 (6)	0.0015 (5)	0.0003 (5)	-0.0004 (5)
C8	0.0197 (7)	0.0177 (6)	0.0169 (6)	0.0007 (5)	-0.0014 (5)	0.0014 (5)
C9	0.0208 (7)	0.0199 (7)	0.0177 (6)	0.0017 (5)	-0.0031 (5)	0.0010 (5)
C11	0.0202 (7)	0.0236 (7)	0.0146 (6)	-0.0002 (5)	0.0014 (5)	-0.0008 (5)
C12	0.0205 (6)	0.0193 (6)	0.0141 (6)	-0.0002 (5)	0.0016 (5)	-0.0008 (5)
C13	0.0193 (7)	0.0233 (7)	0.0214 (7)	0.0032 (5)	0.0025 (5)	-0.0059 (5)
C14	0.0254 (7)	0.0206 (7)	0.0268 (7)	0.0061 (6)	0.0013 (6)	-0.0054 (6)
C16	0.0168 (6)	0.0174 (6)	0.0147 (6)	-0.0006 (5)	0.0004 (5)	0.0012 (5)
C17	0.0151 (6)	0.0187 (6)	0.0161 (6)	-0.0007 (5)	0.0011 (5)	-0.0001 (5)
C18	0.0207 (7)	0.0172 (6)	0.0196 (6)	0.0010 (5)	0.0085 (5)	-0.0019 (5)
C19	0.0259 (8)	0.0418 (9)	0.0214 (7)	0.0042 (7)	0.0052 (6)	-0.0001 (6)
C20	0.0424 (10)	0.0570 (12)	0.0221 (8)	0.0027 (9)	0.0095 (7)	-0.0010 (8)
C21	0.0425 (10)	0.0432 (10)	0.0336 (9)	-0.0048 (8)	0.0231 (8)	-0.0092 (7)
C22	0.0270 (8)	0.0328 (9)	0.0434 (10)	0.0008 (7)	0.0167 (7)	-0.0083 (7)
C23	0.0234 (7)	0.0256 (7)	0.0306 (8)	0.0031 (6)	0.0076 (6)	-0.0033 (6)
C24	0.0147 (6)	0.0295 (7)	0.0160 (6)	0.0036 (5)	0.0016 (5)	-0.0030 (5)
C25	0.0306 (8)	0.0330 (8)	0.0261 (8)	0.0064 (7)	0.0014 (6)	0.0023 (6)
C26	0.0407 (10)	0.0557 (12)	0.0258 (8)	0.0200 (9)	0.0012 (7)	0.0096 (8)
C27	0.0257 (8)	0.0732 (14)	0.0190 (7)	0.0187 (8)	-0.0037 (6)	-0.0078 (8)
C28	0.0160 (7)	0.0587 (11)	0.0277 (8)	0.0028 (7)	0.0009 (6)	-0.0198 (8)
C29	0.0161 (6)	0.0345 (8)	0.0232 (7)	0.0002 (6)	0.0044 (5)	-0.0076 (6)
C30	0.0173 (6)	0.0183 (6)	0.0234 (7)	0.0013 (5)	-0.0006 (5)	-0.0011 (5)
C31	0.0245 (7)	0.0279 (8)	0.0256 (7)	-0.0005 (6)	0.0036 (6)	-0.0059 (6)
C32	0.0253 (8)	0.0324 (8)	0.0339 (8)	-0.0010 (6)	0.0103 (6)	-0.0038 (7)
C33	0.0202 (7)	0.0230 (7)	0.0416 (9)	-0.0018 (6)	0.0037 (6)	-0.0036 (6)
C34	0.0266 (8)	0.0259 (8)	0.0316 (8)	-0.0029 (6)	-0.0017 (6)	-0.0077 (6)
C35	0.0259 (7)	0.0253 (7)	0.0219 (7)	-0.0006 (6)	0.0012 (6)	-0.0033 (6)
C36	0.0680 (14)	0.0399 (10)	0.0260 (8)	0.0267 (10)	0.0057 (8)	0.0051 (7)
C37	0.0680 (14)	0.0381 (10)	0.0294 (9)	0.0164 (9)	0.0082 (9)	0.0007 (8)
C38	0.0593 (12)	0.0504 (11)	0.0240 (8)	0.0221 (10)	0.0037 (8)	-0.0016 (8)
C39	0.0584 (14)	0.0869 (19)	0.0425 (12)	0.0185 (13)	0.0027 (10)	0.0007 (12)

Geometric parameters (Å, °)

S15—C14	1.7635 (16)	C20—C21	1.381 (3)
S15—C16	1.7495 (14)	C20—H20	0.9500
O3—C3	1.1986 (17)	C21—C22	1.379 (3)
O5—C5	1.2081 (17)	C21—H21	0.9500
О9—С9	1.2094 (18)	C22—C23	1.389 (2)
011—C11	1.2028 (17)	C22—H22	0.9500
N4—C3	1.4069 (17)	С23—Н23	0.9500
N4—C5	1.3865 (17)	C24—C25	1.385 (2)
N4—C24	1.4342 (17)	C24—C29	1.387 (2)
N10—C9	1.3934 (18)	C25—C26	1.390 (2)

N10—C11	1.4008 (18)	С25—Н25	0.9500
N10—C30	1.4370 (18)	C26—C27	1.386 (3)
C1—C2	1.5655 (18)	C26—H26	0.9500
C1—C12	1.5629 (18)	C27—C28	1.378 (3)
C1—C13	1.4930 (19)	C27—H27	0.9500
C1—C16	1.5181 (18)	C28—C29	1.391 (2)
C2—C3	1.5196 (18)	C28—H28	0.9500
C2—C6	1.5377 (18)	C29—H29	0.9500
C2—H2	1.0000	C30—C31	1.384 (2)
C5—C6	1.5124 (18)	C30—C35	1.383 (2)
C6—C7	1.5498 (18)	C31—C32	1.386 (2)
С6—Н6	1.0000	C31—H31	0.9500
C7—C8	1 5472 (18)	C_{32} — C_{33}	1 383 (2)
C7—C17	1.5220 (18)	C32—H32	0.9500
C7—H7	1.0000	C33—C34	1.381 (2)
C8—C9	1 5147 (19)	C33—H33	0.9500
C8—C12	1 5351 (19)	C_{34} C_{35}	1 391 (2)
C8—H8	1 0000	C34—H34	0.9500
C11—C12	1 5167 (19)	C35—H35	0.9500
C12-H12	1 0000	C36—C37	1370(3)
C13—C14	1.323 (2)	C36—C38 ⁱ	1.393 (3)
C13—H13	0.9500	C36—H36	0.9500
C14—H14	0.9500	C37—C38	1.395 (3)
C16—C17	1.3410 (19)	C37—H37	0.9500
C17—C18	1.4805 (18)	C38—C39	1.504 (3)
C18—C19	1.400 (2)	C39—H39A	0.9800
C18—C23	1.389 (2)	C39—H39B	0.9800
C19—C20	1.390 (2)	C39—H39C	0.9800
С19—Н19	0.9500		
C14—S15—C16	90.95 (7)	C17—C18—C23	121.85 (13)
C3—N4—C5	112.96 (11)	C19—C18—C23	118.48 (13)
C3—N4—C24	122.96 (11)	C18—C19—C20	120.47 (15)
C5—N4—C24	124.07 (11)	C18—C19—H19	119.8
C9—N10—C11	112.78 (12)	С20—С19—Н19	119.8
C9—N10—C30	122.91 (12)	C19—C20—C21	120.27 (17)
C11—N10—C30	124.15 (12)	С19—С20—Н20	119.9
C2-C1-C12	104.78 (10)	C21—C20—H20	119.9
C2—C1—C13	114.97 (11)	C20—C21—C22	119.70 (15)
C2-C1-C16	106.80 (10)	C20—C21—H21	120.1
C12—C1—C13	114.50 (11)	C22—C21—H21	120.1
C12—C1—C16	108.69 (11)	C21—C22—C23	120.46 (16)
C13—C1—C16	106.76 (11)	C21—C22—H22	119.8
C1—C2—C3	111.49 (11)	C23—C22—H22	119.8
C1—C2—C6	109.56 (11)	C18—C23—C22	120.58 (15)
C3—C2—C6	105.13 (10)	C18—C23—H23	119.7
C1—C2—H2	110.2	С22—С23—Н23	119.7
С3—С2—Н2	110.2	N4—C24—C25	118.68 (13)

С6—С2—Н2	110.2	N4—C24—C29	120.19 (13)
O3—C3—N4	124.15 (13)	C25—C24—C29	121.13 (14)
O3—C3—C2	128.01 (13)	C24—C25—C26	119.17 (17)
N4—C3—C2	107.84 (11)	С24—С25—Н25	120.4
O5—C5—N4	124.88 (12)	С26—С25—Н25	120.4
O5—C5—C6	126.30 (12)	C25—C26—C27	120.14 (18)
N4—C5—C6	108.79 (11)	С25—С26—Н26	119.9
C2—C6—C5	105.11 (11)	С27—С26—Н26	119.9
C2—C6—C7	110.30 (11)	C26—C27—C28	120.18 (15)
C5—C6—C7	109.48 (11)	С26—С27—Н27	119.9
С2—С6—Н6	110.6	С28—С27—Н27	119.9
С5—С6—Н6	110.6	C27—C28—C29	120.45 (17)
C7—C6—H6	110.6	C27—C28—H28	119.8
C6—C7—C8	105.66 (11)	C29—C28—H28	119.8
C6—C7—C17	108.10 (10)	C24—C29—C28	118.93 (16)
C8—C7—C17	109.92 (11)	C24—C29—H29	120.5
C6—C7—H7	111.0	C28—C29—H29	120.5
C8—C7—H7	111.0	N10-C30-C31	118 24 (12)
C17 - C7 - H7	111.0	N10-C30-C35	120.38(13)
C7 - C8 - C9	110.18 (11)	$C_{35} - C_{30} - C_{31}$	120.30(13) 121.37(14)
C7-C8-C12	110.23 (11)	C_{30} C_{31} C_{32}	119 45 (14)
C9-C8-C12	105 01 (11)	C30-C31-H31	120.3
C7-C8-H8	110.4	C_{32} C_{31} H_{31}	120.3
C9 - C8 - H8	110.4	C_{31} C_{32} C_{32} C_{32} C_{32}	119.85 (15)
$C_{12} = C_{8} = H_{8}$	110.4	$C_{31} = C_{32} = H_{32}$	120.1
09-09-10	124 61 (13)	C_{33} C_{32} H_{32}	120.1
09-09-08	124.01 (13)	C_{32} C_{32} C_{33} C_{34}	120.1 120.17(14)
N10-C9-C8	120.75(13) 108 64 (12)	$C_{32} = C_{33} = C_{34}$	110.0
011 - 011 - 011	124 66 (13)	C34_C33_H33	119.9
011 - 011 - 012	124.00(13) 127.20(13)	$C_{34} = C_{35} = 1155$	119.9 120.67 (14)
N10 C11 C12	127.20(13) 108 14 (11)	$C_{33} = C_{34} = C_{35}$	120.07 (14)
C1 C12 C8	108.14(11) 109.78(10)	$C_{35} = C_{34} = H_{34}$	119.7
$C_1 = C_1 = C_1 = C_1$	109.78(10) 111.20(11)	$C_{30} = C_{34} = C_{34}$	119.7 118 48 (14)
$C_{1}^{2} = C_{12}^{2} = C_{11}^{2}$	111.29(11) 105.22(11)	$C_{30} = C_{33} = C_{34}$	120.8
$C_{0} = C_{12} = C_{11}$	105.22 (11)	$C_{30} = C_{33} = H_{33}$	120.8
$C_1 = C_1 $	110.1	$C_{34} = C_{35} = H_{35}$	120.0 121.02(18)
$C_{0} = C_{12} = 112$	110.1	$C_{37} = C_{30} = C_{38}$	121.92 (10)
C1 - C12 - C14	110.1	C_{29i} C_{26} H_{26}	119.0
C1 = C13 = C14	113.06 (13)	$C_{38} = C_{30} = H_{30}$	119.0
C1 - C13 - H13	122.5	$C_{30} = C_{37} = C_{38}$	120.0 (2)
С14—С13—П13	122.3	$C_{30} = C_{37} = H_{37}$	119.7
S15 - C14 - C13	113.07 (11)	$C_{30} = C_{37} = H_{37}$	119.7
513 - C14 - H14	122.3	$C_{30} - C_{30} - C_{30}$	11/.4(2) 121.82(10)
C13 - C14 - H14	122.3	$C_{20} - C_{20} - C_{20}$	121.85 (19)
	112.12 (9)	C_{29} C_{20} U_{204}	120.7 (2)
S13-U10-U1/	150.82 (11)	C38-C39-H39A	109.5
CI = CI6 = CI7	11/.04 (12)	C_{38} C_{39} H_{39B} C_{28} C_{29} H_{29C}	109.5
C/-CI/-CI6	111.89 (12)	C38—C39—H39C	109.5
C/—C1/—C18	121.95 (12)	Н39А—С39—Н39В	109.5

C16—C17—C18	126.07 (12)	H39A—C39—H39C	109.5
C17—C18—C19	119.66 (13)	H39B—C39—H39C	109.5
S15—C14—C13—C1	-0.77 (17)	C5—C6—C7—C17	-59.61 (13)
S15—C16—C1—C2	-122.42 (10)	C6-C2-C1-C12	61.10 (13)
S15-C16-C1-C12	125.04 (10)	C6-C2-C1-C13	-172.32 (11)
S15-C16-C1-C13	1.04 (13)	C6-C2-C1-C16	-54.10 (13)
S15—C16—C17—C7	179.78 (10)	C6—C5—N4—C24	-175.22 (12)
S15—C16—C17—C18	3.1 (2)	C6—C7—C8—C9	175.86 (11)
O3—C3—N4—C5	175.46 (14)	C6—C7—C8—C12	60.43 (14)
O3—C3—N4—C24	-5.7 (2)	C6—C7—C17—C16	-58.81 (14)
O3—C3—C2—C1	64.82 (19)	C6—C7—C17—C18	118.02 (13)
O3—C3—C2—C6	-176.55 (15)	C7—C8—C12—C11	121.82 (12)
O5—C5—N4—C3	-178.39 (13)	C7—C17—C18—C19	-132.20 (14)
O5—C5—N4—C24	2.8 (2)	C7—C17—C18—C23	46.14 (19)
O5—C5—C6—C2	-179.22 (13)	C8—C7—C17—C16	56.06 (15)
O5—C5—C6—C7	-60.75 (18)	C8—C7—C17—C18	-127.11 (13)
O9—C9—N10—C11	178.47 (14)	C8—C9—N10—C11	-2.16(15)
O9—C9—N10—C30	-5.9 (2)	C8—C9—N10—C30	173.45 (12)
O9—C9—C8—C7	59.85 (18)	C8—C12—C1—C13	170.30 (12)
O9—C9—C8—C12	178.53 (14)	C8—C12—C1—C16	51.04 (14)
O11—C11—N10—C9	-175.58 (14)	C9—N10—C11—C12	4.28 (15)
O11—C11—N10—C30	8.9 (2)	C9—N10—C30—C31	-52.23 (19)
O11—C11—C12—C1	-65.82 (18)	C9—N10—C30—C35	129.14 (15)
O11—C11—C12—C8	175.34 (14)	C9—C8—C12—C11	3.17 (13)
N4—C3—C2—C1	-115.29 (12)	C9—C8—C7—C17	59.45 (14)
N4—C3—C2—C6	3.34 (14)	C11—N10—C30—C31	122.88 (15)
N4—C5—C6—C2	-1.26 (14)	C11—N10—C30—C35	-55.75 (19)
N4—C5—C6—C7	117.21 (12)	C11—C12—C1—C13	54.22 (15)
N4—C24—C25—C26	179.77 (14)	C11—C12—C1—C16	-65.04 (14)
N4—C24—C29—C28	179.97 (13)	C12—C1—C13—C14	-120.51 (14)
N10-C9-C8-C7	-119.51 (12)	C12—C1—C16—C17	-56.16 (15)
N10-C9-C8-C12	-0.83 (14)	C12-C11-N10-C30	-171.27 (12)
N10-C11-C12-C1	114.33 (12)	C12—C8—C7—C17	-55.98 (14)
N10-C11-C12-C8	-4.51 (14)	C13—C1—C16—C17	179.84 (12)
N10-C30-C31-C32	-178.26 (14)	C13—C14—S15—C16	1.19 (13)
N10-C30-C35-C34	178.12 (13)	C14—S15—C16—C17	-179.83 (14)
C1—C2—C6—C5	118.66 (11)	C14—C13—C1—C16	-0.18 (17)
C1—C2—C6—C7	0.75 (14)	C16—C17—C18—C19	44.2 (2)
C1—C12—C8—C7	1.97 (15)	C16—C17—C18—C23	-137.49 (15)
C1—C12—C8—C9	-116.67 (12)	C17—C18—C19—C20	179.87 (16)
C1-C16-S15-C14	-1.25 (10)	C17—C18—C23—C22	179.23 (14)
C1—C16—C17—C7	1.26 (17)	C18—C19—C20—C21	0.0 (3)
C1—C16—C17—C18	-175.42 (12)	C18—C23—C22—C21	1.9 (2)
C2-C1-C13-C14	118.06 (14)	C19—C18—C23—C22	-2.4 (2)
C2-C1-C16-C17	56.38 (15)	C19—C20—C21—C22	-0.6 (3)
C2—C1—C12—C8	-62.83 (13)	C20—C19—C18—C23	1.5 (2)
C2—C1—C12—C11	-178.92 (11)	C20—C21—C22—C23	-0.3 (3)
	× /		

C2—C3—N4—C5	-4.44 (15)	C24—C25—C26—C27	-0.1 (3)
C2-C3-N4-C24	174.41 (12)	C24—C29—C28—C27	0.6 (2)
C2—C6—C7—C8	-62.06 (13)	C25—C24—C29—C28	-0.4 (2)
C2-C6-C7-C17	55.57 (14)	C25—C26—C27—C28	0.3 (3)
C3—N4—C5—C6	3.62 (15)	C26—C25—C24—C29	0.1 (2)
C3—N4—C24—C25	-54.29 (19)	C26—C27—C28—C29	-0.6 (2)
C3—N4—C24—C29	125.40 (15)	C30—C31—C32—C33	0.1 (2)
C3—C2—C1—C12	177.05 (11)	C30—C35—C34—C33	0.1 (2)
C3—C2—C1—C13	-56.37 (15)	C31—C30—C35—C34	-0.5 (2)
C3—C2—C1—C16	61.85 (13)	C31—C32—C33—C34	-0.4 (2)
C3—C2—C6—C5	-1.26 (13)	C32—C31—C30—C35	0.4 (2)
C3—C2—C6—C7	-119.17 (11)	C32—C33—C34—C35	0.3 (2)
C5—N4—C24—C25	124.43 (15)	C36—C37—C38—C36 ⁱ	0.3 (3)
C5—N4—C24—C29	-55.88 (19)	C36—C37—C38—C39	179.96 (19)
C5—C6—C7—C8	-177.24 (11)	C38 ⁱ —C36—C37—C38	-0.3 (3)

Symmetry code: (i) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H…A
С23—Н23…О9	0.95	2.59	3.435 (2)	149
C2—H2···O5 ⁱⁱ	1.00	2.46	3.158 (2)	126
C6—H6···O5 ⁱⁱ	1.00	2.56	3.206 (2)	122
C8—H8···O5 ⁱⁱ	1.00	2.66	3.269 (2)	131
C12—H12…O5 ⁱⁱ	1.00	2.47	3.182 (2)	128
C14—H14…O11 ⁱⁱⁱ	0.95	2.50	3.413 (2)	162

Symmetry codes: (ii) x, -y+3/2, z-1/2; (iii) -x+1, -y+1, -z.