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Simple Summary: The American mink (Neovison vison) is one of the best-known and most widespread
invasive species in China and worldwide. To investigate the genetic characteristics and increase
comprehension of the invasiveness process for this species, we compared the genetic characteristics
of farmed and feral populations in northeastern China using mitochondrial DNA sequences and
microsatellite loci. We found a relatively high diversity among the feral populations that was as high
as that of the farmed mink. This demonstrated that high genetic diversity promotes the invasiveness
and rapid evolution in the wild.

Abstract: Genetic characteristics play an important role in alien species for achieving high adaptation
and rapid evolution in a new environment. The American mink (Neovison vison) is one of the best-
known and most widespread invasive species that has successfully invaded the Eurasian mainland
over quite a short period, including most parts of northeastern China. However, genetic information
on farmed and feral American mink populations introduced in China is completely lacking. In this
study, we combined mitochondrial DNA sequences and polymorphic microsatellites to examine
the genetic divergence and genetic diversity of farmed and feral American mink populations. Our
results suggest that there is admixture of individuals of different genetic characteristics between
farmed and feral populations of mink. Furthermore, the genetic diversity of both farmed and feral
American mink populations was high, and no bottleneck or population expansion was detected in
most of the populations. These findings not only highlight the genetic characteristics of American
mink in northeastern China but also contribute to the general understanding of the invasiveness of
farmed species.

Keywords: Neovison vison; microsatellite; biological invasion; mink farming; genetic variation

1. Introduction

Genetic characteristics play an important role in alien species occupying new envi-
ronments and expanding their distributions [1–3]. Usually, introduced populations are
founded by a limited number of individuals, and natural selection and genetic drift will
result in lower genetic variation than in native populations [4–6]. However, observations
of some alien species invasions have shown evidence of introduced populations without
reduced genetic variability [3,5,7,8]. It is possible that genetic diversity in introduced pop-
ulations is not lost when large numbers of animals are present or multiple introductions
occur (propagule pressure) [9,10].

The American mink (Neovison vison), a semi-aquatic species of mustelid endemic
to North America, was brought to Europe, Asia, and South America for fur farming
operations. In Europe, the American mink was first introduced as a furbearer via Russia in
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the 1920s [11], followed by England, France, Germany, Iceland, Ireland, Norway, Poland,
Scotland, Sweden, and other parts of Europe. Invasive American mink populations have
higher levels of genetic diversity from genetically diverse sources in Poland [12] and
Spain [13]. In Asia, American mink was initially introduced to the eastern and southern
former Soviet Union, including Sverdlovsk, Irkutsk Oblasts, Yakut, Magadan, and areas
adjacent to China, such as Amur Oblasts, Khabarovsk, and Primorsky Krai [14]. The
escapees or deliberately released individuals founded discontinuous populations due to
their excellent ability to colonize new habitats [15]. In eastern Asia, it is possible to rapidly
establish growing feral populations of this species in aquatic ecosystems [16].

In China, since the middle of the last century, a large-scale fur farming industry
of American mink has thrived in the north, including in Heilongjiang, Jilin, Liaoning,
Shandong, and Hebei provinces [17]. In 1978, the number of breeding American mink
reached 750,000 females. In 2014, more than 80 million mink were bred on farms in China,
ranking first in the amount of both breeding farms and fur production worldwide [18].
Especially for the region of Mohe County and adjacent counties, there were a large number
of escapees that successfully invaded large parts of northeast China, and feral mink from
Russia also migrated into the area [16]. However, genetic information on farmed and feral
American mink populations introduced in China is completely lacking. Thus, there is still
confusion as to whether there is a similar high genetic diversity level between farmed and
feral populations, whether the process of escaping is ongoing, and how mink farms have
affected feral populations in the present and past years.

In this study, we investigated the genetic variability in both farmed and feral American
mink in northeastern China by mitochondrial DNA sequences and by characterizing
polymorphic nuclear microsatellites. We hypothesized that domestic mink are escaping
from farms and becoming feral and that the process is ongoing. Thus, we hypothesized
that there is a relatively high diversity among the feral populations and that the samples
that come from farmed or feral populations would cluster together.

2. Materials and Methods
2.1. Sampling

From 2011 to 2012, a total of 30 muscle tissue samples from 2 sites were collected from
captive American mink on fur farms, and another 32 feral mink from 4 sites were captured
in the areas of Mohe County and Tahe County along the branches of the Heilongjiang
River in China (Figure 1). Although the number of samples is low, 15 to 20 individuals
per genetic cluster are sufficient to accurately estimate genetic diversity [19]. Additionally,
there are different colour types of mink, but these did not affect the cytochrome b (Cyt-b)
gene or the microsatellites used in this study [20]. Tissue samples from captive mink were
collected during the skinning process, and tissue samples from feral mink were obtained
from newly hunted animals. All tissues were stored in 95% ethanol before transportation
to the laboratory and stored at −20 ◦C until DNA extraction.

2.2. Laboratory Analyses

Genomic DNA was extracted from tissue samples using a DNeasy kit (Qiagen) fol-
lowing the manufacturer′s protocol. We used 12 polymorphic microsatellites selected from
Vincent et al. [21] and amplified them under the following conditions: denaturation at
94 ◦C for 5 min, 30 cycles of denaturation at 98 ◦C (10 s), annealing at 50–68.5 ◦C (30 s), and
extension at 68 ◦C (20 s), followed by a final extension at 68 ◦C (20 min). PCR amplification
was carried out in 20-µL reactions containing 1 × PCR buffer containing 50 mM Tris-HCl
(pH 8.0), 25 mM KCl, 0.1 mM EDTA, 1 mM dTT, 0.4 mM of each dNTP (TOYOBO), 0.2 µM
of each forward primer (labelled with Hex, Fam or Ned fluorescent dyes) and reverse
primer, 0.4 U units of KOD FX Neo DNA polymerase (TOYOBO) and approximately 50 ng
of genomic DNA. The PCR products were separated using an ABI 3700 Prism automated
sequencer and scored using GeneScan 3.7 and Genotyper 2.5 (Applied Biosystems).
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Figure 1. Map of the study area and sampling location of farmed and feral American mink.

An 890 base pair fragment of mitochondrial DNA containing the cytochrome b gene
was amplified for each sample with primers L12616/H01177 [22]. PCR was performed in
20-µL reactions containing 1 × PCR buffer (50 mM Tris-HCl (pH 8.0), 25 mM KCl, 0.1 mM
EDTA, 1 mM dTT), 0.4 mM of each dNTP (TOYOBO), 0.2 µM of each forward and reverse
primer, 0.4 U units of KOD FX Neo DNA polymerase (TOYOBO), and approximately 50 ng
of genomic DNA. PCR was run with an initial denaturation at 94 ◦C for 10 min, 30 cycles
of denaturation at 98 ◦C (10 s), annealing at 55 ◦C (30 s), and extension at 68 ◦C (1 min),
followed by a final extension at 68 ◦C (30 min). PCR fragments were sequenced in both
directions using an ABI 3700 Prism automated sequencer.

2.3. Genetic Diversity

We used MICRO-CHECKER to examine the populations for the possible presence of
null alleles and allelic dropout [23]. Note, “population” refers to sampling sites throughout
the following text. We analysed the number of alleles (NA), expected heterozygosity (HE),
observed heterozygosity (HO), and deviations from Hardy–Weinberg equilibrium (HWE)
and linkage disequilibrium (LD) for each locus or population using ARLEQUIN 3.5 [24].
We used Bonferroni corrections for multiple comparisons to find critical significance levels
for both tests (equivalent to p < 0.05, [25]). Moreover, other genetic diversity parameters,
including allelic richness (AR), inbreeding coefficients (FIS), and polymorphic information
content (PIC), were calculated using FSTAT [26].

We sequenced and aligned the Cyt-b gene sequences of all samples using MEGA
6.0 [27]. We identified unique haplotypes and calculated the number of haplotypes (h),
haplotype diversity (Hd), and nucleotide diversity (π) for farmed and feral populations
using DnaSP 5.0 [28].
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2.4. Individual Assignments

We used the microsatellite data set to determine the individual assignments of all
samples using STRUCTURE 2.3.4 [29]. We used the admixture model with correlated allele
frequencies and 1,000,000 Markov chain Monte Carlo (MCMC) iterations with 100,000 burn-
ins. We performed 10 independent simulations and checked for the consistency of the runs.
We determined the most likely K by following the simulation method of Evanno et al. [30],
and the optimal number of clusters was estimated to be between K = 1 and K = 6 using
the web-based software STRUCTURE HARVESTER v0.6.8 [31]. Additionally, the genetic
structure based on the Cyt-b gene and microsatellites may provide a different view due
to the higher mutation rate of microsatellites compared to mtDNA, incomplete lineage
sorting, recent admixture, and strong male-biased dispersal in the American mink [32].
Thus, we also constructed Bayesian inference of phylogenetic trees with BEAST v2.4.4 [33]
using 50,000,000 MCMC iterations, with sampling per 5000 iterations. Three independent
analyses were checked for the convergence of the MCMC and effective sample sizes (above
200) in TRACER v.1.7 [34]. We used the program DENSITREE v.2.2.6 [33] to visualize the
trees after discarding the first 10% of each MCMC chain as burn-in. The evolutionary
relationships among farmed and feral mink haplotypes were also inferred from the max-
imum parsimony-based median-joining network that was calculated and drawn using
NETWORK 4.5.1.6 (http://www.fluxus-engineering.com) (accessed on 30 December 2020).

2.5. Population Demography

The samples from a single location were defined as a population. We analysed the
demographics of the six populations using three methods. First, a genetic bottleneck was
investigated using the program BOTTLENECK 1.2 [35]. Significance was assessed using the
Sign and the Wilcoxon sign-rank test to test the allele frequency distributions for shifts from
the equilibrium L-shape [36]. Second, neutral tests, including Tajima′s D and Fu′s Fs, were
conducted for farmed and feral populations by ARLEQUIN with significantly negative
values suggesting expansion. Furthermore, the mismatch distribution was analysed by
examining the smoothness of the observed distributions and the degree of compatibility
within the observed and simulated patterns.

3. Results
3.1. Genetic Diversity

We did not detect the presence of null alleles or allelic dropout in the microsatellite
data. All analysed loci were highly variable with 3 to 15 alleles per locus with a mean
estimate of 9 overall loci (Table 1). For the whole sample set, the ranges of the AR, HE,
and Ho values were 4.08–4.94, 0.61–0.71, and 0.50–0.63, respectively (Table 2). The mean
number of alleles and the allelic richness of the farmed mink (6.33–6.58 and 4.64–4.94,
respectively) was slightly higher than that of the feral populations (4.08–5.00 and 4.08–4.50,
respectively) (Table 2). The heterozygosity indices for the farmed mink (HE = 0.66–0.71,
HO = 0.59–0.60) were slightly higher than for the feral populations (HE = 0.61–0.66,
HO = 0.50–0.63) (Table 2). All populations showed positive FIS values (0.06–0.21) (Table 2).

Sequences of the Cyt-b gene from all samples (n = 62) yielded 23 haplotypes containing
85 polymorphic sites (8 singleton variable sites and 77 parsimony informative sites). We
detected 11 haplotypes in farmed mink and 15 haplotypes in feral mink (Table 2). In
particular, NV2 was the most common haplotype, which was observed in 14 farmed and
10 feral samples. In contrast to the microsatellite data results, the Cyt-b gene diversity was
higher for the feral populations (Hd = 0.71–1.00, π = 0.01–0.02) than for the farmed mink
(Hd = 0.24–0.82, π = 0.01; Table 2).

http://www.fluxus-engineering.com
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Table 1. Information on the 12 microsatellite loci used in this study. The loci name, primer sequence, repeat motif,
annealing temperature (TA), numbers of alleles, allele size range, observed (HO), expected (HE) heterozygosities, and
average polymorphism information content (PIC) were included.

Loci Primer Sequence (5′–3′) Repeat Motif TA (◦C) No. Alleles Size Range HO HE PIC

Mvi 1271 F: TAA ACA CGG CTC ACT AAC TC
R: GTG GTA TGC ACT CAA GGT (CA)15 61.0 6 180–190 0.73 0.73 0.68

Mvi 1272 F: CCT CCC CTT CTC GTG
R: TCT TTC TGC TAT TCG GTA AG (TC)14 AT(TC)4 60.3 7 165–179 0.50 0.68 0.64

Mvi 1273 F: GCT TAA TTC GTA TAG CAT CCC T
R: CCT CCA GAC CTC TAG CAT C (GGAA)6 59.0 15 183–213 0.80 0.88 0.86

Mvi 1302 F: CAT AGG TTC CAG GGA TTA GAA
R: ATG CCA TTA CAG TAC GAC TCA (GT)17 64.0 8 204–224 0.44 0.69 0.64

Mvi 1321 F: TTA AAC ACG AGA CCG TAT GTA
R: GAA AGT GTG CCA ATT CCT A (CA)13 63.5 15 91–179 0.61 0.85 0.83

Mvi 1322 F: GGC TGA TTA ATA TTT TAC ACA
R: CAA AAA CCA CTA CCT CAA (CA)12 50.0 11 160–180 0.62 0.84 0.82

Mvi 1323 F: AAT GGG GGA ATT TAC AGG T
R: CTG AAA TAC AAG GGC ATT CTT (GT)9 GC (GT)4 60.0 4 104–110 0.29 0.52 0.43

Mvi 1341 F: GTG GGA GAC TGA GAT AGG TCA
R: GGC AAC TTG AAT GGA CTA AGA (CA)17 59.0 9 150–166 0.95 0.82 0.79

Mvi 1342 F: TGG GAG TGA GCG GTG AT
R: CTG GCC TTC AGT CAG TCT TG (AC)14 68.5 13 131–163 0.47 0.84 0.82

Mvi 1354 F: CCA ACT GGA GCA AGT AAA T
R: CAT CTT TGG GAA AGT ATG TTT (CA)22 61.8 10 176–198 0.74 0.83 0.80

Mvi 1381 F: CCATCGGAGTTTCTCATCGT
R: CCAGGTGCCCCTTACATT (AC)19 61.8 7 185–197 0.53 0.76 0.73

Mvi 1843 F: AAATGGGAAGGTAAGGTAGAA
R: CCTAAGGGACACAGACTTGC (CA)7TA (AC)- 65.1 3 135–139 0.14 0.23 0.22

Mean — — — 9 — 0.57 0.72 0.69

Table 2. Genetic diversity indices and demographic characteristics for farmed and feral American mink in China.

Population.

Genetic Diversity Indices
Expansion Detection Bottleneck Detection

Microsatellite Cyt-b

N NA AR HE Ho FIS h Hd π Tajima′s D Fu′s Fs Mismatch
(Texp) PWilcoxon test Mode Shift

Feral 1 10 4.92 4.08 0.62 0.55 0.19 4.00 0.71 0.01 −0.22 −5.99 * No signal 0.924 Normal
L-shaped

Feral 2 10 5.00 4.21 0.61 0.54 0.11 1.00 0.00 0.00 0.00 0.34 No signal 0.926 Shifted

Feral 3 6 4.50 4.50 0.66 0.63 0.06 4.00 0.80 0.01 0.27 −1.28 No signal 0.993 Normal
L-shaped

Feral 4 6 4.08 4.08 0.62 0.50 0.21 6.00 1.00 0.02 −0.20 −0.43 No signal 0.995 Shifted

Farmed 5 16 6.33 4.64 0.66 0.59 0.10 3.00 0.24 0.00 −0.99 −23.63 * N/A 0.788 Normal
L-shaped

Farmed 6 14 6.58 4.94 0.71 0.60 0.17 8.00 0.82 0.01 −1.46 −8.52 * N/A 0.849 Normal
L-shaped

N, the number of analysed individuals for each marker; NA, number of alleles; AR, allelic richness; HE, expected heterozygosity; HO,
observed heterozygosity; FIS, inbreeding coefficients; h, number of haplotypes; Hd, haplotype diversity; π, nucleotide diversity. * means
p < 0.05. N/A = least-squares procedure to fit the model of mismatch distribution and the observed distribution did not converge after
2000 steps.

3.2. Individual Assignments

Our clustering results supported the grouping of American mink samples from north-
eastern China into two genetic clusters. Generally, the first genetic cluster corresponded
to samples of farmed animals, and the other cluster corresponded to feral samples. Some
samples showed significant signs of admixture, as two farmed individual and eleven feral
samples were assigned to their cluster with likelihoods less than 0.7 (Figure 2).

The Bayesian phylogeny displayed five branches in the American mink from north-
eastern China (Figure 3). The population of “Feral” was separated from other populations.
The populations of “Farmed 6” and “Feral 3” were mixed by 1 and 3 individuals, respec-
tively. The population of “Feral 2” clustered with the population of “Farmed 5”. Two
individuals of “Farmed 5” were assigned to the genetic cluster formed by the “Feral 1”
population (Figure 3). The median-joining network produced a distribution of haplotypes,
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and it should be noted that the 6 feral haplotypes clearly differed from the remaining
haplotype group (66 substitutions) (Figure 4).

Figure 2. STRUCTURE clustering results deduced from microsatellite alleles within populations of
American mink. (a,b) ∆K and Ln P(X/K) values as a function of the K values according to 10 run
outputs; (c) STRUCTURE clustering results at K = 2, with different colours representing different
clusters, deduced from microsatellite alleles within farmed and feral populations of American mink.

Figure 3. The phylogenetic relationships among Cyt-b haplotypes for feral and farmed mink display the whole trees
generated from DensiTree.
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Figure 4. Median-joining network with node sizes proportional to the frequencies of farmed and feral mink haplotypes.
The numbers of mutations separating the haplotypes are shown on the branches. The yellow colour represents the farmed
mink, the blue colour represents the feral mink, and the small black dot indicates undetected haplotypes. One red area
indicates the cluster of 6 feral haplotypes.

3.3. Population Demography

Three methods were used to infer the demographic histories of the six populations.
For all populations, Tajima’s D was not significantly negative (Table 2). For the two farmed
mink, Fu’s Fs was significantly negative (Table 2). For the four feral populations, Fu’s Fs
was positive for population “Feral 2”, significantly negative for population “Feral 1”, and
negative but not significantly for populations “Feral 3” and “Feral 4”. In the mismatch
distribution analysis, we did not detect expansion signals in any populations (Table 2). In
the genetic bottleneck analysis, the populations “Farmed 5”, “Farmed 6”, “Feral 1”, and
“Feral 3” were non-bottlenecked. However, we detected significant bottleneck events in
populations “Feral 2” and “Feral 4” (Table 2).

4. Discussion

We discovered a similar high genetic diversity between the farmed and feral popu-
lations through microsatellite and Cyt-b gene analysis. Furthermore, we found that the
farmed and feral mink populations in northeastern China could be divided into two ge-
netic clusters. In addition, we did not detect rapid expansion or bottlenecks in most of the
populations, which may be due to the large population size or multiple introductions.

Our results show that feral mink in northeastern China exhibits moderate to high
genetic diversity. The genetic diversity based on microsatellite data of feral mink in north-
eastern China (HO = 0.50–0.63, HE = 0.61–0.66) was comparable with that in other regions,
such as Scotland (HO = 0.55–0.66, HE = 0.56–0.67) [37], but was slightly lower than that in
their native distribution area (HO = 0.64, HE = 0.74) [21]. The high genetic diversity may be
due to multiple origins, creating the conditions for high adaptable capacity and expanding
potential; this aids our understanding of invasion processes and dynamics [38,39].

The genetic diversity of the farmed mink was higher than that of the feral populations
according to the microsatellite results; in contrast, there was a much higher mtDNA
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diversity in the feral mink than in the farmed mink. The inconsistency of the genetic
diversity results between the two markers may possibly be because of multiple admixtures
at a very early stage in the feral mink, as we found a large number of shared haplotypes in
the median-joining network; or it could be due to the different methodological approaches
used, which included different information content [40].

Bayesian clustering analysis identified two genetic clusters corresponding to the
farmed and feral mink samples. However, the phylogenetic tree showed five branches,
four of which comprised samples from different locations. The reason for this could be
that the Cyt-b gene provides more of a historical view whereas microsatellites provide
an understanding of more recent events. Furthermore, the significant signs of admixture
and the samples from different locations clustered together in the phylogenetic tree may
illustrate that the process of farmed mink escaping into the wild is ongoing. Two feral
mink pedigrees of different origins led us to rethink the sources of feral mink in this region.
This could be the result of the feral mink originating from farmed mink that had adapted
to the environment under selection in the past, or, recently, some escaped farmed mink
hybridizing with the feral mink.

The rapid expansion hypothesis was rejected in both the farmed and feral mink
populations, and bottlenecks were only detected in populations “Feral 2” and “Feral 4”.
This could be explained by the large numbers of animals present or multiple introductions
that occurred as well as eradication control measures in China. A similar situation in this
species occurred in Spain, where most populations, except for those in Catalonia, were not
affected by a bottleneck [13].

5. Conclusions

A comparison of the genetic characteristics of farmed and feral populations can
contribute to understanding the invasiveness process for different species. Our results
suggest that there is a relatively high diversity and an admixture of individuals of different
genetic characteristics between farmed and feral populations of mink in northeastern China,
which is conducive to increasing the fitness of individuals and potentially contribute to the
invasion of American mink. Nevertheless, additional studies should be conducted to more
fully understand the genetic variability of the American mink in northeastern Asia.
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