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In vertebrate animals, the molecules encoded by major histocompatibility complex (MHC) genes play an essential role in the
adaptive immunity. MHC class I deals with intracellular pathogens (virus) in birds. MHC class I diversity depends on the
consequence of local and global environment selective pressure and gene flow. Here, we evaluated the MHC class I gene in four
species of the Turdidae family from a broad geographical area of northeast China. We isolated 77 MHC class I sequences,
including 47 putatively functional sequences and 30 pseudosequences from 80 individuals. Using the method based on analysis
of cloned amplicons (n = 25) for each species, we found two and seven MHC I sequences per individual indicating more than
one MHC I locus identified in all sampled species. Results revealed an overall elevated genetic diversity at MHC class I, evidence
of different selection patterns among the domains of PBR and non-PBR. Alleles are found to be divergent with overall
polymorphic sites per species ranging between 58 and 70 (out of 291 sites). Moreover, transspecies alleles were evident due to
convergent evolution or recent speciation for the genus. Phylogenetic relationships among MHC I show an intermingling of
alleles clustering among the Turdidae family rather than between other passerines. Pronounced MHC I gene diversity is
essential for the existence of species. Our study signifies a valuable tool for the characterization of evolutionary relevant
difference across a population of birds with high conservational concerns.

1. Introduction

The major histocompatibility complex (MHC) is a group of
molecules encoded by certain genes that are most polymor-
phic to have been described in vertebrates’ genomes [1].
Two types of MHC gene families, class I and class II, are use-
ful to cell surface glycoproteins that regulate the immune
response. MHC class II molecules are heterodimers consist-
ing of an α chain and a β chain; both contribute to presenting
peptides from the processing of extracellular pathogens such
as bacteria to the CD4+ T-helper cells [2]. Heterodimer mol-

ecules of MHC class I are made up of an α chain and a non-
MHC molecule, the β2 microglobulin. The α chain consti-
tutes a cytoplasmic tail, a transmembrane domain, and three
extracellular domains named α1, α2, and α3 [3] that are
encoded by exons 2, 3, and 4, respectively. The MHC class I
molecules are expressed in almost all somatic cells and trigger
an adaptive immune response by presenting endogenously
derived peptides of viral protein and an individual’s own
body cells to CD8+ cytotoxic T-cells [4]. Polymorphism is
largely confined within the region encoding the ABS (anti-
gen-binding site) of MHC class I [5]. Maintenance of
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surprising diversity is supposed to take place by two types of
selection: heterozygote advantage and frequency-dependent
selection. Heterozygotes could recognize a broader range of
antigens from multiple pathogens and therefore have more
fitness than either individual having a homozygote [6]. Other
is frequency-dependent selection, in which rare alleles deliver
a selective advantage where pathogens have found a means to
escape against common immune defensive alleles in the pop-
ulation. Thus, alteration in the pathogen community with
time and locality results in MHC variation in the host popula-
tion. Generally, in an individual possessing huge numbers and
diverse MHC alleles; more pathogens can be recognized [1].

Structural diversity and immune response have been
explored in numerous research, including genomics [7, 8], ail-
ment [9–11], and mate choice [12–14]. Sequence similarity at
PBR-based assignment to the locus is frequently hampered by
various evolutionary indicators due to current recombination,
duplication, and/or concerted evolution as well as positive
selection mediated by a variety of pathogens [15]. Thus,
numerous studies emphasized MHC genes as important
markers to evaluate the adaptive potential and evolutionary
status of a threatened population [16].

The emerging scenario inspires researchers to collect
statistics from a group of wild taxa to enlarge our under-
standing of the evolution of the MHC gene [17]. Despite
significant efforts, protocols for locus-specific MHC
genotyping in avian are still difficult to achieve and remark-
ably rare [18]. MHC studies in population of wild birds
remain neglected possibly due to complications in amplify-
ing gene sequences from bird species not closely related to
systematically studied chicken [19, 20].

A significant decline in habitats and fragmentation of
available habitats are predisposing factors for dramatic dete-
rioration in population sizes [21]. The avian genus Turdus is
one of the broadly distributed passerine genera, with 65 doc-
umented extant species. The genus is listed wild territorial
birds that are beneficial to china having economic and
research value. Birds of this genus are strongly migratory
thus experiencing a variety of environments. Up to the pres-
ent, there are no studies on MHC class I genes in Turdidae
species, which is the first step towards exploring the role of
selection mediated by pathogens in the maintenance of
MHC class I diversity. Precisely, this study aims to (1) Mea-
sured locus-specific variation in MHC I exon 3 genes across
the Turdidae family to evaluate the mode of evolution by
which such variation comes about. To achieve this, we have
measured the diversity and selection at MHC I genes to make
available the variations that exist across the Turdidae family.
(2) We investigate the numbers of alleles possessed by each
species and the general features of alleles in terms of func-
tional genetic diversity. (3) Phylogenetic analyses to assess
evolutionary relationships and processes driving avian
MHC I diversity among four species of the Turdidae family
and other avian species.

2. Material and Methods

2.1. Study Population. The study population was non-
sympatrically distributed 80 individuals of four species of

genus Turdus of the Turdidae family. Samples include two
to three contour feathers, tissue from breast and liver of birds
accidentally injured or died during migratory season of 2017-
19 in autumn and deposit in State key laboratory of wildlife
detection center in northeast forestry university, stored at
4°C. The geographical location of sample material is pre-
sented (Figure 1).

2.2. Extraction of Genomic DNA. Region of calamus to the
rachis of contour feathers was excised, tissues from skel-
etal muscles were minced, placed into a 1.5ml Eppendorf
tube containing TNE buffer (10mM Tris-HCl (pH8.0),
150mM NaCl, 2mM EDTA, 1% SDS). Total genomic
DNA was extracted with AxyPrep Multisource Genomic
DNA Miniprep Kit (AXYGEN, China) according to the
manufacturer’s instructions. The DNA concentration was
measured with Nanopore Spectrophotometer at 260nm
absorbance. Samples above 100ng/μl concentration were
used for further analysis.

2.3. PCR, Cloning, and Sequencing. Polymerase chain reac-
tion was conducted using motif specific primers designed
for the amplification of MHC class I genes in great reed war-
bler. The forward primers HN36 5′-TCCCCACAGGTCTC
CACACAGT-3′ and HN46 reverse 5′-ATCCCAAATTC
CCACCCACCTT-3′ correspond to exon 3 region in the
flanking introns, the region coding most of the peptide-
binding site in MHC molecules (subunit α2) [22–24]. The
primers were used due to their successful amplification in
many passerine species. Amplification was performed in the
reaction mixture containing 20 ng DNA template, 0.2μM of
each primer, 25μl 2× EasyTaq® PCR SuperMix (+dye)
(Trans, China), and water (deionized) to reach 50μl as final
volume. Thermal cycling for MHC class I amplification
began with one cycle at 94°C for 5min, followed by 30 cycles
of denaturation consisting of sequential steps of 94°C for 30s,
52°C for 30s, and 72°C for 30s, ending with a single extension
step at 72°C for 5min. Purification was carried out with Axy-
Prep™DNA Gel Extraction Kit in accordance with the man-
ufacturer’s protocol. Purified PCR product was cloned using
pEASY ®-T5 Zero Cloning Kit containing Trans1-T1 Phage
resistant chemically competent cells (Transgen Biotech).
PCRs were performed for positive clones using M13 forward
and reverse primers. Several colonies (20-25) per individual
were selected and used as a template for sequencing direc-
tionally on an automatic sequencer (ABI PRISM 3730; Invi-
trogen Biotechnology Co. Ltd.).

2.4. Definition of Allele. Since few artifacts introduced during
the recombination of PCR products in cloning [25, 26].
Amplification, cloning and sequencing were performed
twice. Sequences were verified and referred to as an Allele;
either minimum of three sequences have the same nucleotide
composition or repeated in both events. The sequences which
showed any deletion, insertion, or premature stop codons
within exons were identified as presumed pseudogene
sequence, and others were considered as putative functional
allele (PFA) [27]. All sequences appropriate to our criteria
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have been deposited into the GenBank (Accession No:
MN849308-54).

2.5. Data Analysis

2.5.1. Sequence Analysis. Chromatogram signals of all
sequencing were examined with chromas 2.2.6. Sequences
without ambiguous signals were selected. Vector sequence
from the MHC class I gene was removed using seqMan in
the DNAStar7.1 package. Sequence editing and organization
were done with BioEdit [28]. Sequences were aligned individ-
ually and then altogether four sampled species using CLUS-
TAL X [29]. The unique alleles were named according to
the nomenclature for MHC in non-human species [30].
NCBI BLAST [31] was used for sequences confirmation
representing close identity to passerine species previously
published MHC class I exon 3 sequences. Sequences having
at least one stop codon (shift in the reading frame due to
indels or nonsense sequences) were classified as pseudogenes.
Based upon sequences found to be translatable, a minimum
number of functional loci MHC class I was estimated using
a conservational approach that all Loci from samples species’
individual were in heterozygote state.

The average pairwise nucleotide distances (Kimura 2-
parameter model - K2P), and the Poisson-corrected amino
acid distances were calculated using MEGA7.0. Standard

errors were obtained through 1000 bootstrap replicates. Hap-
lotypes identification (Na), the average number of nucleotide
differences (K), polymorphic sites (S)) and nucleotide diver-
sity (π) were measured by DnaSP 5.10 [32].

2.6. Inference of Recombination. Recombination can influ-
ence the outcomes of selection, we first tested recombination.
Analyses were implemented for the nucleotide alignment of
exon 3 in the Recombination Detection Program version 4
(RDP4). Several method, including RDP [33], GENECONV
[34], Chimaera [35], MaxChi [36], BootScan [33], SiScan
[37], and 3Seq [38], were used to detect recombination
events. In addition, the online GARD tool, provided by the
Datamonkey webserver (http://www.datamonkey.org/), was
used for recombination signals assessment [39].

2.7. Tests for Selection. For selection, we conduct a priori clas-
sification of peptide binding region (PBR) and non- peptide
region upon inferred passerine PBR sequences [40, 41]
homology sites with chicken MHC [42, 43] and human
HLA [44]. The identification of sites subjected to selection
in MHC class I Exon 3 was performed using various
methods. The first standard selection test (Tajima’s D, Fu
and Li’s F ∗, and Fu and Li’s D ∗) were calculated using
DnaSP 5.0 [32]. Second method was the calculation of
parameter (ω) for functional alleles. It was carried out an
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Figure 1: Geographical locations of samples included in our study. Square represents the actual site of the sample, and size of the square
represents the approximate diameter of the sample’s geographical range.
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overall estimation of dN/dS of MHC class I Exon 3 and the
other was codons comprising only PBR and non-PBR, which
was calculated with MEGA 7.0 according to the Nei-
Gojobori method [45] with the Jukes and Cantor correction.
Standard error estimates were derived from 1000 bootstrap
replicates. Z test of historical positive selection [46] was cal-
culated in MEGA 7.0. Third, the Maximum likelihood imple-
mented in codeml in PAML 4.9 was used for identification of
sites involved in the positive selection, which are indicated
where the ratio ω (dN/dS) larger than 1 [47]. Two different
models corresponding ω were tested: M7 (beta), M8 (β and
ω). To find whether the alternative model (M8) provided bet-
ter fitter than the M7, we performed Likelihood ratio tests to
compare twice the difference of the log-likelihood ratios
(2ΔlnL) using a distribution χ2. PSSs in the M8 model was
identified by PP more than 95% using the Bayes empirical
Bayes procedure. Positively selected sites were verified at each
codon site separately using many complementary approaches
implemented in Datamonkey (http://www.datamonkey.org/)
[48] in addition to afore mention methods. Specifically, we
used MEME [49], FEL, SALC [50], and FUBER [51].

2.8. Phylogenetic Analysis. To assess the phylogenetic rela-
tionship, we construct two phylogenies (One for sampled
species and other representing MHC class I sequences of
related passerines plus sampled species) using Bayesian infer-
ence. We find the GTR+T nucleotide substitution model
[52] that fits our data using MrModeltest [35] through the
Akaike Information Criterion (AICc) [53]. Bayesian Markov
chain Monte Carlo (MCMC) was run for two million gener-
ations and sampling every 1,000 generations to ascertain
when log Likelihood reached stationary phase. The phyloge-
netic tree was summarized in MrBayes v3.1.2 [54] and the
first 25% of the tree as burn-in was removed. Fig tree was
used for visualization of the consensus tree. Exploration of
relation between sampled species and related avian species,
we conducted a maximum likelihood (ML) analysis with
MEGA 7.0 [55]. The data were analyzed with the T92+G
model. We conducted 1000 bootstrap replicates to estimate
the support. Values greater than 75% were indicated in the
ML phylogenetic trees. The species covered are mainly from
Passeridae, Acrocephalidae, Paridae, Motacillidae, Muscicap-
idae, Hirundinidae, Phylloscopidae, Fringillidae, Cardinali-
dae, and Sturnidae. To further identify allelic lineages
among sampled species and related avian species, we con-
ducted the Neighbor-Net algorithm in SplitsTree 4.14.8.
Neighbor-Net networks were based on uncorrected P-dis-
tances and carried out 1000 bootstrap replicates to estimate
nodal support. Nodal support values (>75%) were displayed.

3. Results

3.1. Characterization of Alleles. We successfully and selec-
tively amplified MHC class I exon 3 genes across 80 individ-
uals from four species of the Turdidae family using HN36
and HN46 primers. An average of 22.7 clones per individual
was sequenced. Sequences varied between 459 and 579 base
pairs. The multiple sequence alignments of all sampled spe-
cies were 411 base pair long. The final aligned MHC class I

dataset included 285-291 bp (Primers not include). Analysis
of gDNA alignment revealed a total of 77 distinct Haplotype-
s/alleles including 47 PFA. Each sequence was confirmed to
exhibit similarity (81%-93%) with earlier reported passerine
MHC class 1 sequences based upon BLAST search. The num-
bers of PFA sequences found in a single individual ranged
from one to five, indicating that one to three loci exist in three
of the four species of the Turdidae family. However, the
number of putative functional alleles found in a single indi-
vidual ranged from two to seven in Turdus atrogularis exhi-
biting two to four loci. Number of the individual tested,
number of PFA and pseudogene retrieved, the minimum
number of functional loci estimated is given in Table 1. Three
alleles (Tuna-MHCI ∗ PFA05=Tuen-MHCI ∗ PFA09, Tuna-
MHCI ∗ PFA07=Tuen-MHCI ∗ PFA02 and Tuen-MHCI ∗
PFA05=Tuna-MHCI ∗ PFA015) were shared among Turdus
naumanni and Turdus eunomus. Two alleles (Turu-MHCI ∗
PFA05=Tuat-MHCI ∗ PFA02 and Turu-MHCI ∗ PFA09= -
Tuat-MHCI ∗ PFA08) were also detected among individuals
of Turdus ruficollis and Turdus atrogularis. Interestingly,
genotypes comprising of one allele were by far the most
repeated (26.67%, 8/30), followed by genotypes comprising
two (16.67%, 5/30) and four alleles (13.3%, 4/30) in the popu-
lation of Turdus naumanni. Almost pattern was consistent in
population of Turdus eunomus and Turdus rufficollis. Geno-
types constituting one allele (23.3%, 7/30) were the most
repeated followed by three (16.67%, 5/30) in Turdus eunomus.
Genotypes comprising one allele (33.33%, 5/15) were repeated
in the population of Turdus rufficollis. Allelic repetition was
absent in population of Turdus atrogularis.

Of the 77 sequences, 30 were non-translatable due to
indels or the presence of stop codons resulted changes in
the reading frame. Sequences were thus presumed to be pseu-
dogenes. The number of identified pseudogenes within the
four species ranged between three and five in most individ-
uals of study population, and six of the thirteen pseudogene

Table 1: Amplification success and genetic diversity within each of
the four species of the Turdidae family investigated. MHC class I
exon 3 gene size (L), the overall number of polymorphic sites per
allele repertoire (S), and the average number of nucleotide
differences (K). Nucleotide diversity π at all sites: PBR and non-
PBR.

Species L S K π

Turdus naumanni

0.118

285 64 33.7 0.211

0.091

0.113

Turdus eunomus
285 58 32.32 0.183

0.079

Turdus ruficollis

0.121

291 65 35.28 0.247

0.087

Turdus atrogularis

0.151

291 70 43.95 0.309

0.093
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sequences were found to be identical in three individuals
from the population of sampled species. We cannot ignore
the likelihood that some of the identified pseudogene
sequences may be due to PCR or sequencing artifacts, as such
events would more often result in nonfunctional sequences.
The nucleotide deletion result in loss of 3 amino acids was
obvious in Tuna-MHCI ∗ PS07-9 and Tueu-MHCI ∗ PS01-
04 and Tueu-MHCI ∗ PS08. Both nucleotide deletion, frame
shift mutation and premature stop codons were detected
in Turu-MHCI ∗ PS01,03 and MHCI ∗ PS09 at amino
acid 33 encoding Exon 3. Loss of 3 amino acids was at
position 78 was detected in Tuat-MHCI ∗ PS05 and
Tuat-MHCI∗PS06.

3.2. Analysis of Genetic Diversity. Overall we find an elevated
genetic diversity (π) within exon 3 alleles repertoire among
individuals of Turdus atrogularis was (0.151) than Turdus
eunomus (0.113). The average number of nucleotides differ-
ence (K) varied between 43.95 in Turdus atrogularis and
32.32 in Turdus eunomus.

3.3. Analysis of Recombination. The recombination detection
program not only analyzes brake points but also identify par-
ent sequences. We ran the test of recombination by pooling
all putative functional alleles recovered from four species of
the Turdidae family. We only find one potential recombina-
tion event in Tuna-MHCI ∗ PFA06 in Turdus naumanni at
two recombinant breakpoints at position 148 and 253.
Tuna-MHCI ∗ PFA02 as major and Tuna-MHCI ∗ PFA011
minor parent. Likewise, a single recombination was signifi-
cant in Tueu-MHCI ∗ PFA07.We detected no recombination
among other alleles. However, these recombinations were
only significant in two out of seven tests and not consistent
with recombination breakpoint identified by GARD, hence

the results represent that overall recombination is not likely
to have any prominent effects on tests for positively selected
sites (Table 2). The recombination breakpoints identified by
these two programs are often inconsistent, probably because
they use different computational methods.

3.4. Analysis of Selection. Considering that the evolutionary
history of each domain might have been different, we tested
each domain separately for evidence of positive selection.
Selection statistics by traditional methods did not disclose
any statistical significant signal of selection that deviate from
neutral expectations for Turdus eunomus (Tajima’s D:
-0.87309, P > 0:10; Fu and Li’s D ∗ test statistic: 0.36, P >
0:10; Fu and Li’s F ∗ test statistic: 0.03, P > 0:10) and Turdus
atrogularis (Tajima’s D: -0.86107, P > 0:10 Fu and Li’s D ∗
test statistic: 0.19, P > 0:10; Fu and Li’s F ∗ test statistic:
-0.077, P > 0:10). Still, overall dN value was significantly
higher statistically than dS in Turdus atrogularis (1.687)
and ratio dN/dS was more pronounced at codons presumably
coding PBR (1.994) than codons not involved in such activity
(0.884) is presented in (Table 3).

Application of Likelihood models represents that the
model M8 allows for positive selection provides a better than
the neutral evolution models M7. Sites being positively
selected were recognized, are given in (Table 4). In total, we
find 12 codons under positive selection in sampled species,
of which three sites (25%) match homologues codons found
positively selected in other avian species and one (8.3%)
matched human peptide binding region (Table 4).

Usually consistent with the above finding, every substi-
tute test (MEME, SALC, FEL, and FUBAR) for positive selec-
tion implemented in online adoptive evolutionary server
Datamonkey (Weaver et al., 2018) identify numerous codons
under positive selection (Figure 2) and (Figure 3).

Table 2: Recombinants detected in Turdidae family MHC class I alleles, parent sequences and breakpoints detected by the recombination
detection program (RDP) and the genetic algorithm for recombination detection (GARD), and the RDP analyses.

Recombination event 1 Recombination event 2

Recombinant Tuna_MHCI ∗ PFA06 Tuna_MHCI ∗ PFA02

Maj P Tuna_MHCI ∗ PFA02 Tuna_MHCI ∗ PFA09

Min P Tuna_MHCI ∗ PFA011 Unknown (Tuna_MHCI ∗ PFA01)

BP 1 location 148 (148) 254 (253); P < 0:001
BP 2 location Absent Absent

RDP methods

RDP NS <0.05
GENECONV <0.001 <0.001
BootScan <0.01 <0.05
MaxChi <0.001 <0.01
Chimaera <0.01 <0.01
SiScan <0.001 <0.001
3Seq <0.001 <0.01

BP from GARD Absent

Note: NS indicates not significant. Maj P and Min P represent major and minor parents, respectively. BP denotes breakpoint. The numbers in parentheses are
BP locations in the recombinant nucleotide sequences without gaps. The values after the semicolon are Max chi values for those BPs. ∗∗ indicates P < 0:01.
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Across all tests for positive selection, four codons (9, 29,
65, and 88) were frequently identified by all methods as hav-
ing under positive selection. Of these, codons (42, 59) were
corresponding to PBR in human and codons 9, 29, 64, and
88 also match homology to PBR, known as positively selected
among passerine in general [56] (Figure 4). The ten most fre-
quent MHC class I alleles retrieved from sampled species dis-
played 87%-91% sequence similarity to 18 sequences from
five other passerine families (Acrocephalidae, Passeridae,
Muscicapidae, Paridae, Passerellidae). None of the 77 alleles
studied had 100% sequence similarity to other published
sequences to GenBank; thus, it establishes no allelic pair in

the study population that was 100% sequence likeness shared
by another species.

3.5. Phylogenetic Analysis. In phylogenetic analysis, we
observed that sampled species form a well-supported mono-
phyletic clade with Erithacus rubeculsmembers of the Turdi-
dae family in maximum likelihood analysis. Bayesian
analysis represents that most of the alleles shared among
Turdus atrogularis and Turdus reficollis. This pattern was
almost consistent among Turdus naumanni and Turdus
eunomus presented in Figure 4. The Net network of putative
functional and pseudogene MHC class I exon 3 sequences in

Table 4: Estimation of dN and dS substitution rates for sites positively selected and their ratio for codons chosen a priori (PBR and non-PBR).

Species Comparison Model lnL value Parameter estimates PSSs LRT TS value

Turdus naumanni Tuna 1-30

M7 (beta) -703.53
P = 0:19, q = 0:138,

P0 = 0:351 Not allowed

M7 vs. M8 5.47

M8 (beta and omega) -722.49
P = 0:87, q = 0:117,
P1 = 0:09, ω = 3:11 39F,41L 88T

Turdus eunomus Tuna 1-30

M7 (beta) -692.13
P = 0:13, q = 0:97,

P0 = 0:347 Not allowed

M7 vs. M8 4.56

M8 (beta and omega) -714.11
P = 0:91, q = 0:158,
P1 = 0:11, ω = 3:76 41L, 52P,88T

Turdus ruficollis Turu1-15

M7 (beta) -811.27
P = 0:49, q = 0:187,

P0 = 0:411 Not allowed

M7 vs. M8 6.21

M8 (beta and omega) -834.88
P = 0:131, q = 0:232,
P1 = 0:13, ω = 3:94 29Y, 78F, 88G

Turdus atrogularis Tuat1-5

M7 (beta) -847.53
P = 0:83, q = 0:211,

P0 = 0:585 Not allowed

M7 vs. M8 7.10

M8 (beta and omega) -849.78
P = 0:173, q = 0:279,
P1 = 0:17, ω = 4:11 39H, 78F, 91Q

∗The log likelihood values and parameters estimated were computed using codeml implemented in PAML 4.9. PSSs were inferred in model M8 by BEB with
posterior probabilities > 95%.

Table 3: The average rates of nonsynonymous (dN) and synonymous (dS) substitutions and the result of Z-test and the average nucleotide
distances (dnt) and amino acid distances (daa) for PBR and non-PBR and all sites in MHC class I of the Turdidae family.

Species Domain dN ± SE dS ± SE Z P ω dnt ± SE daa ± SE

Turdus naumanni

All sites 0:142 ± 0:026 0:104 ± 0:013 0.610 0.543 1.365 0:051 ± 0:08 0:246 ± 0:035
PBR 0:281 ± 0:059 0:153 ± 0:032 1.848 0.034 1.835 0:041 ± 0:045 0:372 ± 0:082

Non-PBR 0:051 ± 0:062 0:067 ± 0:012 1.356 0.476 0.761 0:034 ± 0:09 0:126 ± 0:029

Turdus eunomus

All sites 0:134 ± 0:021 0:107 ± 0:019 0.729 0.457 1.251 0:043 ± 0:010 0:202 ± 0:031
PBR 0:179 ± 0:023 0:102 ± 0:032 1.442 0.383 1.175 0:057 ± 0:031 0:366 ± 0:011

Non-PBR 0:056 ± 0:041 0:049 ± 0:012 1.792 1.000 1.142 0:051 ± 0:011 0:134 ± 0:029

Turdus ruficollis

All sites 0:146 ± 0:048 0:101 ± 0:025 0.911 0.771 1.445 0:059 ± 0:017 0:191 ± 0:035
PBR 0:264 ± 0:037 0:138 ± 0:011 1.643 0.002 1.912 0:147 ± 0:045 0:453 ± 0:078

Non-PBR 0:070 ± 0:018 0:068 ± 0:028 0.061 0.476 1.029 0:034 ± 0:049 0:126 ± 0:052

Turdus atrogularis

All sites 0:189 ± 0:091 0:112 ± 0:025 1.040 0.150 1.687 0:063 ± 0:053 0:211 ± 0:039
PBR 0:321 ± 0:013 0:161 ± 0:069 1.012 0.435 1.994 0:207 ± 0:045 0:572 ± 0:162

Non-PBR 0:069 ± 0:062 0:078 ± 0:012 1.813 0.476 0.884 0:078 ± 0:091 0:206 ± 0:041
∗The errors were attained through 1000 bootstrap replicates which are in parentheses. Bold represents significant results.
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the Turdidae family with other passerines indicate that allelic
distribution among them is almost congruent with limited
divergence. For instance, Tueu-MHCI ∗ PFA02 and Tuna-
MHCI ∗ PFA07 networks formed a monophyletic clade in
the phylogenetic network of exon 3. Three alleles were shared
among Turdus naumanni and Turdus eunomus two among
Turdus rufficollis and Turdus atrogularis. The clustering of
the sequences among species could be due to transspecies
polymorphism or orthology [57].

4. Discussion

In this study, we have for the first time characterize MHC
Class I gene in four species of the Turdidae family in the
order Passeriformes from the wide geographical area of
Northeast china. Analysis of MHC class I sequences revealed
a total of 77 distinct Haplotypes/alleles including 47 putative
functional alleles ever reported in passerine species, a group
which is reported to have surprising MHC diversity [58,
59]. According to our findings based on MHC class I
sequences, the functional loci in an individual ranged from

one to three in three of the four species, which was consistent
with findings from other passerine species studied till now
[60]. In addition, we detected a large number of presumed
pseudogene sequences in the sampled population as it retains
important information about the evolution of MHC. This is
not surprising, as it is consistent with the expectation of evo-
lution by birth-and-death [61]. We made a significant effort
to characterize the variation in regions of MHC class I exon
3 in our study population, we find that the primers would
make some unlikely bias in allelic variations among individ-
uals. Hence, MHC class I alleles variations per individual
should, largly be due to copy number of genes variation
among individuals, which has been confirmed in other birds
[62]. Few MHC class I alleles were shared between Turdus
naumanni and Turdus eunomus as well as among individuals
of Turdus ruficollis and Turdus atrogularis is indicating allelic
sharing due to common ancestors or challenging common
pathogens, as this event is frequent in numerous avian species
such as owls, ardeid birds, penguins and passerines [63–65].

Generally, abundant variation in genetic material in a
species is an indicator of the capacity to adapt to numerous
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Figure 2: Positively selected sites using the online adoptive evolutionary server Datamonkey with (a) MEME, (b) FEL, (c) FUBAR, and (d)
SALC. Substitution tests identify numerous codons showing the signature of positive selection.
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environmental changes by that species. Rapidly evolving
environmental pathogens would cause MHC genes to exhibit
enlarged genetic diversity in species [66, 67]. Collectively, in
our study, we find elevated genetic diversity among func-

tional sequences and significant divergence, whereas pseudo-
gene has low genetic variation and limited divergence.
Similar results also have been described in other passerine
species, including common yellow throat [68], great reed
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Turu-MHCI⁎PFA02 S
Turu-MHCI⁎PFA03 G T P Y S K N N V I R A Q
Turu-MHCI⁎PFA04 F T L D Y Q C K A Y R R Q R H
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Tuna-MHCI⁎PFA01 I GR I P T Y P S F L AAS L DL L S D G S I R GS Y R DG Y NGR DF I S F H L GS R R S VAAD S AAE VT R R R W E DE NE VE R WT N Y L GY DCP E W L QKY F R Y T QK E L DR K
Tuna-MHCI⁎PFA02 . . Q. . . . . . . . . . V. . . . . . . . . . . . . . . . . . . Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tuna-MHCI⁎PFA03 F . . . . . CA. . . . . W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . K . . M. . . . . . . . . . . . . . . . . A. . . . K . . . . . V. . . . . P . . . . . . . . . . . . .
Tuna-MHCI⁎PFA04 F . H. . . CA. . N . . . . . . . . . . . . . . . . . E . . . . P . . . . . . . . . K . . M. . . T . . . . . . . . . . . . KI . . . . K . . . . . V. . . . . . . . . . . . . . . . . . N
Tuna-MHCI⁎PFA05 . . . . . . . . . . W. . L . . . . . . . . . . . . H. Y . . . . L . . . . . . . . . K . . . . . . I . . . . . . . . . . . . . . . . . . R . . . . . I . . . . . . . . . . . . . . . . . . .
Tuna-MHCI⁎PFA06 F . P . . . CA. . S . . V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . T . . M. . . . . . . . . . . . . . . K . E . . . W . . . . . V. . . . . . . . L . . P . . . . . . N
Tuna-MHCI⁎PFA07 . . L . . . . . R . I . . . . . . . . . . . . P . . D. . . . . . . . . . . . . . . . K . . . . . . D . . . . . . . . . . . . . . . . . I . . . . . . S . . . . . . . . . . . A. . . . . . .
Tuna-MHCI⁎PFA08 . . P . . . . . G . . . . L . . . . . . . . . . . . D. . . . . . P . . . . . . . . . . . . L . . . D . . . . . . . . . . . . . . . . . . . . . . . . S . . . . . . . C . . . . . . . . . . .
Tuna-MHCI⁎PFA09 . . . . . . C . . . T . . L . . . . . . . . . . . . . . . . . . . L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. . . . . . . C . . . . . . . . . . R
Tuna-MHCI⁎PFA010 . . . . . . R . G. I . . L . . . . . . . . . . . . . . . . . Y . . . . . . . . . . . E . . . . . . . . . . . . . . . . . . . . . . . . L . . . . . . F . . . . . . . . . . . V. . . . . . Q
Tuna-MHCI⁎PFA011 V. . . . . R . F . T . . H. . . . . . . . . . . . H. . . . D. . . . . . . . . . . Q. F . . . . . . . . . . . . . . . . . . . . . . L . . . . . HT . . . . . . . . . . . . . . . . . . .
Tuna-MHCI⁎PFA012 . . . . . . R . F . T . . . . . . . . . . . . . . . HGH. . . . P . . . . . . . . . Q. F . . . . . . . . . . . . . . . . . . . . . . L . . . . . H. . . . . . . . . . . . . . . . . . . Q
Tuna-MHCI⁎PFA013 . . . . . . R . . . T . G. . . . . . . . . . . . . H. H. . D. L . . . . . . . . . L . F . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. . . . . . . . C . . . L . . . . . . .
Tuna-MHCI⁎PFA014 F . L . . . R . . . . . GN. . . . . . . . . . . . H. . . . . . . . . . . . . . . . L . F . . . . . . . . . . . . . . . . . . . . . . . . . . . . HI . . . . . . . . . . . K . . . . . . G
Tuna-MHCI⁎PFA015 F . . . . . . . A L . . . V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . K . F . . . . . . . . . . . . . . . . . K . . . . L . . . . . HY . . . . . . . . . . . S . . . . . . N
Tuna-MHCI⁎PFA016 F . L . . G. . . . S . . . . . . . . . . . . P . . HGH. . . . . . . . . . . . . . M. . . . . . G . . . . . . . . . . . . . . . . . L . . . . . A. . . . . . P . . . . . S . . . . . . _
Tuna-MHCI⁎PS01 . . . . . H. . . . S . . V. . . . . . . . . . . . H. . . . H. . . . . . . . . . . . . . . . . . Y . . . . . . . . . . . . . . . . . . . . . . . . F . . . . . . . . L . . Q. . . . . . _
Tuna-MHCI⁎PS02 . . . . . A. S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. . . . . . H. . . . . . . . . . . . K . . . . . . . . . . H. . . . . . . . F . . . A. . . . . . _
Tuna-MHCI⁎PS03 F . H. . G. T T . . . . . . . . . . . . . . L . . H. . . . . . . . . . . . . . . . K . . . . . . G . _ . . . . . . . . . . . . . . . Q. . . . . HA. . . . . . . . . . . A. . . . . . _
Tuna-MHCI⁎PS04 . . H. . . CA. . A . . N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . K . . . . . . . T _ . . . . C . . . . . . . . . . . . . . . . H. . . . . . . . . . . . A. . . . . . _
Tuna-MHCI⁎PS05 . . . . . . . . . . T . . V. . P . . . . . . . . . H. . . . . . Q. . . . . . . . . W. . . . . . G . . . . . . . . . . . . K . . . . . . . . . . HH. . . . . . . . . . . . . . . . . . _
Tuna-MHCI⁎PS06 . . P . . . . . . . . . . . . GH. . . . . . H. . . . . . . . . L . . . . . . . . . . . . M. . . . . . . . . . . . . . . . . . . . . N. . . . . . I . . . _ _ . . F . . . A. . . . . . _
Tuna-MHCI⁎PS07 F . H. . . CA. . T . . _ _ . . . . . . . . L . . . . . . . D. L . . . . . . . . . . . . . . . . I T . . . . . C . . . . . . . . . . L . . . . . H. . . . _ _ . . F . . . I . . . . . _ _
Tuna-MHCI⁎PS08 . . P . . . . . . L S . . _ _ . H. . . . . . H. . H. . . . D. P . . . . . . . . . M. . . . . . A . . . . . . . . . . . . . . . . . L . . . . . H. . . . _ _ . . . L . . A. . . . . . _
Tuna-MHCI⁎PS09 . . L . . . . . . L K . . _ _ . . . . . . . . . . . H. . . . . . . . . . . . . . . . A. . . . . . H. . . . . . . . . . . . K . . . . L . . . . . H. . . . _ _ . . . L . . Q. . . . . . _

⁎ ! ⁎ # # ⁎! ⁎

Tueu-MHCI⁎PFA01 _ L A_ F P P T HP _ VP R CWT S CL T GAS VDP T GM A T MGGI S S P F T WAP R DP WQL T P L L R S P GGA G KMR T KL R GS R I T WGP S AE N G S R NT S DI HR R S WT A
Tueu-MHCI⁎PFA02 _ . . S . . . . . . . W. . . . . . S . . . . . L . . . . T V . . . . . . . . . . . V. . . . . . . . T . . . . . . . . . . . G. . V. . . G . . . . AA. Q. . . . . A. . M. . . . . . .
Tueu-MHCI⁎PFA03 _ . . R . . . . Q. . R R . L . . . . . . . . . L . . . . T . . . . . . . . . . . . D. G. . . R . . A. . . . . . . . . . . . . . . . . _ . . . . . . T . Q. . . . . . . . . . . . . . . .
Tueu-MHCI⁎PFA04 _ . . T . . . . . . . MR . . . . . . . . . . . . . . . . T . . . . . . . . . . . . D. G. . . R . . A. . . . . . . . . . . . I . . . . _ . . . . . . T . Q. . . . . . . . . . . . . . . .
Tueu-MHCI⁎PFA05 _ . . . . . . . Q. . P R . P . . . F . . . . . L . . . . . . . . . . . . . . . . . . . . . . . . . . A. . . . . . . . . . . . . . . . . L . . . . . A. . . . . . . . . . . . . . . . . . .
Tueu-MHCI⁎PFA06 _ . . Q. . . . Q. . L . . F . . . . . . . . . L . . . . T V . . . . . . . . . . . . . _ Y . . L . . T . . . . . . . . . . . GI . V. . . G . . . . AA. . . . . G. . . . . . . . . . . .
Tueu-MHCI⁎PFA07 _ . . . . . . A. . L _ . . R . . . . . . . . . . . . . . . G . . . . . . . . . . . . . . . . . R . . A. . . . . . . . . . . G. . . . . _ . . . . . T . . Q. . . . . A. . . . . . . . . .
Tueu-MHCI⁎PFA08 _ . . A. . . . . . . L R . G. . . Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I . . . . . . . . . . T . . Q. . . . . . . . . . . . . . . .
Tueu-MHCI⁎PFA09 _ . . G. . T . Q. . P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S . . . . . . . . . . . _ M. . . . I . . . . . T . . Q. . . _ . S . . M. . . . . . .
Tueu-MHCI⁎PFA010 . . . R . . . . . . . L R . . . . . . . . . . . . . . . . . . . . W. . . . . . . . . . . . . . . . . S . . . . . . . . . . . . M. . . . L . . . . . T P . Q. . . _ . . . . . . . . . . . .
Tueu-MHCI⁎PFA011 _ _ . T . . AA. . . L R . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . G. . . R . . . . . . . . . . . . . . . . . . . . _ _ . . . . . P . Q. . . . . . . . . . . . . . . .
Tueu-MHCI⁎PFA012 _ . . L . . . . Q. . R . . . . . . . . . . . . . . . . . . . . . . . . . A. . . . . . . . . . . . . . . . . . . . . . . . . _ I . V. . F G . . . . . A. Q. . . G. S . . . . . . . . . .
Tueu-MHCI⁎PFA013 _ . . R . . . . Q. . W. . P . . . . . . . . . . . . . . . . . . . . . . P . . . . V. . . . . . . . A. . . . . . . . . . . GS . . . . _ . . . . . AP . . . . . . . P . . M. . . . . . .
Tueu-MHCI⁎PS01 K. . S . . . . . . . L R _ _ _ . . . . . . . . . . . . . T V I . . . . . . . . . . D. . . . . . . . T . . . . . . . . . . . . . . . . . . G . . . . T A. . . . . G. A. . M. . . . . . .
Tueu-MHCI⁎PS02 K. . A. . . . . . . L R _ _ _ . . . . . . . . L . . . . . . . . . . . . . . . . . V. . . H. . . . . . . . . . . . . . . . G. . . . . . . . . . . T . . . . . . . . S . . M. . . . . . .
Tueu-MHCI⁎PS03 K. . R . . . . . . L L R _ _ _ . . Y . . . . . . . . . . . . . . . . . . . . . . . . . G. L . . . . S . . . . . . . . . . . . I . . . . . . . . . . T . . K. . . _ . P . . M. . . . . . .
Tueu-MHCI⁎PS04 Q_ . T . . AA. . L R . _ _ _ . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . L . R . . A. . . . . . . . . . . . . . . . . L _ . . . . T . . K. . . G. . . . . . . . . . . .
Tueu-MHCI⁎PS05 K. . T . . . . Q. . R L . . . . . . . . . . . . . . . . . . I . . . . . P . . . . D. G. . . . . . A. . . . . . . S . . . . I . . . . _ . . . . . S . . Q. . . G. A. . . . . . . . . .
Tueu-MHCI⁎PS06 K. . T . . . . . . . L R . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . _ Y L . A. . A. . . . . . . . . . . . . . . . . F . . . . . T T . Q. . . . . . . . M. . . . . . .
Tueu-MHCI⁎PS07 Y . . Q. . A. Q. L R . G. . . . . . . . . . M. . . . T V I . . . . . T . . . . . . . . H. L . . T . . . . . . . . . . . G. . . . . . G . . . . AA. Q. . . . . A. . . . . . . . . .
Tueu-MHCI⁎PS08 H. . . . . S A. . L R . . P . . . . . . . . . . . . . . . G . . . . . . A. . . . . . . . . . R . . A. . . . . . . . . . . G. . V. . . . . . . . A. . _ . . . . . . . . . . . . . . . .
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Figure 3: Alignment of deduced amino acid sequences of all alleles retrieved from four species of the Turdidae family. Dots (.) indicate
identity with the reference sequence. Light gray color represents codons presumably coding for peptide binding regions upon alignment
with human and other avian species. The light brown region indicates flanking introns. - indicates missing nucleotides. ∗ represents
codons positively selected in almost all of the tests performed for selection analysis. ! indicates the homologue region also positively
selected in most of avian species. # inferred homology with human.
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warbler and the great tit [69]. The allelic variation described
in our study could be due to increased immunological
defense against the internal pathogen since these are highly
unlikely to adapt to novel, infrequent variant [15].

Recombination has been considered an important mech-
anism that influences allelic diversity and driving evolution
of the MHC gene [70, 71] We only find one potential recom-

bination event in Tuna-MHCI ∗ PFA06 at two recombinant
breakpoints at position 148 and 253 identified with recombi-
nation detection program. Similarly, single recombination
was significant in Tueu-MHCI ∗ PFA07. Recombination pat-
tern was also restricted two out of seven tests; hence our find-
ing indicate recombination is unlikely to have any significant
influence on tests for PSs. Though we could not find any
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Figure 4: Bayesian phylogenetic reconstruction of MHC class I exon 3 of four species of the Turdidae family. All the nodes are well supported
(PP > 0:90%) unless indicated otherwise. AB268885 Gallus gallus was used as an outgroup.
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Turdidae
Paridae
Fringillidae
Muscicapidae
Cardinalidae
Passerellidae
Troglodytidae
Hirundinidae

Acrocephslidae
Sturnidae
Motacillida
Muscicapidae
Thraupidae

Figure 5: The phylogenetic networks of MHC class I of four species of the Turdidae family along with homologue sequences from passerine
species. GenBank accession numbers are provided. Species names are mentioned in the lower right side with branch colors. Neighbor-Net
networks based on uncorrected P-distances and carried out in 1000 bootstrap replicates to estimate nodal support. Nodal support values
(>75%) were displayed.
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substantial recombination among other alleles, qualitatively
our result suggests a role for recombination during the evolu-
tion of MHC class I in our species studied. Our finding is
consistent with, that micro-recombination is frequently
observed in MHC genes [57]. Further study of recombinant
function in the future will contribute to a detailed under-
standing of its role in the evolution of the MHC gene.

Positive selection is the maintainer of alleles having the
advantageous mutation that maintain fitness of an individ-
ual. In our study, the classical test of selection Tajima’s D,
Fu and Li’s D ∗ and Fu and Li’s F ∗ showed no deviation
from neutral selection or balance selection. Considering the
level of variation, conventional methods used to find selec-
tion are not influential [72]. As sites positively selected are
likely to accumulate more non-synonymous than synony-
mous substitutions, influencing amino acid variation to
result in functional modifications in proteins [73]. Our study
revealed differential expression of selection pattern in func-
tional sequences on regions related with PBR and non-PBR
of the MHC class I gene. Codons involved in peptide binding
region revealed more non-synonymous substitution than
synonymous (dN/dS = 1:99) in Turdus atrogularis as com-
pared to non- peptide binding region (dN/dS = 0:884), pat-
tern was consistent among all species tested, which might
be enlightened that stronger selection pressure from intracel-
lular pathogens than extracellular pathogens [74]. Evidence
of positive selection at PBR of MHC has been reported in
the house sparrow (PBR dN/dS = 1:55 vs. non-PBR dN/dS =
0:51) [75] and golden pheasant (PBR dN/dS = 1:45 vs. non-
PBR dN/dS = 0:91) [76]. Of the 12 codons in total among spe-
cies tested exhibit positive selection with Likelihood methods
using PAML, 9, 29, 64, and 88 match homologues codons
found positively selected in other passerine species.

It should be noted that the pooling of all alleles across loci
will mostly reduce selection detection tests, so the outcomes
might be conservative, but will be less prone to false positives
[77, 78]. Therefore, attention should be given while inferencing
about the detected diversity in MHC and the possible effects of
selection on individual loci. Our results suggested that α2
domain of MHC class I exon 3 of all species are under positive
selection pressure. Pronounced positive selection at antigen-
binding sites permits a species or population to present a larger
repertoire of peptides (antigens), thus increase the defensive
ability against parasitic and pathogenic infections.

Finally, phylogenetic clustering of MHC class I data set of
sampled species when pooled with other passerine species
produces a contrasting pattern. In general, the MHC class I
sequence of the Turdidae family clustered together with
sequences from congeneric species. We found increased
sequences similarities between the same species rather than
within species (trans specific likenesses), is usually described
with trans species polymorphism (TSP), which occurs due to
alleles passage from ancestral to the decedent via partial
arrangement of lineages [79]. Although trans specific similar-
ities can be described with convergent evolution due to the
results of similar environmental selective pressure. Studies
indicate that TSP is a primary mechanism responsible for
clustering of alleles at avian MHC class I [80] (Figure 5).

5. Conclusion

Our study shows that species of the Turdidae family has
retained significant MHC class I diversity, which supports
high conservational value and contributes to the evolution
of MHC class I genes. Importantly, we specifically amplify
the exon 3 locus and provide an opportunity to avoid chi-
mera formation during molecular characterization of hyper-
variable genes of immunity. At the same time, our study is
the first to validate contrasting patterns of allelic diversity
and positive selection upon inferred PBR and non-PBR
codons which supported the hypothesis that different mech-
anisms can shape evolutionary paths of MHC class I.
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