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Regional brain volume predicts response to
methylphenidate treatment in individuals
with ADHD
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Abstract

Background: Despite the effectiveness of methylphenidate for treating ADHD, up to 30% of individuals with ADHD
show poor responses to methylphenidate. Neuroimaging biomarkers to predict medication responses remain
elusive. This study characterized neuroanatomical features that differentiated between clinically good and poor
methylphenidate responders with ADHD.

Methods: Using a naturalistic observation design selected from a larger cohort, we included 79 drug-naive
individuals (aged 6–42 years) with ADHD without major psychiatric comorbidity, who had acceptable baseline
structural MRI data quality. Based on a retrospective chart review, we defined responders by individuals’ responses
to at least one-month treatment with methylphenidate. A nonparametric mass-univariate voxel-based
morphometric analysis was used to compare regional gray matter volume differences between good and poor
responders. A multivariate pattern recognition based on the support vector machine was further implemented to
identify neuroanatomical indicators to predict an individual’s response.

Results: 63 and 16 individuals were classified in the good and poor responder group, respectively. Using the small-
volume correction procedure based on the hypothesis-driven striatal and default-mode network masks, poor
responders had smaller regional volumes of the left putamen as well as larger precuneus volumes compared to
good responders at baseline. The machine learning approach identified that volumetric information among these
two regions alongside the left frontoparietal regions, occipital lobes, and posterior/inferior cerebellum could predict
clinical responses to methylphenidate in individuals with ADHD.

Conclusion: Our results suggest regional striatal and precuneus gray matter volumes play a critical role in
mediating treatment responses in individuals with ADHD.
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Background
Attention-deficit hyperactivity disorder (ADHD), charac-
terized by impaired attention and impulsivity/behavioral
control, is a common neurodevelopmental disorder per-
sisting across the lifespan [1]. Among treatment options,
methylphenidate is one of the most common, efficacious,
and tolerable psychostimulants as pharmacotherapy for
ADHD [2]. Methylphenidate is effective in reducing core
symptoms and associated behavioral problems of ADHD,
as well as improving academic performance, quality of life,
and neuropsychological functions [3, 4]. However, around
30% of individuals with ADHD exhibit poor responses to
methylphenidate [5]. Studies indicate that individuals with
ADHD having poor intelligence quotient, higher disease
severity, and a family history of a psychiatric disorder [6]
show a poor response to methylphenidate. Further, higher
anxiety levels [7], as well as co-occurring personality, sub-
stance use [8], alongside anxiety disorders [9] are related
to suboptimal methylphenidate responses in individuals
with ADHD.
Investigating an individual’s neurobiological variations

may provide better explanations and have translational
potentials to help identify those poor responders before
the start of methylphenidate prescription. This endeavor
is of clinical significance to reduce the suffering of
unnecessary drug-related side-effects, the delay from re-
ceiving more effective treatment, and the discourage-
ment of the patients and their families. Methylphenidate
binds to the dopamine transporter and norepinephrine
transporter and blocks their reuptake, thereby increasing
the extracellular levels of these neurotransmitters [10].
Earlier pharmacogenetic studies have indicated that
certain polymorphisms in norepinephrine [11] or sero-
tonin transporter genes [12], as well as dopamine receptor
genes [13] may be associated with responses to methyl-
phenidate. A positron emission tomography study on
healthy adults suggests that inter-individual variability in
the amount of dopamine released by neurons associates
with the degree to which dopamine at synaptic levels in-
creases the following blockade of dopamine transporters
by methylphenidate [14]. In individuals with ADHD, me-
thylphenidate also has been shown to increase striatal
dopamine availability, which in turn may further affect the
corticostriatal systems subserving ADHD symptoms and
behaviors related to executive dysfunctions [15]. However,
brain phenotypes of individuals with ADHD who likely re-
spond to methylphenidate remain elusive [16].
Among the scarce published reports [16], structural

MRI studies yielded mixed findings that individuals with
ADHD who are poor responders to methylphenidate
appear to have thinner medial frontal lobe [17], smaller
corpora callosa white matter (WM) volumes [18], smaller
inferior posterior cerebellar volumes, greater caudate
volumes and asymmetry [19], and smaller caudate and

accumbens volumes concentrations [20]. Most of these
studies consisted of limited sample sizes (N of ADHD <
30 in total) [18–20] and did not report or address issues
of in-scanner motion. Studies have confirmed that head
motion in the MRI scanner would introduce inaccuracy
when estimating gray matter (GM) volume and thickness
[21, 22]. In addition, most of the studies included partici-
pants with major psychiatric comorbidity [17] or with a
prior methylphenidate exposure [17]. Co-occurring men-
tal health issues per se have been shown to significantly
affect treatment responses to methylphenidate [15]. A
meta-analysis of ADHD-associated brain structural alter-
ations revealed that studies with a higher percentage of
psychostimulant-treated participants tend to be associated
with fewer differences in the striatum (specifically smaller
volumes in ADHD) [23]. This suggests that stimulant ex-
posure would affect brain structures in ADHD. Interest-
ingly, the findings from this meta-analysis also indirectly
converge to show that structural correlates of responses to
psychostimulant might involve the striatum. In sum, des-
pite the inconsistency in directions [19, 20] and methodo-
logical caveats, these studies suggest that poor responders
are essentially characterized by altered striatal structures,
among other mixed findings [16]. Further, functional
image studies show frontostriatal connectivity measured
by resting-state functional MRI [24], as well as striatal re-
gional cerebral blood flow and its dopamine transporter
binding estimated by single-photon emission computed
tomography [25] are related to treatment responses in in-
dividuals with ADHD.
In addition to the striatal regions and associated corti-

costriatal circuitries, the default-mode network (DMN)
maybe another brain circuitry involved in methylphenid-
ate effects and responses. The DMN comprises the poster-
ior cingulate/precuneus, medial prefrontal cortex, and
lateral inferior parietal cortex [26]. It exhibits reduced
activity when task-positive networks (mainly the fronto-
parieto-striatal circuitries) activate in response to external
tasks and is most active when people are engaged in
internally-oriented and stimulus-independent cognition
[27]. ADHD is characterized by altered DMN connectivity
[28] and increased DMN-task-positive network connec-
tions [28, 29]. Through increasing dopamine and norepin-
ephrine, methylphenidate has been consistently reported
to suppress DMN activities in patients with ADHD while
engaging in cognitive tasks (i.e., reducing the DMN-task-
positive network connection) [30–33]. Reduction in DMN
activity or connectivity with task-positive networks also is
associated with methylphenidate-related improvements in
core symptoms of individuals with ADHD [34]. The med-
ial prefrontal cortex, which is thinner in poor responders
at baseline, as shown in the aforementioned naturalistic
study [17], partially corresponds to the one hub region of
the DMN. Despite its convergingly essential role in the
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pathophysiology of ADHD and methylphenidate effects
on brain function, the DMN has never been specifically
investigated whether its structure and function are related
to treatment response to methylphenidate in ADHD.
In this context, this study aimed to characterize the

baseline brain structural correlates that distinguished good
and poor responders to methylphenidate in medication-
naïve patients with ADHD, who did not have major
psychiatric comorbidities. Based on the mass-univariate
analysis of voxel-based morphometry (VBM), we first
employed a combination of both unbiased exploratory
whole-brain and hypothesis-driven approaches targeting
striatal and DMN regions. Further, we leveraged a multi-
variate pattern classification method that takes into
account interactions between regions, and is capable of
making predictions for individual subjects based on brain
imaging patterns [35]. This machine learning approach
can complement group-level inferences from the preced-
ing mass-univariate analysis [36]. We hypothesized that
the ADHD-poor responder group, relative to the good
responder group, would have smaller baseline striatal
volumes [20, 23]. Taking a typical negative connection
relationship between the DMN and frontostriatal task-
positive networks [27], as well as a notion that brain struc-
tural covariance results from functional connectivity [37],
we further hypothesized larger regional GM volumes in
the regions within the DMN in the poor responder group
at baseline. These brain patterns, among other regional
structural information, would provide multivariate indica-
tors to predict an individual’s medication response.

Methods
Participants
This study is a post-hoc investigation on a uni-center
ADHD dataset [29, 38, 39]. All participants with ADHD
were clinically referred and recruited from the psychi-
atric outpatient clinic of National Taiwan University
Hospital (NTUH), Taipei, Taiwan. ADHD was clinically
diagnosed based on the DSM-IV-TR diagnostic criteria.
The clinical diagnoses of ADHD and other psychiatric
disorders were further confirmed by semi-structured in-
terviews with the participants and their parents using
the Chinese version of the Kiddie Schedule for Affective
Disorders and Schizophrenia-Epidemiological version
(K-SADS-E) [40–42] for participants younger than 18
years. For those aged 18 years or older, the modified
adult version of the ADHD supplement of the K-SADS-
E for childhood and current ADHD was administered
[4, 43–45]. The severity of ADHD symptoms was also
assessed by the parent-rated Swanson, Nolan, and Pelham,
Version IV (SNAP-IV) questionnaire (Supplementary
Questionnaire) [46–48]. Participants were excluded if they
1) had any systemic medical or major neurological illness;
2) had a past history of major mental health issues,

including psychotic disorder, mood disorders, obsessive-
compulsive disorder, major anxiety disorders, substance use
disorder, autism spectrum disorder; 3) currently had de-
pressive or anxiety symptoms, suicidal ideations; 4) had
taken any psychotropic agents, including medications for
ADHD; 5) had full-scale IQ < 80 estimated by the Wechsler
Intelligence Scale for Children-Third Edition and Wechsler
Adult Intelligence Scale-Third Edition [49], respectively, for
individuals with an age cutoff at 16 years. Since motor tic,
oppositional defiant disorder, and specific phobia are
common in participants with ADHD, those with these
three comorbidities were not excluded from the studies.
The original studies [29, 38, 39] were approved by the

Research Ethics Committee at NTUH (#200903062R,
#201204071RIC, #201401024RINC) and registered with
ClinicalTrials.gov (NCT00916851, NCT01682915,
NCT02642068). The procedures and the purposes were
explained face-to-face to the participants and their par-
ents, who then provided the written informed consent.
The authors confirm that all methods contributing to
this work comply with the ethical standards of the
relevant national and institutional guidelines and regulations.
All medication-naïve (i.e., never being exposed to me-

thylphenidate or any other psychotropic agent) individ-
uals with ADHD were referred to the studies from
NTUH outpatient clinic. If they agreed to be enrolled in
the studies [29, 38, 39], they would only start clinically
standard treatment until the completion of MRI scans.
The present post-hoc investigation started with pooling
cross-sectional [29, 39] or baseline [38] neuroimaging
data from 140 participants with ADHD. Their T1-
weighted images were visually inspected (by JCC and
HYL) for quality control to ensure data with ratings of
“fair” or higher quality based on the Human Connec-
tome Project pipeline [50]. Those with acceptable image
data quality were further excluded from the present
analysis if they received atomoxetine treatment initially,
did not use any medication during follow-up, were
diagnosed with those mentioned above major psychiatric
disorders later, or had the loss to follow-up at the clinic
within 1 month. This step resulted in the final sample of
79 medication-naïve participants with ADHD (age 6–42
years; mean ± SD, 17.50 ± 9.8 years) (Fig. 1).
The assignment of good responder and poor re-

sponder was defined by their treatment responses to me-
thylphenidate after at least one-month follow-up in the
outpatient clinics by board-certificated senior child psy-
chiatrists. Notably, all participants received immediate-
release methylphenidate during this period, as Taiwan’s
National Health Insurance can only reimburse this type
of formulation initially for people with ADHD who are
first-ever treated with psychostimulant. Most of the
participants were followed up in the clinics for more
than 6months. The one-month criterion was intentionally
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decided because a follow-up shorter than this duration
only yields limited clinical profiles to evaluate drug
responses and does not allow enough time for dose
optimization. Two child and adolescent psychiatrists (JCC
and HYL) conducted a retrospective chart review. They
agreed with each other’s judgment on the final estimation
of the patient’s global functioning using the Clinical
Global Impressions–Improvement Scale (CGI-I) [51]. The
CGI-I is a 7-point scale to compare the patient’s overall
clinical condition to the baseline visit. Its scores are rated
from “1” for “very much improved” to “7” for “very much
worse.” The CGI-I has been broadly used in treatment
studies on ADHD in Taiwan [3, 52, 53] and other coun-
tries [54–56]. It also shows similar effect sizes in terms of
changes with treatment, relative to those derived from the
symptom-informed measures in clinical trials of depres-
sion [57]. Participants rated ≤2 (“much improved”) on the
CGI-I were assigned to the good responder group, while
those rated ≥3 (“minimally improved”) were grouped as
the poor responder. This cutoff was stringently set, con-
sidering the potential bias due to a placebo effect or
equivocal documentation in the charts.

Image acquisition and preprocessing
High-resolution T1-weighted images were acquired by a
3D Magnetization Prepared Rapid Acquisition Gradient
Echo sequence on a 3-T MRI scanner (Siemens Magnetom
Tim Trio) with a 32-channel phased-arrayed head coil

(parameters: TR/TE/TI = 2000/2.98/900ms; flip angle = 9°;
FOV= 256 × 256mm3; isotropic voxel size = 1mm3). Indi-
vidual T1-weighted image was preprocessed using Statis-
tical Parametric Mapping 12 (Wellcome Trust Centre for
Neuroimaging, London, UK). Images were reoriented to
the anterior and posterior axis and segmented to produce
native-space GM, WM, and cerebrospinal fluid (CSF) im-
ages [58]. Native-space GM images of all participants were
then warped and modulated to a study-specific template
using a high-dimensional nonlinear diffeomorphic registra-
tion algorithm (DARTEL) with the flow field, which
contains the information of spatial deformations for
normalizing individual images to the DARTEL template
[59]. The normalized (to an isotropic 1.5-mm voxel size)
and modulated GM images were smoothed with a 4-mm
full-width at the half-maximum Gaussian kernel.

Statistical analysis
Mass-univariate approach
Given the imbalanced sample size of the good responder
and the poor responder group, nonparametric statistics
were employed using the Statistical NonParametric
Mapping-13 (SnPM13) toolbox (http://www.fil.ion.ucl.ac.
uk/spm/snpm/) [60]. The two groups were compared
through a two-sample t-test using an approximate test
of 20,000 permutations. Results were deemed significant
with a cluster-forming voxel-level height threshold of p <
0.01 (z > 2.33), and a cluster-level correction for multiple

Fig. 1 Flow diagram of the procedure. One hundred and forty ADHD participants without previous drug exposure were enrolled initially.
Nineteen participants were excluded due to poor quality of T1-weighted images, and 42 individuals were excluded due to comorbidity, received
no medication or treatment with atomoxetine, diagnosed with the major psychiatric disorders later, or had the loss to follow-up at the clinic
within one month. The final sample of 79 medication-naïve participants with ADHD was divided into good responder group and poor responder
groups based on the Clinical Global Impressions–Improvement Scale and then proceeded with further image analysis
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comparisons p < 0.05 (familywise error rate). The categor-
ical group variable (good or poor responder to methyl-
phenidate) was used as an independent variable, and sex,
total GM volume, age linear and square terms were
assigned as nuisance covariates. For the whole-brain
hypothesis-free analysis, a mean GM mask was generated
using a threshold of > 0.2 in the GM part of the DARTEL
template to minimize the contribution of voxels from
WM and CSF. According to our hypothesis that the
methylphenidate response would be related to GM
morphometry of the striatal and DMN regions, we
also implemented this nonparametric model restricted
within the striatal and DMN masks, respectively (i.e.,
a small-volume correction). The striatal mask comprising
putamen, caudate nucleus, and nucleus accumbens was
generated using the Oxford-GSK-Imanova Structural–ana-
tomical Striatal Atlas [61]. The DMN mask was defined
using the Yeo-7-network parcellation [62] (Supplementary
Fig. S1).

Multivariate pattern recognition approach: support vector
machine
To complement the preceding mass-univariate analysis,
we applied machine learning to test the multivariate pat-
tern differences of GM volumetric images between these
two groups using Pattern Recognition for Neuroimaging
Toolbox (PRoNTo) version 2.1 [63]. Specifically, Support
Vector Machines (SVM) binary classification was
implemented by calling the LIBSVM library [35] (v.3.20)
to classify good responder group (class 1) and poor re-
sponder group (class 2). We employed a whole-brain ap-
proach involving the same mean mask to exclude voxels
outside the brain GM. Such an approach resulted in
feature vectors of 328,062 features (each feature corre-
sponds to a brain voxel). Considering a large number of
features, we used a linear kernel, since mapping them to
an even higher dimensional feature space with a nonlin-
ear kernel is super expensive and hard to converge. The
VBM data were corrected for the effects of sex, age lin-
ear and square terms, and total GM volume through a
linear regression (all covariates were mean-centered be-
fore putting in the model). During the training phase,
the two-class SVM algorithm found a hyperplane that
separated the examples in the input space, thus maxi-
mizing the margin of separation between the class label.
Support vectors were data points that juxtaposed closest
to the separating hyperplane. When the training data de-
termined the decision function, it could be applied to
predict the class label, to which a new test example
belonged.
The generalization ability of the model was evaluated

using 5-fold cross-validation (CV) in combination with
the leave-one-out cross-validation (LOOCV) strategy to
ensure that every individual from the dataset had the

chance of appearing in the training and test set. Cor-
rectly, the dataset was partitioned into five parts at each
cross-validation iteration, with 80% of the data to train
the model, alongside 20% to test it. LOOCV involved the
exclusion of a single instance (i.e., one participant from
either good or poor responder) and training the classifier
using the remaining subjects in each iteration [64].
LOOCV and k-folds CV have been widely used for clas-
sification generalization to avoid overfitting of the
model, especially when the sample size is small [64]. The
performance of the binary classifiers was evaluated using
receiver operating characteristic (ROC) analysis and the
area under the ROC curve (AUC). AUC summarized the
classification power of a classifier, whereby a classifier
with larger AUC indicates its better performance [65]. A
10,000-times nonparametric permutation test by ran-
domly shuffling the labeled class among participants was
used to obtain a corrected p-value to determine the stat-
istical significance of the accuracy, sensitivity, and speci-
ficity. Herein, we adopted the balanced accuracy, as it
takes into account the different examples in each class,
and gives equal weight to the accuracies obtained on test
samples of each class [66].
To increase the interpretability of the multivariate pattern

recognition results, we calculated the images summarizing
the weights per region of interest (ROI) as defined by the
AAL atlas (comprising 116 cortical and subcortical anatom-
ical structures) [67]. The region contributions can be
ranked in descending order, yielding a sorted list of regions
according to their contribution to the classification model.
To investigate the classification power of specific brain
ROIs, we computed vector weights. We shortlisted 17 brain
regions (top 15%) that show the highest contribution to the
classification model of the average of all folds. To further
reflect the “reproducibility” of the regions’ ranking across
folds, we also computed the Expected Ranking, a measure
investigating whether the selected regions are stable across
the folds of the cross-validation (i.e., variability in the train-
ing data) [68]. The current dataset suffered from a substan-
tial imbalance in sample sizes between the good and poor
responder group, which is a potential concern for the sensi-
tivity of the trained classifier. There are a few strategies in
the machine learning fields for the imbalanced classification
problem. Here we adopted the over-sampling approach
[69], i.e., we randomly replicated the samples of the poor
responder group during the training and testing processes.
However, we guarantee that the same individual does not
appear in the training set and testing set at the same time.

Results
Sample characteristics
Among 79 participants with ADHD, 63 individuals were
allocated in the good responder group, and 16 were in
poor responder group based on the CGI-I. There were
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no significant differences among patients with ADHD
with good methylphenidate response and those of poor
responders in terms of age, sex, handedness, and IQ
profiles, core ADHD symptoms, and ratios of ADHD
subtypes (Table 1).

Mass-univariate analysis: whole brain
No significant differences were found in the global brain
volume measures, including total GM, WM, and intra-
cranial volume between these two ADHD subgroups
(Table 1). The unbiased whole-brain mass-univariate
VBM approach yielded no significant difference in regional

GM volume between good and poor responders at the
aforementioned preset threshold.

Mass-univariate analysis: small-volume correction
Implementing a small-volume correction within the stri-
atum, we identified that the good responders had signifi-
cantly larger GM volumes in the left putamen cluster
(1738 mm3, FWE-p = 0.032) than the poor responders.
Within the DMN mask, significantly smaller GM in the
bilateral precuneus was observed in the good responders
than the poor responders (3642 mm3, FWE-p = 0.012)
(Fig. 2 & Table 2). In the present study, there was a
significant negative correlation (p = 0.002, r = − 0.349;

Table 1 Demographic and clinical features, alongside global brain volumes between ADHD with good methylphenidate response,
ADHD with poor methylphenidate response

Mean (SD) ADHD with good
response (n = 63)

ADHD with poor
response (n = 16)

Statistics p valuea

Age (in years) 17.6 (10.1) 17.1 (8.4) 0.779

Age distribution 0.840
(Fisher’s exact test)

6–10 years old (n, %) 21 (33.3) 4 (25.0)

11–20 years old (n, %) 22 (34.9) 7 (43.8)

21–30 years old (n, %) 8 (12.7) 3 (18.8)

31–40 years old (n, %) 11 (17.5) 2 (12.5)

42 years old (n, %) 1 (1.6) 0 (0.0)

Gender, male (n, %) 54 (85.7) 11 (68.8) 0.113

Handedness, right (n, %) 62 (98.4) 15 (93.8) 0.289

Intelligence quotient (IQ)

Full-scale IQ 107.3 (12.4) 107.8 (10.6) 0.779

Verbal IQ 107.9 (10.0) 106.9 (8.6) 0.779

Performance IQ 105.6 (14.0) 108.4 (13.2) 0.438

Subtype (n, %) 0.666
(Fisher’s exact test)

Inattention type 33 (52.4) 10 (62.5)

Hyperactivity/impulsivity type 1 (1.6) 0 (0.0)

Combined type 29 (46.0) 6 (37.5)

SNAP-IV

Inattention 17.2 (5.5) 17.7 (5.7) 0.753

Hyperactivity/impulsivity 11.4 (6.6) 10.3 (4.7) 0.610

Opposition-defiance 10.3 (6.2) 7.9 (4.3) 0.166

Inattention and hyperactivity 28.6 (10.7) 27.9 (7.0) 0.985

Total volumes of gray matter (mm3) 791.4 (67.1) 798.5 (75.5) 0.626

Total volumes of white matter (mm3) 444.5 (57.4) 445.1 (46.6) 0.903

Total volumes of CSF (mm3) 276.5 (70.4) 246.9 (53.4) 0.157

Total brain volumes (mm3) 1236.0 (82.2) 1243.6 (89.8) 0.600

Total intra-cranial volumes (mm3) 1512.4 (122.8) 1490.5 (118.8) 0.634
aMann-Whitney U test, Pearson chi-square test
Abbreviations: ADHD Attention Deficit Hyperactivity Disorder, SNAP-IV Chinese version of the Swanson, Nolan, and Pelham, Version IV, CSF cerebral spinal fluid
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partial correlation controlling for age, age square, and
FIQ) between the volumes of the left putamen and
precuneus.

Post-hoc ROI analysis
To endorse the robustness of the findings, we imple-
mented a post-hoc analysis by using the ROIs of the AAL
atlas to extract the regional GM volumes of the left
putamen and bilateral precuneus. These ROI GM volumes

were divided by the total GM volume to generate propor-
tional volumetric measures. The covariates were then
regressed out to eventually yield the GM residual of these
ROIs. The nonparametric Mann–Whitney U test revealed
the consistent results that individuals in the good
responder group, relative to those with poor responses to
methylphenidate, had higher regional GM volumes in the
left putamen (p = 0.010), and smaller volumes in the right
(p = 0.025) and the left (p = 0.031) precuneus. (Table 3).

Fig. 2 Mass-univariate analysis of relative regional gray matter volumes between participants with ADHD with good and poor methylphenidate
response. a Using a small-volume correction within the striatum, the good responders had significantly larger GM volumes in the left putamen
cluster (1738 mm3, FWE-p = 0.032) than the poor responders. b Within the DMN mask, the good responders had a significantly smaller GM
volume in the bilateral precuneus than the poor responders (3642mm3, FWE-p = 0.012)

Table 2 Significant differences in relative regional gray matter volumes between ADHD participants with good and poor
methylphenidate response

Cluster Region BA Hemisphere MNI coordinates T
value

Cluster-level
p valuea

Cluster size
(voxels)b,ex y z

A

Good responders > Poor responders

Left Putamen cluster c

Putamen_L – L −30 −10 −3 3.84 0.0319 515

B

Good responders < Poor responders

Bilateral Precuneus cluster d

Precuneus 31 L −6 −54 36 4.10 0.0115 1079

Abbreviations: ADHD Attention Deficit Hyperactivity Disorder, BA Brodmann area, L Left, R Right, MNI Montreal Neurological Institute
aRegions were identified based on the Harvard-Oxford Atlas
bStatistical threshold was all set at FWE-corrected cluster-level p < 0.05 (controlled for non-stationarity), with cluster-forming voxel-level p < 0.01
cA small volume correction within the striatal mask
dA small volume correction within the DMN mask
eIsotropic voxel size = 1.5 × 1.5 × 1.5 mm3
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Differentiating two groups by using multivariate pattern
recognition approach
From the results of the average fold, SVM based on
whole-brain analysis differentiated the ADHD-good re-
sponder group from the ADHD-poor responder group
with 87.4% balanced accuracy (p < 0.001). The sensitivity
of classification for the good responder group was
93.7%, while the specificity of classification for controls
was 81.3%. The positive and negative predictive values
for the classifier were 90.8 and 86.7%, respectively. The

area under the ROC curve (i.e., AUC) was 0.88 (Supple-
mentary Fig. S2). As shown in Fig. 3, the discrimination
weighted ROI map that showed the global patterns that
best discriminate good and poor responder groups. For
GM VBM features, the most informative regions for
classification between good and poor responder groups
predominately included the bilateral occipital lobes,
cerebellar vermis, and posterior/inferior cerebellum, pos-
terior cingulate/precuneus, left putamen, and left parietal
lobe, and bilateral lateral prefrontal cortex. The region’s

Table 3 Group comparison of different anatomy part of striatal volumes by the approach of voxel-based morphometry

Residuala Demographic and clinical features,
alongside global brain volumes
between ADHD subgroups

ADHD with poor
methylphenidate response
(n = 16), Mean (SD)

Statistics p value

Left Caudate 0.070 (0.994) −0.290 (0.862) 0.192

Right Caudate 0.103 (0.962) −0.297 (0.868) 0.118

Left nucleus accumbens 0.114 (1.026) 0.370 (0.873) 0.311

Right nucleus accumbens 0.112 (1.026) 0.374 (0.872) 0.306

Left Putamen 0.117 (0.951) −0.476 (0.868) 0.010b

Right Putamen 0.038 (1.001) −0.265 (0.985) 0.102

Left Precuneus −0.138 (0.892) 0.545 (1.174) 0.031 b

Right Precuneus −0.106 (0.983) 0.416 (0.918) 0.025 b

Abbreviation: ADHD Attention Deficit Hyperactivity Disorder
aResidual value was done with the independent variables of age and age square
bNot surviving Bonferroni correction

Fig. 3 The top 17 areas recognized by machine learning with leave-one-out and 5-folds cross-validation. The bilateral occipital lobes, cerebellar
vermis and posterior/inferior cerebellum, posterior cingulate/precuneus, left putamen, and left parietal lobe, and bilateral lateral prefrontal cortex
were recognized as the most informative regions for classification between good and poor responders. The color range displayed represents the
weight of each ROI, contributing to pattern classification
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expected ranking generally corresponds to the ranking
in the average fold (Table 4).

Discussion
Using a distinct design in a sample free from confounds
of psychiatric comorbidities and medication exposure,
we found that participants with ADHD with poor me-
thylphenidate responses clinically had smaller regional
volumes in the left putamen and larger precuneus vol-
umes at baseline, compared with the good responders.
Multivariate pattern recognition also identified that
volumetric information among these two regions along-
side the left frontoparietal regions occipital lobes and
posterior/inferior cerebellum could differentiate between
good and poor responders. This regional structural in-
formation, especially striatal volume, if replicated, might
serve as a potential biomarker for methylphenidate re-
sponses in ADHD.
The finding of greater left putamen volumes in good

responders was largely consistent with the prior study
showing smaller striatal volumes concentration in individ-
uals with ADHD-poor responders [20]. Several PET studies
have demonstrated that methylphenidate could increase
striatal dopamine availability [70, 71], and this mechanism
is related to the binding to the dopamine transporter [72].
Patients with ADHD with higher striatal dopamine trans-
porter availability show a better response to methylphenid-
ate treatment [15]. Further, striatal dopamine receptor
(D2) availability is positively associated with methylphenid-
ate response [73]. In parallel, larger GM volumes are be-
lieved to be related to an increased density of neurons and

more synapses in the local brain region [74]. The local
neural density and the synapses also represent the recipro-
cal connections within the local brain region and clustering
[75]. Furthermore, earlier studies suggest a direct positive
correlation between striatal GM volume and D2 receptors
[76, 77]. Taken together, the relationship between larger
putamen volumes and a good methylphenidate response
may be explained by that higher striatal volumes could in-
dicate higher D2 receptor availability locally, which leads to
an increase in the methylphenidate efficiency.
To the best of our knowledge, this study is the first

work demonstrating the poor responder group, relative
to the good responder group, had higher GM volumes
of the precuneus, a hub of the DMN [78]. The result
echoes earlier evidence that methylphenidate influences
DMN activities [30–33] in patients with ADHD. This
finding of larger precuneus echoes a similar finding from
an earlier PET work. Namely, Tomasi et al. [79] reported
that dopamine modulates attention in part by regulating
neuronal activity in the posterior parietal cortex, includ-
ing the precuneus. Higher striatal dopamine transporter
levels, which result in enhanced clearance of dopamine
and weaker dopamine signals, are associated with lower
deactivation in the DMN during an attention-requiring
task [79]. This suggests that the DMN deactivation,
which should be normally remarkable to facilitate opti-
mal performances during external cognition [80], and
could be enhanced by methylphenidate in individuals
with ADHD, is mediated by striatal dopamine levels
[79]. Taken together, we speculate that lower putamen
volumes, as shown in the poor responders, may have

Table 4 The top 17 areas recognized by machine learning with leave-one-out and 5-folds CV

Index of ROI ROI Label ROI weight ROI Size Expected Ranking

1 Vermis 9 1.641% 380 2.8

2 Left inferior occipital gyrus 1.513% 1963 1

3 Left posterior cingulate gyrus 1.436% 791 4.4

4 Left middle frontal gyrus 1.374% 4477 4.6

5 Right middle occipital gyrus 1.355% 3283 2

6 Left putamen 1.332% 1637 16.8

7 Right cerebellum 9 1.292% 1162 18.4

8 Left inferior frontal gyrus, triangular part 1.291% 3395 10.2

9 Vermis 8 1.276% 471 20.6

10 Left supramarginal gyrus 1.239% 2505 13.2

11 Left inferior parietal gyrus 1.238% 4444 11.4

12 Right middle frontal gyrus 1.233% 4751 9.4

13 Right superior occipital gyrus 1.219% 1995 8.2

14 Left angular gyrus 1.217% 2321 15.2

15 Left Precuneus 1.188% 5647 14.8

16 Right median cingulate gyrus 1.172% 4432 19.8

17 Left cerebellum 3 1.169% 196 29.4
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lower D2 and dopamine transporter availability, which
results in less dopamine increased by methylphenidate.
Given negative functional connectivity between precuneus
and putamen [81], as well as corticostriatal projections
between the precuneus and putamen [82], this lower level
of striatal dopamine increase may lead to less dopamine
available being used in the precuneus, contributing to less
deactivation of the DMN as subserved by methylphenid-
ate. The concomitant larger precuneus volumes in the
poor responders might represent a compensatory process
for the preceding mechanism. Combining the above
mechanisms and our finding of a negative correlation be-
tween the volumes of precuneus and putamen, the pattern
might be alternatively explained by the notion that struc-
tural covariance reflects brain functional connectivity and
is resulted from direct structural connections through
trophic effects [37]. Specifically, the putamen-associated
network [83] has an anti-correlated functional relationship
with the DMN/precuneus [27, 81]. Future studies
need to replicate the current findings and investigate
such speculations.
Although the striatum and DMN were specifically tar-

geted revealed in the univariate VBM analysis in this
study, we note that methylphenidate-associated brain
structural and functional changes also involve other
brain systems and areas, which might be associated with
treatment responses as well. For example, methylphenidate
has effects on modulating the attention network [84, 85]
and normalizes activation of the dorsolateral inferior
prefrontal cortex to improve attention [86]. In addition,
methylphenidate also could regulate brain activity in
premotor cortices [87], which may be associated with
its beneficial effects on hyperactivity symptoms. Whether
these other putative brain systems/regions are associated
with responses to methylphenidate treatment warrants
further investigation.
Our finding of the regional brain volume difference

between different drug responders by using voxel-based
morphometry was also supported by using a machine
learning approach, which selected the precuneus and left
putamen, endorsing the aforementioned mass-univariate
findings. In addition to these two regions, the SVM clas-
sification identified that regions of the discriminative
pattern most predictive of treatment responses were in
the left frontoparietal regions, mid and posterior cingulum
gyrus, occipital lobes, as well as posterior cerebellum.
There is functional connectivity between the striatum and
the posterior cingulate, middle/inferior frontal gyrus [83],
and structural connections between the striatum and cere-
bellum as well as the frontal gyrus, respectively [88]. A
human PET study demonstrated that the frontal area and
cingulate gyrus are the regions of dopaminergic projection
[89]. In macaque monkeys, axons with dopamine trans-
porter are presented in cerebellum lobules III and IX [90].

Norepinephrine transporters distribute not only in high-
density regions such as the thalamus and locus coeruleus
but also in the low-density regions in the frontal, parietal,
and occipital cortex [91]. In these cerebral cortices, nor-
epinephrine transporters are the major transporters for
dopamine and norepinephrine reuptake [92]. Altogether,
these brain regions selected by multivariate pattern classi-
fication contained transporters involving in dopamine and
norepinephrine reuptake, which is implicated in methyl-
phenidate mechanisms. Moreover, striatum has direct
structural and functional connections with most of these
regions [83, 88], which might synergistically contribute to
mechanisms underlying responses to methylphenidate
with striatum. The finding of the classification accuracy of
over 85% based on brain structure measures are promising
and, if replicated, suggest that it may be possible in the fu-
ture to use machine learning-based pattern recognition
analyses to aid in the classification of medical response
before the application of methylphenidate for patients
with ADHD.
Several limitations must be considered while interpret-

ing the results. First, the drug response was evaluated
through a retrospective chart review, which consisted of
patients’ current progress and detailed medication pro-
file that were sufficient for rating the CGI-I. But there
were no details about further cognitive function or the
life quality profile. Of note, this study also was limited
by a lack of placebo-controlled design. However, this
study is a follow-up analysis based on the cohort origin-
ally for the cross-sectional study purpose, and the two
child psychiatrists who rated the CGI-I were blinded to
the participants and their attending psychiatrists. This
approach may account for some extents of this caveat.
We acknowledge that a prospective longitudinal design
may be a more robust approach, e.g., the MTA study
[93], to answer such research questions. Second, despite
the present “pure” phenotype without confounding ef-
fects from psychotropic agents and co-occurring major
psychiatric problems, readers need to notice the caveat
of generalizability of our results based on such a sample
recruited from one medical center in Taiwan. Third, we
excluded participants who were lost to follow-up within
1 month of starting using methylphenidate. These
patients with ADHD may be more likely to have poor
clinical outcomes. However, the percentage of good
responders herein was 80%, approximately the ratio of
responses to methylphenidate reported before [5], indi-
cating that the current sample was representative of the
general ADHD population. Fourth, despite the fact that
cerebral morphometric alterations may be different be-
tween ADHD subtypes [94], we did not undertake the
subgroup analysis based on the subtype, given the lim-
ited sample size of the poor responder group. But there
was no difference in ratios of subtypes between the good
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and poor responder groups (Table 1). Future relevant
larger studies could benefit from ADHD subtyping ana-
lyses. Lastly, the study participants had a relatively wide
age range. The mega-analysis using the cross-sectional
ENIGMA dataset showed that ADHD had smaller
putamen volume in participants with broader age ranges
[95]. The altered putamen volume in ADHD was
unaltered with age development based on another large
NeuroIMAGE sample [96]. To balance the statistical
power and difficulty recruiting such a medication-naïve
and comorbidity-free sample, we still employed the
current sampling approach. The linear and square terms
of age was controlled in every model to minimize the
confounding effect. However, we acknowledge that some
age-related effects may not be excluded statistically.
Future studies of a similar kind will need to take devel-
opmental issues into account.

Conclusions
Our findings of the conventional mass-univariate VBM
analysis provide evidence that individuals with ADHD
having larger precuneus and smaller putamen volumes
were more likely to have a poor response to methylphen-
idate treatment. Such evidence was further confirmed and
extended by findings yielded from a multivariate machine
learning approach. Our results corroborate the essential
role of the striatum in mediating responses to methyl-
phenidate in ADHD [16, 23]. The present study also
highlights newly-reported, but not surprising, evidence, in-
dicating the involvement of the DMN in methylphenidate
mechanisms [30, 31, 34]. Most of the regions, which were
identified to be able to help differentiate clinically good
and poor responders, are functionally or structurally
linked with striatum. Future studies with larger sample
sizes, prospective design, and multimodal MRI measures,
should target the striatum and its associated networks to
obtain a more comprehensive picture of imaging bio-
markers for the prediction of treatment effects of methyl-
phenidate in the ADHD populations.
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