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Abstract
Over recent decades, epidemiological studies have been reporting worrisome trends in the

incidence of human infertility rates. Extensive detection of industrial chemicals in human

serum, seminal plasma and follicular fluid has led the scientific community to hypothesise

that these compounds may disrupt hormonal homoeostasis, leading to a vast array of

physiological impairments. Numerous synthetic and natural substances have endocrine-

disruptive effects, acting through several mechanisms. The main route of exposure to these

chemicals is the ingestion of contaminated food and water. They may disturb intrauterine

development, resulting in irreversible effects and may also induce transgenerational effects.

This review aims to summarise the major scientific developments on the topic of human

infertility associated with exposure to endocrine disruptors (EDs), integrating epidemio-

logical and experimental evidence. Current data suggest that environmental levels of EDs

may affect the development and functioning of the reproductive system in both sexes,

particularly in foetuses, causing developmental and reproductive disorders, including

infertility. EDs may be blamed for the rising incidence of human reproductive disorders.

This constitutes a serious public health issue that should not be overlooked. The exposure of

pregnant women and infants to EDs is of great concern. Therefore, precautionary avoidance

of exposure to EDs is a prudent attitude in order to protect humans and wildlife from

permanent harmful effects on fertility.
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Introduction
Infertility, which is defined as the inability to conceive

after 1 year of unprotected intercourse, has a global

prevalence of 9% (1). Among infertile couples, it is

estimated that the cause is predominantly feminine in

38% and primarily masculine in 20%, while 27% have

both male and female abnormalities, and no evident cause

is identified as for the remaining 15% (2).

Since the mid-20th century, numerous studies have

reported an increasing incidence of human reproductive
diseases and a consequent decline in reproductive

function worldwide (3). Given the short time frame,

genetic changes cannot explain it. Thus, environmental

substances may be accountable for the observed trends

(4, 5). Indeed, both humans and wildlife are exposed to

copious potentially hazardous chemicals that are released

into the environment at an alarming rate (6).

One of the most significant landmarks in endo-

crinology over the past century was the recognition that
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some of these chemicals are able to disrupt the closed

feedback loops of the hormonal and homeostatic systems,

thus being named endocrine disruptors (EDs) (7). The group

of known ED is extremely heterogeneous. It embraces

ubiquitous synthetic substances used as industrial lubri-

cants and solvents, and their by-products: polychlorinated

biphenyls (PCB) (8), polybrominated diphenyl ethers

(PBDE) (9) and dioxins such as 2,3,7,8-tetrachlorodibenzo-

p-dioxin (TCDD) (10); plastics: bisphenol A (BPA) (11) and

bisphenol S (BPS) (12); plasticisers: phthalates (13); pesti-

cides: atrazine (14), cypermethrin (15), dichlorodiphenyl-

trichloroethane (DDT) (16), dieldrin (17), methoxychlor

(MXC) (16) and vinclozolin (VCZ) (18); and drugs:

diethylstilbestrol (DES) (19) and ethinyl oestradiol (EE)

(20), as well as non-steroidal anti-inflammatory drugs

(NSAID) and acetaminophen (21). Natural chemicals such

as genistein, a phytoestrogen (22) and heavy metals (23)

can also have endocrine-disruptive effects.

Consistent detection of ED residues in human

serum, seminal plasma and follicular fluid has raised

concern that environmental exposure to ED is affecting

human fertility (24). Though ED are not considered major

teratogens, reproductive function – from gamete pro-

duction through to intrauterine development of the

offspring – is believed to be particularly susceptible to

endocrine disruption, triggering morphological and

functional abnormalities (25, 26, 27).

The main purpose of this paper is to review and

summarise the major scientific developments on the topic

of human infertility associated with ED exposure, inte-

grating evidence from epidemiological and experimental

studies. Examples of well-known and hypothetical ED

are selected to highlight the potential effects of ED on

human fertility, identifying future research directions.
Methods

The PubMed database was used to search for articles

published up to 31st May 2013, using the following MeSH

keywords: endocrine disruptors, fertility and infertility.

Only studies using the English language were considered.

Altogether, 368 papers were retrieved. The abstract of every

article was read. The leading review criterion was human

epidemiological studies in which a link between ED

exposure and infertility was evaluated. Moreover, as the

interpretation of the scarce epidemiological data may be

biased by many confounding factors, supporting experi-

mental research in animal models was also considered.

Although there has been an effort to list and rank all

possible ED (28, 29), the number of evaluated chemicals
http://www.endocrineconnections.org
DOI: 10.1530/EC-13-0036

� 2013 The authors
Published by Bioscientifica Ltd
remains limited. The full texts of 225 selected articles were

retrieved and read. Furthermore, the bibliographies from 41

selected review articles were analysed, and 153 further

papers were read. Overall, 198 articles were deemed relevant

and included in this review.
Endocrine disruptors

Mechanisms of action

Given the complexity of the endocrine system, the

mechanisms of action of ED are difficult to unravel. So

far, most EDs are known to act as imperfect ligands (either

agonists or antagonists) to nuclear and membrane

receptors (for both steroidal and non-steroidal hormones,

and also for orphan receptors), thus interfering with

hormone-regulated cell signalling pathways and gene

expression (30). The relative importance of these types of

receptors on the magnitude of the effects of ED remains

unclear. Of note, while exogenous hormonally active

agents are considered harmful in healthy individuals, they

are the basis for hormonal therapy in some endocrinolo-

gical diseases and hormone-dependent cancers (31). Thus,

in those circumstances, they are not considered ED.

Most EDs are supposed to act through several

mechanisms, which may have synergistic or antagonistic

outcomes (32). Many are substances with oestrogenic/

anti-androgenic activity that act by interfering with the

oestrogen receptors (ER) or the androgen receptor (AR)

(see Table 1).

Apart from ER and AR, the aryl hydrocarbon receptor

(AhR) is the protein most studied regarding its interaction

with ED. This orphan receptor acts as a transcription

factor for detoxifying enzymes (43). Dioxins and some

PCB exert their endocrine-disruptive effects through

binding to AhR and impairing the usual gene transcription

response (44). AhR ligands enhance the degradation of

sex steroid receptors (45).

Some EDs are also capable of modifying hormone

bioavailability by interfering with its secretion and

transport or disrupting the enzymatic pathways

involved in hormone synthesis and metabolism (46, 47).

For instance, in either sex, androgens give rise to

oestrogens, through aromatase, so together they play a

vital role in homoeostasis (48, 49). EDs that interfere with

aromatase (BPA (50) and atrazine (51) stimulate its activity,

while DDT and phthalates (47) inhibit it) disrupt the

delicate androgen–oestrogen balance required for proper

reproductive function. Recently, many anti-virilising

EDs (e.g. phthalates and BPA) have been found to be
This work is licensed under a Creative Commons
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Table 1 Reported agonist and antagonist binding of several

ED to ER and AR.

ED

ER

agonism

ER

antagonism

AR

agonism

AR

antagonism

PCB (33) (34) (33)

PBDE (35) (35) (35)

BPA (36) (37)

BPS (38)

Phthalates (39)

Cypermethrin (40)

DDT (36, 40, 41) (40, 41)

Dieldrin (40, 41) (40, 42)

MXC (36, 40, 41) (40, 41) (40, 42)

VCZ (41) (40)

DES (36)

Phytoestrogens (36)

AR, androgen receptor; BPA, bisphenol A; BPS, bisphenol S; DDT,
dichlorodiphenyltrichloroethane; DES, diethylstilbestrol; ED, endocrine
disruptor; ER, oestrogen receptors; MXC, methoxychlor; PBDE, polybromi-
nated diphenyl ethers; PCB, polychlorinated biphenyls; VCZ, vinclozolin.
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powerful cyclooxygenase inhibitors, reducing prostaglan-

din synthesis, and this might be the foremost mechanism

by which they exert their effects (52).
Dose–effect curves

The principle of endocrine disruption has always been

controversial: it has been difficult to determine the lowest

observed adverse effect level (LOAEL) and whether it is

likely to be found in vivo (53). Current postulated LOAEL

for most ED are outdated (54). As an example, BPA has

been found to induce detrimental reproductive effects in

levels several-fold below its conventional LOAEL –

50 mg/kg of body weight (BW) per day (55).

Perhaps expectably, there is a sharp division between

those who report detrimental effects of ED at environ-

mental levels (micro- to picomolar range) – mostly

academic experts – and those who appear unable to do

so at any concentrations – industry corporations (56).

Current data state that the most potent ED effects arise

from minute environmental doses rather than from

higher doses, which may induce receptor down-regulation

and cytotoxicity (54).

Hormone-mimetic ED, similarly to endogenous hor-

mones, may have non-monotonic tissue-specific effects

due to: receptor selectivity, down-regulation/desensiti-

sation, competition and negative feedback loops (57).

EDs non-monotonic effects may also arise from the

overlap of two or more monotonic responses through

different pathways, resulting in biphasic or multiphasic

curves (58).
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Reliable evidence of both non-monotonic curves and

low-dose detrimental effects has been gathered for BPA,

many pesticides (54) and phthalates as well (59). There-

fore, a threshold dose cannot be presumed, neither can

low-dose effects be predicted from high-dose effects (30).

However, assuming equivalent exposures, the incidence

of detrimental reproductive effects of some ED may be

significantly higher in vulnerable individuals, owing to

several factors such as the genetic background, window of

exposure and pre-existing disease. Nonetheless, these

issues remain controversial (60).
Human exposure

Populations are exposed to ED in air, water, food and in a

variety of industrial products, including personal care

goods. The mixture of ED that leaches into the soil and

waterbodies (e.g. pesticides, contraceptive pills and other

chemicals from urban and agricultural waste) accumulates

in the environment and in animals higher up on the food

chain (6, 7). Indeed, some EDs that were banned decades

ago, namely DDT and PCB, are still found in human serum

(24). This is due to their lipophilicity and resistance to

biodegradation (61).

Although there is chronic exposure to ED through

inhalation and skin contact (62), the major route of

human exposure is ingestion of food (e.g. meat, fish, dairy

products and vegetables), as well as plain water and other

beverages. ED-contaminated food and water may contain

environmental pollutants such as pesticide residues (63)

and heavy metals (23), in addiction to processing aids and

anabolic steroids used in food production. Most indivi-

duals have traceable amounts of these substances in their

serum or urine (3, 64).

Recent studies have concluded that plastic packaging

is an important source of ED in the average human

diet (65). Repeated exposure of food-contact materials to

u.v. light, heat and acidic/alkaline contents may cause

polymers to breakdown into monomers as phthalates

and BPA, which then leach into food and beverages (66).

Thus, there is chronic intake of ED even from bottled

water (67). Some of these EDs are being replaced by heat-

stable analogues: many ‘BPA-free’ products contain BPS

instead, which also exerts both genomic and non-

genomic endocrine-disruptive effects at environmental

concentrations as low as picomolar, leading to concerns

regarding its safety (12, 38).

The average diet also contains natural ED such as

phytoestrogens, which are compounds possessing strong

oestrogen-like activity (22, 36). The eventual health
This work is licensed under a Creative Commons
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benefits of phytoestrogens on cardiovascular and meno-

pause-related disorders (68) and the apparent absence of

major long-term adverse effects have led to an increased

consumption of these substances, mainly through soy-

based food (69). However, effective but harmless doses

have yet to be established. Studies have revealed that

infants ingesting soy-based formulas may have a phyto-

estrogen serum concentration 13 000–22 000 times

higher than endogenous oestrogen levels (70), leading to

concerns about its possible adverse effects on brain and

reproductive organ morphological and functional

development and, ultimately, on fertility (71).
Windows of susceptibility

Human susceptibility to disruption during development

has been proven (72, 73). Intrauterine exposure to ED may

result in long-lasting changes. These may lead to

immediate or deferred adverse outcomes on development

and reproduction (74). The timing of exposure may

explain this difference (75). If it occurs during critical

windows, adverse effects may be very drastic and

irreversible, including congenital abnormalities. On the

contrary, if it happens during sensitive, non-critical

windows, detrimental outcomes may still arise, such as

mild functional deficits and adult-onset diseases.

Developmental programming " The prenatal period

has become a significant research topic regarding ED

exposure because the placenta causes accumulation of ED

in the foetus (76). BPA and other ED have low binding

affinity to the sex hormone-binding globulin and

a-fetoprotein, which prevent maternal sex hormones

from crossing the placenta (77). Furthermore, detoxifying

metabolic pathways only maturate after birth (78). ED

may therefore reach hormone-sensitive foetal tissues (e.g.

the urogenital sinus and brain) and disrupt their proper

development (see below). As programming of the hypo-

thalamus–pituitary–gonadal (HPG) axis occurs during

this period, ED exposure may determine fertility in the

adulthood (79).

Epigenetic modifications may have an important role

in the observed ED effects in gametogenesis and foetal

development (see below). The epigenome refers to

changes made in gene expression by altering DNA

structure through DNA methylation and microRNA,

among other mechanisms, without changing the actual

genomic sequence (80). BPA, phthalates and VCZ can alter

the gene expression and imprinting patterns in mouse

embryos (81). Very recently, intrauterine BPA exposure at
http://www.endocrineconnections.org
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environmental doses was shown to impair steroidogenesis

in sheep by down-regulating gonadal microRNA (82).

These findings may partially explain the biological

relevance of ED on gonadal differentiation.

Multi- and transgenerational effects " EDs have

been shown to disrupt the development of the human

reproductive system, impairing fertility not only in

directly exposed offspring but also in subsequent gener-

ations. A vast array of reproductive abnormalities has been

reported in the offspring of women treated with DES

during the mid-20th century, for miscarriage prevention

(19, 83). Recently, a French epidemiologic study has

shown that the grandchildren of DES-exposed women

have a higher incidence of genital malformations, which

may be explained by epigenetic changes of the AR gene

transmitted through the female germ line (84).

Other ED have multigenerational effects: the offspring

of TCDD-exposed mice show fertility disorders up to the

third generation (85); the third generation of mice

exposed in utero to environmental levels of PCB presented

morphological reproductive abnormalities and impaired

gamete quality (8).

Male germ cells are considered as the most vulnerable

cells, as they have distinctive methylation patterns and

epigenetic markers (80). Transient developmental exposure

of male rats to VCZ and MXC during the epigenetic-

reprogramming stage induces poor semen quality up to the

fourth generation (86).

ED exposure in pregnant females can directly cause

detrimental effects in the next two generations through

the foetus and its germline, which is already formed. Only

adverse effects in the third generation and beyond are

considered truly transgenerational, as they are transmitted

solely through the germline (87).

As current assisted reproduction techniques do not

necessarily address the underlying infertility problem,

their escalating use may accidentally convey serious

genetic and epigenetic anomalies (27).

Susceptible population groups " Millions of children

are conceived by women while on contraceptive pills

containing EE. Albeit most do not show conspicuous

congenital abnormalities, long-term reproductive conse-

quences may ensue in adulthood (88). Breastfeeding is

another significant period of exposure to ED (89). As many

ED accumulate in fat-rich tissues such as the breast,

both mother and foetus are exposed to relatively high

levels of these substances (90, 91). For these reasons,

women of childbearing age, specifically those who are
This work is licensed under a Creative Commons
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pregnant/breastfeeding, constitute a population of utmost

importance regarding ED exposure. Likewise, newborns

and children deserve special consideration, as they have

proportionally higher food and water intakes than adults,

leading to a potentially higher body burden of such

chemicals (92).
Effects of ED mixtures

ED may act synergistically to produce adverse effects at

doses far below individual LOAEL, if there is enough

overall exposure (93). Indeed, a combination of estrogenic

ED at environmentally relevant doses was shown to lead to

greater cellular disruption than single ED exposure (94).

Furthermore, a study addressing the effects of develop-

mental exposure of rats to a mixture of diverse-acting anti-

androgenic ED has shown synergistic effects regarding the

incidence of reproductive tract anomalies (95). In view of

recent evidence, a number of brief intrauterine exposures

to therapeutic doses of NSAID or acetaminophen (21, 96)

adding to the potential long-lasting inhibition of

prostaglandin synthesis by other ED could seriously

impact human reproductive health by decreasing

steroidogenesis.

Additionally, it is hypothesised that phytoestrogens,

among other EDs, may be capable of altering cell

responsiveness to endogenous hormones and other ED,

thereby inducing wider negative effects when there is

concomitant exposure (97). Two studies in rats have

suggested that the effects of chronic ingestion of a low-

dose genistein and VCZ mixture (at 1 mg/kg BW per day)

diverge from those arising from exposure to each

substance individually: genistein may potentiate the

detrimental effects of VCZ when exposure occurs through-

out adulthood (98) or ease them if exposure stops at

birth (99). ED mixtures most likely produce very

complex dose–response curves due to overlapping

additive/synergistic effects, and may lead to more

severe consequences than previously ascertained.

Conversely, their effects may be antagonistic, and thus

reciprocally annulled.

Table 2 Cellular effects of ED on the testicle.

Cellular effect ED

Germ cell apoptosis Phthalates (112), DES and EE
(113)

Reduced steroidogenesis in
Leydig cells

PCB (114), phthalates (73),
cypermethrin (15), dieldrin
(14) and EE (20)

DES, diethylstilbestrol; ED, endocrine disruptor; EE, ethinyl oestradiol;
PCB, polychlorinated biphenyls.
ED and the male reproductive system

Trends in semen quality

Over the last decades, epidemiological studies have

reported an ominous growth in the incidence of male

infertility, accompanied by decreasing sperm quality, thus

reflecting impaired spermatogenesis (100). A large review
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of international studies showed that, over 50 years, the

global average sperm count dropped by half (from 113

to 66 million/ml), reflecting an average yearly decrease

of 1%, and sperm morphology/motility abnormalities

significantly increased (101). A subsequent larger study

confirmedthedecliningspermconcentration ata yearly rate

of 1.5–3% (102). However, some consider those results are

biased (103).

Studies comparing male reproductive disorders in the

Nordic–Baltic countries have reported an East–West

gradient showing higher reproductive tract abnormalities

and infertility rates in Denmark compared with Finland

(104, 105). ED may explain these differences because the

Danish seem to have higher ED body burdens than the

Finnish (90).

Actually, several epidemiological studies have found

an association between inferior semen quality parameters

and increased urinary and serum levels of phthalates

(106), PCB (107), PBDE (108, 109) and BPA (110). ED may

disrupt spermatogenesis by interfering with germ cells and

spermatogenesis-supporting cells (111) (see Table 2).

Interestingly, it has been shown that intrauterine

exposure to BPA disrupts the blood–testis barrier, which

may lead to infertility in adulthood through germ cell loss

via immunological activity (79, 115).
The testicular dysgenesis syndrome

There is an epidemiological correspondence between

lower semen quality and higher incidences of cryptorchid-

ism, hypospadias and testicular cancer (116). These

disorders have been regrouped as the testicular dysgenesis

syndrome (TDS) (117), as they probably arise from

intrauterine disruption of proper testicular development

and function (118) under ED exposure (119). Impaired

Leydig cells function is the main cellular trait of TDS (120,

121). In mild cases, men have low testosterone levels,

slightly decreased penile/testicular volumes and poor

semen quality, while in the more severe cases there is
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also hypospadias or cryptorchidism and an increased risk

of testicular cancer (122). ED exposure has been suggested

to have triggered the escalation of milder TDS cases, and it

may explain a number of idiopathic infertility cases (123),

which constitute half the men presenting at infertility

clinics (124).

Epidemiological data suggest that human develop-

mental exposure to environmental levels of ED (e.g.

phthalates, PCB and pesticides) is indeed connected to

an increased risk of TDS features such as hypospadias and

cryptorchidism (91, 125, 126, 127).

Assuming the same circumstances of exposure, dele-

terious effects of ED may be more severe in individuals

with genetic susceptibility. There are AR and ER-a genetic

polymorphisms that cause mild functional impairments

(128, 129). They can be expected to bring about manifest

forms of TDS, when combined with ED exposure (119).

Indeed, among men exposed to PCB and DDT, those

having particular AR polymorphisms were found to have

significantly inferior sperm quality (130). Furthermore, a

correlation has been reported between cryptorchidism and

ED-vulnerable ER-a polymorphisms (131).

Hypospadias " Hypospadias, a condition in which the

urethral meatus is on the ventral side of the penis, affects

about 0.4% of males at birth and has been reported to have

increased significantly over recent decades (132). EDs are

regarded as a contributing factor, as VCZ (133) and

phthalates (134) consistently induce hypospadias in the

laboratory animals.

Cryptorchidism " Cryptorchidism is defined as the

failure of one or both testicles to descend into the scrotal

sac and is the most common congenital abnormality in

male children, affecting 2–4% of full-term males (104).

Epidemiological studies suggest that the incidence of

cryptorchidism is rising (135). It is currently the best

characterised risk factor for infertility and testicular cancer

in adulthood (97).

Testicular migration is a complex process involving a

transabdominal stage and a transinguinal one. Develop-

mental exposure to ED may act on Leydig cells thus

disrupting both stages by i) reducing insulin-like factor 3

expression (136) and ii) impairing steroidogenesis

(resulting in relative testosterone deficiency) respectively

(119). Exposure to some ED, such as PBDE, through

breastfeeding has been correlated with cryptorchidism in

new borns (76). In a recent epidemiological study, NSAID

or acetaminophen consumption during pregnancy has

been shown to be directly related to a higher risk of
http://www.endocrineconnections.org
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cryptorchidism in male infants, if intake had taken place

for longer than one week or if there had been simul-

taneous ingestion of more than one of those drugs (21).
The differentiation of the male reproductive system

The differentiation of the male reproductive system is

entirely dependent on foetal testicular androgen pro-

duction (137). Thus, disruption of androgen activity by ED

during the virilisation period (around 8–14 weeks into

human foetal development) will perhaps cause TDS (138).

Moreover, disproportionate oestrogenic exposure at this

point may disturb the delicate androgen–oestrogen

balance, leading to adverse consequences (139).

A recent study including a thousand new borns has

found a linear correlation between maternal exposure to ED

(e.g. pesticides and phytoestrogens) and lower testosterone

levels, smaller penile length and higher incidences of

reproductive anomalies including hypospadias (140).

In animal models, pregnant mice orally exposed to

phthalates at doses as low as 1 mg/kg BW per day

consistently gave birth to male offspring presenting a

syndrome of reproductive anomalies including cryptor-

chidism, testicular injury, reproductive tract malfor-

mations and shorter anogenital distance (AGD) (59, 134),

reflecting ineffective perineal virilisation (141). This

pattern of effects parallels TDS (142). Actually, develop-

mental exposure to phthalates at environmental doses

seems to cause reduced AGD in male infants (143).

Similarly to rodents, human male infants exhibit twice

as long an AGD than females (144). Reduced male AGD

may be considered a predictor of infertility as it correlates

with poorer sperm quality parameters in otherwise normal

men (145). Furthermore, hypospadias and cryptorchidism

are also associated with shorter AGD (146).

Other anti-androgenic ED can induce TDS in animals:

rats exposed to 150 mg/kg BW per day of acetaminophen

during foetal development had AGD reductions

comparable to those induced by phthalates (21).

Additionally, intrauterine exposure to VCZ produces a

wide spectrum of reproductive disorders (147). In a study,

all male rats exposed in utero to 20–100 mg/kg BW per

day of VCZ showed hypospadias and minute sperm

counts (133).

Though average human ED exposure levels may be

lower than those customarily used in animal studies,

certain population clusters may be exposed to higher

levels. Actually, occupational pesticide exposure has been

connected to male infertility (125, 148, 149, 150).
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Table 3 Cellular effects of ED on the ovary.

Cellular effect ED

Impaired folliculogenesis PCB (8), phthalates (166),
atrazine (167), MXC (168)
and genistein (169)

Follicular atresia BPA (170)
Meiosis disruption BPA (170, 171), DES (172) and

genistein (173)
Reduced steroidogenesis in
granulosa/theca cells

TCDD (174), DDT and MXC
(175)

BPA, bisphenol A; DDT, dichlorodiphenyltrichloroethane; DES, diethylstil-
bestrol; ED, endocrine disruptor; MXC, methoxychlor; PCB, polychlorinated
biphenyls; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin.
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ED and the female reproductive system

The ovarian dysgenesis syndrome

DataconcerningEDeffectsonthe female reproductivesystem

and fertility are scant. Still, a correlation between develop-

mental ED exposure and long-term effects is suggested (151).

There is a significantly higher risk of infertility in women who

havehigh serum concentration ofBPA(152,153), aswell as in

those whose mothers had high maternal serum concen-

trations of DDT during pregnancy (154). Moreover, occu-

pational exposure to ED such as pesticides and plastics is a risk

factor for female infertility (155).

Thearrayoffemale reproductivedisorderswhereEDhave

been implicated includes endometriosis, disorders of the

uterus and disorders of the ovary, such as premature ovarian

failure (POF)and polycystic ovary syndrome (PCOS) (26).The

incidence of these conditions is growing (72). As they may

arise from impaired ovarian development and function, the

ovarian dysgenesis syndrome has recently been suggested as

the female form of TDS (156).

Endometriosis " Endometriosis affects up to 10% of

women of childbearing age, causing infertility in about

half those women (157). Recently, EDs have been proposed

as a possible contributing factor for its development and

exacerbation (158). Indeed, a significantly higher BPA

(159) and phthalate (160) serum concentration has been

found in women with this condition. Furthermore,

women exposed to DES in utero may have an 80% higher

risk of endometriosis than unexposed women (161).

Experimental studies support this hypothesis, as intra-

uterineexposureofmice toBPA(162)orTCDD(85)produces

an endometriosis-like adult uterine phenotype. A recent

study has shown that women with endometriosis have

significantly higher concentrations of TCDD and PCB in the

peritoneal fluid (163), possibly leading to chronic inflam-

mation, which may result in the stimulation of endometrial

cells derived from retrograde menstruation (164).

Ovarian pathology " There are growing concerns

about the reproductive outcomes of ovarian exposure to

ED during foetal development and after birth (165).

Female germ cells are a fixed population, unlike male

germ cells. Therefore, exposure of hormone-responsive,

primordial and preantral follicles to ED may impair

folliculogenesis, inducing meiotic aberrations (e.g. aneu-

ploidy and multiple oocyte follicles) or even follicular

atresia (see Table 3). Ultimately, ED may lead to depletion

of follicular reserves, resulting in POF (176). This is a
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syndrome consequent to impaired ovarian function before

the age of 40 years, affecting about 1% of women (177).

Granulosa and theca cells, which are crucial for ovarian

steroidogenesis and oocyte development, are also a target

for ED (48). Chronic exposure to TCDD at environmental

levels (lower than 1 ng/kg BW per day) induces ovarian

insufficiency in rats by reducing steroidogenesis (10).

PCOS, consisting of hyperandrogenemia and chronic

anovulation, affects 5–8% of women of childbearing age

often leading to infertility (178). Higher serum BPA levels

have been reported in women with PCOS compared with

healthy women (153, 179).
The differentiation of the female reproductive system

Proper differentiation of the female reproductive system is

regulated by oestrogens, but it proceeds even in their

absence – it is the default developmental pathway (180).

Nevertheless, oestrogenic overstimulation is known to

result in irreversible abnormalities (19, 181).

The development of the female reproductive system

is regulated by the differential expression of HOX genes

in the Müllerian duct (182). Disruption of the precise

chronological regulation of HOXA10 by ED that either

up-regulate (e.g. BPA) or down-regulate (e.g. DES and

MXC) its expression has been shown to lead to uterine

abnormalities and infertility (183). DES has also been

found to contribute to uterine abnormalities by reducing

the expression of other developmental genes such as the

WNT7 or MSX2 genes (184).
Central actions of ED

Regulation of gonadotropin secretion

ED may modify steroidogenesis both locally and through

the HPG axis (7). The human HPG axis is active in utero and
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during the first year of life (185). Afterwards, gonadotropin

secretion is reduced until puberty, when sequential

endocrine changes set in motion the development of

secondary sexual characteristics that will lead to sexual

maturation (186).

Kisspeptin is broadly recognised as a fundamental

activator of the HPG axis, at the onset of puberty (187). In

rats, neonatal exposure to oestrogenic ED, such as BPA and

genistein, suppresses kisspeptin synthesis (188, 189).

Some PCBs have been shown to alter gonadotropin-

releasing hormone (GnRH) synthesis (190) and to decrease

GnRH release (191). Conversely, DDT and BPA stimulate it

(192). In rats, perinatal exposure to environmental BPA

doses, below the current LOAEL, induced defective GnRH

pulses up to adulthood, leading to infertility (193).

The biological ED effects through GnRH and kisspep-

tin neurons and the relative importance of disruption in

each those cell clusters on the onset of puberty and

fertility throughout life through remain unclear.

Disruption of the HPG axis leading to gonadal

insufficiency by reducing steroidogenesis, following

exposure to DES (113), PCB (190) and atrazine (14), was

demonstrated in rats. Long-lasting reproductive disorders

induced by developmental ED exposure may be more

likely to arise from a dysfunctional HPG axis (194). Thus,

the primary target of developmental ED exposure might be

the hypothalamus and the pituitary gland rather than the

gonads themselves (195).
Sexually dimorphic neural circuitry

Sex steroids have prominent roles in the differentiation of

several sexually dimorphic neural circuits (195, 196). ED

may cross the immature blood–brain barrier (11) and

thereby reverse the neurochemical phenotype of these

areas. Actually, developmental exposure to BPA, MXC and

VCZ has been shown to produce gender-inadequate adult

behaviours (197), possibly by disrupting specific neural

pathways (e.g. nitrergic fibres) that influence complex

functions and behaviours such as those related to

reproduction (198).
Conclusion

This paper has reviewed the existing evidence regarding

ED and the rising rates of human infertility. Although the

number of ED mentioned is not comprehensive, an

adequate amount of data has accumulated demonstrating

that EDs may have deleterious effects on human reproduc-

tion via numerous mechanisms. ED may be blamed for the
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rising incidence of human reproductive disorders, and

may also explain some idiopathic infertility cases, both in

men and women.

Endocrine disruption is a serious public health

problem that must not be ignored. Authorities should

endorse preventive measures regarding exposure to EDs,

such as limiting their production in industry worldwide,

as the removal of these substances from the environment

is neither simple nor cheap.

Meanwhile, the general population might reduce ED

exposure by following some simple yet important advice

such as i) choose glass over plastics, ii) avoid using plastic

containers repeatedly or plastic wrapping to microwave

food, iii) reduce consumption of fatty animal products,

iv) prefer pesticide-free vegetables and fruits and v) avoid

excessive utilisation of cosmetics and other personal care

items, particularly during pregnancy. As ED exposure at

any dose may impair human development and reproduc-

tion, precautionary avoidance of exposure to well-known

and putative ED is a prudent attitude.

Further research is needed to improve current knowl-

edge about known ED, and to identify potential endocrine

disruptive activity by other chemicals, especially those

replacing current ED before they are widely distributed.

Dose–effect curves should be thoroughly studied, even

at minute concentrations, as all EDs are likely to show

non-monotonic responses and low-dose effects, resembling

those elicited by endogenous hormones. Also, the impact of

exposure to low doses of complex mixtures of ED and the

prospective transgenerational effects should be evaluated,

specifically concerning genetic polymorphisms, especially

during gametogenesis and foetal development. It would

be important to examine adult fertility and hormonal

parameters of infants inadvertently exposed to contra-

ceptive hormones during pregnancy and of infants fed cow

milk/soy-based formula using baby bottles made of

different substances, as opposed to breastfed infants.

Clinical and laboratorial research on ED is essential,

in order to protect wildlife and humans, particularly

developing foetuses and children, from permanent effects

on fertility.
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