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Abstract: Plants are subject to different types of stress, which consequently affect their growth and
development. They have developed mechanisms for recognizing and processing an extracellular
signal. Second messengers are transient molecules that modulate the physiological responses in plant
cells under stress conditions. In this sense, it has been shown in various plant models that mem-
brane lipids are substrates for the generation of second lipid messengers such as phosphoinositide,
phosphatidic acid, sphingolipids, and lysophospholipids. In recent years, research on lipid second
messengers has been moving toward using genetic and molecular approaches to reveal the molecular
setting in which these molecules act in response to osmotic stress. In this sense, these studies have
established that second messengers can transiently recruit target proteins to the membrane and,
therefore, affect protein conformation, activity, and gene expression. This review summarizes recent
advances in responses related to the link between lipid second messengers and osmotic stress in
plant cells.

Keywords: lipid messengers; phosphatidic acid; phospholipase C; phospholipase D; sphingholipids;
lysophospholipids

1. Introduction

Plants use complex signal transduction networks to orchestrate biochemical, genetic,
and physiological responses under different stress conditions. Among the components
involved in that response are molecules called second messengers. These molecules
are “master regulators” since they generate a high degree of amplification via signal
transduction and modulate key downstream molecular regulatory components involved
in the response to stress. Lipids are major components of biological membranes that serve
as platforms for important signaling functions [1,2]. Lipid-second messengers may be
formed from membrane structural lipids by hydrolytic activity of phospholipases such
as phospholipase D (PLD), phospholipase C (PLC), and phospholipase A2 (PLA2). In
the context of stress in plants, salt, and drought represent osmotic factors that limit crop
productivity [3]. In this context, salt or drought are different types of stress that result
in a series of different changes at the cellular or plant level, generating specific changes
at the biochemical, molecular, and physiological levels in plants. Understanding the
molecular mechanism by which plants respond to osmotic stress signals is pivotal for the
development of biotechnological tools for the generation of tolerant plants. This review will
focus on assessing the current knowledge of lipids second messengers (phosphoinositides,
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phosphatidic acid, sphingolipids, and lysophospholipids), which have been shown to be
key regulators of osmotic stress responses in plant cells.

2. Lipid-Derived Second Messengers in Plant Cells

Phospholipids are important components in all membranes in eukaryotes and play a
role in signaling mechanisms in plant cells. Enzymes as phospholipases, lipid kinases or
phosphatases modify membrane lipids to generate signaling molecules known as lipid-
derived second messengers. Important lipid second messengers include phosphatidyli-
nositols, diacylglycerols, phosphatidic acid, sphingolipids, and lysophospholipids [4,5]
(Figure 1). Several research groups have reported that lipid second messengers activate
or recruit proteins to membranes, which leads to the activation of downstream signaling
pathways that result in cellular events and physiological responses. In this review, we
will attempt to highlight some of the recent studies on the of the functional mechanism
of lipid-derived second messengers, with an emphasis on their regulation, particularly in
response to osmotic in plant cells.

Figure 1. Generation of lipid second messengers in plants. Phospholipid precursors (blue box) involved in the production of
intracellular second messengers (orange box). PI-PLC leads to the cleavage of PIP2 into DAG and IP3. DGK converts DAG
to PA, which is a second messenger on its own right. PA, which can also be generated by PC hydrolysis by PLD. DAG can
also be synthesized from PC via PLD. IP3 diffuses into the cytosol, where it is converted to IP6. Fatty acids of phospholipids
are liberated by PLA2s and converted to eicosanoids. Lysophospholipids are also precursors of a different class of lipid
mediators, including Lyso-PC or Lyso-PA. Sphingomyelin is a precursor of ceramide that can then be phosphorylated to
generate ceramide 1-phosphate and to form sphingosine, which is phosphorylated to generate sphingosine 1-phosphate.
PIP2, phosphatidylinositol (4,5)-bisphosphate; PC, phosphatidylcholine; PI-PLC, phosphoinositide-phospholipase C; IP3,
inositol (1,4,5)-trisphosphate; IP6, myo-inositol-1,2,3,4,5,6 hexaskisphosphate; DAG, diacylglycerol; PLD, phospholipase D;
PA, phosphatidic acid; PLA2, phospholipase A2; Lyso-PA, lyso-phosphatidic acid; Lyso-PC, lyso-phosphatidylcholine; FFA,
Free Fatty Acid; SM, sphingomyelin; Cer, ceramide; SPHK, sphingosine kinase; S1P, sphingosine-1-phosphate.

3. Phosphoinositide Signaling

Phosphoinositides (PI) are a class of inositol-containing phospholipids present in the
plasma membrane. In plants, the inositol ring is sequentially phosphorylated at several
different positions, generating five isomers: phosphatidylinositol (PI), PI-3 phosphate
(PI3P), PI-4 phosphate (PI4P or PIP), PI-5 phosphate, PI-3-5- bisphosphate (PI-3,5-P2), and
PI-4,5-bisphosphate (PI-4,5-P2 or PIP2) [6,7].
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Unlike the majority of membrane lipids, PIs show only a minor abundance, and their
dynamic formation occurs a set of specific kinases and phosphatases, and is maintained
via constant turnover [8]. Additionally, they modulate fundamental cellular processes,
such as membrane trafficking, cytoskeleton organization, polar tip growth, and stress
responses [9]. At the poles across kingdoms, phosphoinositide is involved in polar tip
growth [10]. PIs can work as ligands for different proteins called PI “modulins” and
regulate their subcellular distribution or activity via interactions. PI binding takes place
through the inositol polyphosphate head groups and PI binding domains of phosphoinosi-
tide, such as pleckstrin homology (PH) domains, Phox homology (POX) domains, and
Fab1-YOTB-Vac1-EEA1 (FYVE) domains [8]. Examples of PI modulin activities include the
regulation of ion channels [9], ATPase activity, and hormonal and stress signaling [9]. In
Arabidopsis and rice, the presence of proteins with FVYE domain has been reported in
response to abiotic stress tolerance [11]. In phosphoinositide signaling, the generation of a
second messenger occurs through the activation of phospholipases. PI-phospholipase C
(PLC) catalyzes the hydrolysis of PIP2 to generate the soluble second messenger’s inosi-
tol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). In plants, DAG is converted into
phosphatidic acid (PA), while IP3 may be further phosphorylated to form inositol hexak-
isphosphate (IP6). PA may also be generated by hydrolysis of structural phospholipids
such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE) by phospholipase
D (PLD) enzymes [12]. Although the study of these lipid second messengers has provided
evidence of their importance in plant defense response under stress, many questions still
need to be answered. As a continuation, the roles of IP3, IP6, PA, and other lipid second
messengers in plants are described below.

3.1. IP3 as a Second Messenger in Plant Cells

PIs constitute a class of membrane phospholipids that are substrates for phosphoinositide-
specific phospholipase C (PI-PLC). PI-PLC catalyzes the hydrolysis of PIP2 to generate
two important second messengers, IP3 and DAG [12]. In plant systems, the role of IP3
in releasing Ca2+ from cellular stores has been widely reported [13]. However, a critical
component that is still unknown in plant cells is a putative IP3 receptor (IP3-R). The
search for an IP3-R has been underway for many years. Various authors have approached
the search for an IP3 receptor through in silico and in vivo analyses, and an interesting
approach that has been taken is the search for homologous gene(s) that encode the IP3
receptor in plants. Sequencing of the green algae Chlamydomonas sp. genome, which does
possess such a receptor, has made it possible to generate valuable genetic information to
explain that this gene has been discarded during the evolution of plants. Additionally, at
the protein level this does not clarify whether plants express an IP3-R, as it indicates only
that there is no plant protein that has an IP3 receptor RIH domain [ryanodine, (RYR) and
IP3 homology] in animals in structural homolog databases [14,15].

On the other hand, an interesting aspect of IP3 as a second messenger that is well
documented is the rapid intracellular changes that this molecule shows under biotic or
abiotic stimulation. For example, Monteiro et al. [16] reported that IP3 caused an influx of
Ca2+ in the growing pollen tube of Agapanthus umbellatus under osmotic shock treatment.
Additionally, biphasic changes in IP3 were detected in response to gravity in Arabidopsis
inflorescence stems [17] and Avena sativa [18] or cold exposure in Arabidopsis suspension
cells [19]. The release of IP3 has often been linked to the activation of PI-PLC [13,14,20].
For example, in Arabidopsis, an increase in IP3 via PI-PLC activation in response to blue
light induces the release of Ca2+ [21]. Legendre et al. [22] hypothesize that the activation
of PI-PLC and increase in IP3 could be a way by which polygalacturonic acid triggers
an oxidative burst in soybean cell suspensions. Recently, Ren et al. [23] showed that the
increase in IP3 after heat shock in Arabidopsis plants is partially dependent on the activity
of AtPLC3 (Arabidopsis thaliana Phosphoinositide-Specific Phospholipase C Isoform 3).
Collectively, these examples indicate that the increase in IP3 as a consequence of PI-PLC



Int. J. Mol. Sci. 2021, 22, 2658 4 of 13

activity, could be dependent on an increase in the substrate PIP2 levels, as observed in
response to abiotic stress in plants [13].

3.2. Inositol 1,2,3,4,5,6-Hexakisphosphate as a Putative Signaling Mediator

Myo-inositol-1,2,3,4,5,6 hexaskisphosphate (IP6 or phytic acid) is a component of plant
cells that regulates many cellular functions. In plants, IP3 might be phosphorylated into
IP6 by two inositol kinases, inositol polyphophate multikinase 6/3 (IPK2), and inositol
polyphosphate (IPK1). IP6 accumulates in large amounts in seeds, pollen, and other storage
tissues, where it serves as a source for Pi, inositol, and minerals [3,24]. As a signaling
molecule, IP6 has received attention in recent years. Some authors point out that IP6 is the
central signaling molecule rather than IP3 [25–28]; however, it is also clear that there is an
important contribution of IP3 as a precursor for IP6 generation. In contrast, there are reports
showing that IP6 controls cellular reactions through the mobilization of intracellular Ca2+

deposits. For example, Lemtiri-Chlieh et al. [25] suggested a signaling role of IP6 in abscisic
acid (ABA)-regulated Ca2+ release in guard cells in which the vacuole may contribute to
the release of Ca2+ in response to IP6. In this way, it is necessary to determine whether
these molecules send different signals in plants, and it would be interesting to undertake
studies that allow evaluation of the impact of IP3 and IP6 on the same cellular response.

3.3. Phosphatidic Acid

Phosphatidic acid (PA) may be formed from structural membrane lipids such as (PC
and PE by phospholipase D, mainly to produce PA species such as PA 18:3/18:2 and PA
18:2/18:2. Additionally, the combined action of PI-PLC and diacylglycerol kinase (DGK)
generates the PA species 16:0/18:2 and 16:0/18:3 [29]. Therefore, lipidomic tools have
allowed research to reveal which metabolic pathway is activated in response to stress. Dif-
ferential 32P radiolabeling and chromatography technique has been most commonly used
to reveal the signaling mechanisms that are involved in hormonal signaling, cytoskeleton,
and vesicle trafficking [30–34]. One limitation biochemistry methodologies have faced
is that cellular levels of PA are highly dynamic in response to stimuli and to the various
enzymatic reactions that modulate its production and degradation.

The role of PA, as a second messenger, has been established by identifying PA-binding
domains (PABD) within PA effectors in different plant cell processes. This suggests the
importance of this molecule as a central messenger in phospholipid-mediated signaling.
Recently, an increasing number of PABDs fused with fluorescent proteins have been used
as probes to obtain images of the spatiotemporal distribution of PA in plant cells [35,36].
For instance, the PABD-derived probe Spo20p (Spo20p-PABD) was fused with YFP to
monitor PA in growing pollen tubes in tobacco [35]. This biosensor allowed us to detect
that the different distribution of PA in the subapical zone is important in the regulation of
endocytosis and in the actin dynamics for growth of the pollen tube. Using an optogenetic
biosensor, Li et al. [36] development a probe with NADPH oxidase PA-binding domain
(RBOHD-PABD) based on Förster resonance energy transfer (FRET) and found that biosen-
sor can monitor the dynamic changes in PA in the plasma membrane in Arabidopsis cells in
response to saline and hormonal stress. These findings have contributed to understanding
the dynamics of PA in cells under specific environmental conditions, however there is still
the challenge of delving into the subcellular distribution of PABD when expressed as PA
sensors fused with XFP in response to stress.

Another aspect that has been addressed for the study of PA is through the enzyme
PLD. Genetically modified plants have also been used to address the role of some PLD
isoforms in the production of PA in response to abiotic stress [37,38]. The results showed
that the cellular response derived from the activation of the PI-PLC pathway is functionally
different from that resulting from PLD, although both enzymes can generate PA.

For a thorough understanding of the molecular mechanism by which PA regulates
different developmental processes in plants, the reader is referred to many excellent reviews
on this subject [39–42].
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3.4. Other Lipid Second Messengers

The roles of other lipid classes in plant cells during abiotic stress, such as sphingolipids
and lysophospholipids, have recently been discovered. The term sphingolipids covers
a class of lipids composed of the following three blocks: the long chain base (LCB), the
amide-linked fatty acyl chain to the LCB, and the polar head group. LCB is considered the
simplest functional sphingolipid and may be linked to a very-long-chain fatty acid via an
amide bond to form a ceramide [43]. LCB esterification with a phosphate group at C1 occurs
to form phosphorylated LCBs (LCB-P). In plants, the different classes of sphingolipids
and LCB-Ps allow these molecules to function both as bioactive lipid components to
regulate diverse cellular processes, including signaling, and as structural components in
the membrane in plant cells [43,44]. Although the first evidence of the role of LCBs as
second messengers was reported for stomatal closure [45,46], its identity remains unclear.
For this reason, several research groups have focused on genetic analysis with mutants
to establish whether a particular LCB-P is a mediator of signaling. Michaelson et al. [47]
analyzed a mutant with a T-DNA insertion in the 4-desaturase gene in Arabidopsis and
exposed it to ABA. Their results showed that phosphorylated 4E-sphingenine (SPH-P) was
not involved in stomatal closure in Arabidopsis. In contrast, complex sphingolipids such as
glucosyl ceramide (GlcCer) and glucosyl inositol phosphoryl ceramides (GIPC) have also
been reported in plant tissues; however, they have not yet been assigned a role as signaling
molecules in plants. Thus, an interesting question to be investigated is whether plants
possess an enzymatic degradation pathway for structural and complex sphingolipids such
as GIPCs to generate signaling molecules involved in the response to stress in plants. For
more details on sphingolipid biosynthesis, see the recent reviews by Huby et al. [43] and
Cassim et al. [48].

Lysophospholipids (LPLs) are phospholipids that harbor one fatty acyl chain and are
generally produced from a large pool of glycerol- and sphingosine-based phospholipids in
the membrane lipid bilayer by phospholipase A [1]. Examples of these are lysophosphatidic
acid (LPA), lysophostatidylcholine (LPC), sphingosylphosphorylcholine (SPC), and sphin-
gosine 1-phosphate (S1P). The signal functions of LPLs are much less well documented
than those of phospholipids. For instance, LPA has been suggested to participate in osmotic
signaling in algae [49]. LPC and S1P, have also been proposed as second messengers in
plant cells [50,51]. In 2007, Drissner and coworkers reported that LPC is an important
signal in arbuscular mycorrhizal symbiosis in Solanum tuberosum L.

These findings infer that LPLs exhibit a wide range of biological activities. It is
therefore necessary to elucidate the underlying mechanisms by which the LPLs signal
is transduced in plant cells. One aspect that has been addressed is the identification
of receptors. Although in animal cells it has been established that the effect of LPLs is
mediated by G protein-coupled receptors (GPCRs), this in plants is still controversial.
Coursol et al. [52] reported that heterotrimeric G proteins have been identified as molecular
elements in S1P signaling during ABA regulation in Arabidopsis guard cells. In contrast,
Wielandt et al. [53] reported that plasma membrane +H-ATPase (PM +H-ATPase) as a
lysophospholipid receptor evidenced the participation of LPLs as important plant signaling
molecules in the regulation of electrochemical gradients in Arabidopsis.

4. Link between Lipid Second Messengers and Osmotic Stress
4.1. Osmotic Stress-Induced Lipid Second Messengers

Osmotic stress is one of the most important abiotic stresses for crop productivity. Plant
cells experience osmotic stress when the solute concentrations in their apoplast change and
respond with compensatory adaptations to reestablish osmotic equilibrium [4]. To survive
osmotic stress, such as high salinity or dehydration, plant cells activate signaling pathways
that lead to a wide range of responses in gene expression and metabolism. Although the
importance of salinity and drought has been recognized for a long time, the identity of
the molecular components involved in signaling tolerance in plants has been gradually
established. Evidence has shown the importance of lipid-mediated reorganization of cell
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membranes, as well as its role in signaling to respond to changes in osmotic stress in plant
cells [54–56]. However, more work is needed to fully describe the impact that lipid second
messengers have on the molecular landscape during osmotic stress in plant.

4.2. IP3 and IP6 upon Osmotic Stress

A worldwide problem in the cultivation of plants is caused by high salinity in soils,
which causes cells to lose water and experience reduced turgor pressure [57]. Osmotic
stress imposed by NaCl or KCl generates a rapid increase in IP3 and mobilization of
Ca2+ in different models of plants, such as Arabidopsis [58,59], Daucus carota L. [56,60],
and Nicotiana tabacum [15]. Previous work has reported that osmotic stress activates the
PI-PLC pathway [61]. For example, Hirayama et al. [62] reported a PLC gene, AtPLC,
in Arabidopsis that is induced by salt and drought stress. Another study [61] analyzed
the expression patterns of TaPLC1 under drought and high salinity stress (200 mM NaCl
or 20% (w/v) PEG) in wheat plants. Their data showed that the expression of TAPLC1
was low in the seedling stage and was strongly induced under osmotic stress conditions.
Additionally, in our group, Usorach (2016) (unpublished data) observed a 20% increase in
the in vitro activity of PI-PLC by 3[H]-IP3 formation in barley coleoptiles under conditions
of saline stress (NaCl: 50200 nM), which was contrary to that observed by osmotic stress
with mannitol and sorbitol (100–400 nM). Interestingly, in barley roots, PI-PLC activity
increased by 50% under both saline and osmotic stress (unpublished data).

These results suggest that PI-PLC activity is different for each plant tissue that is
subjected to osmotic stress, though it must also be take considered that enzymatic activities
are affected in plants by the type of stress.

Additionally, the use of pharmacological approaches, such as PI-PLC inhibitors, has
provided a molecular view of the link between the PI-PLC pathway and IP3 under osmotic
stress. This strategy has made it possible to observe how the calcium signal is affected by
inhibiting the production of IP3 and blocking metabolite biosynthesis induced by water
stress. In this context, Parre et al. [63] reported that the inhibition of PI-PLC by U73122
decreased IP3 levels and in the Ca2+ signaling. These results showed that Ca2+/PI-PLC
signaling is a committed step in the biosynthesis of proline (an osmolyte) in response to
water stress. Recently, a connection between phosphoinositides and osmotic stress gene
expression was also demonstrated. Takahashi et al. [59] reported that hyperosmotic stress
induces a rapid and transient elevation in IP3 levels in Arabidopsis T87 cells due to PI-PLC
activation. However, when the cells were treated with neomycin and U73122, not only
the levels of IP3 but also the expression of hyperosmotic stress-inducible genes decreased
under hyperosmolality.

The involvement of IP3 as a lipid second messenger is still controversial because the
increase in the levels of IP3 contrasts with the relatively high levels of IP6, which conse-
quently generates a potent release of Ca2+ compared to IP3. The two explanations for this
could be: (1) IP6 is also an important form of phosphate storage (e.g., seeds), so tissue speci-
ficity is an important factor for that response; and (2) the constant breakdown of inositol
polyphosphates (IPPs) causes a flux from IP6 and consequently Ca2+ release. However,
there is still a long way to go to clarify the IP6 signaling mechanism in plants [3,64].

Guard cells, as an experimental model, have made it possible to study the role of IP6
in the ABA (drought stress hormone) response, which induces stomatal closure, conserving
water and ensuring plant survival [65]. In an interesting work, Lemtiri-Chlieh et al. [25]
demonstrated by laser scanning confocal microscopy in dye-loaded patch-clamped guard
cell protoplasts that the detected increase in cytoplasmic Ca2+ was due to its release from
endomembrane stores triggered by IP6.

In contrast, signaling PIs are terminated through the action of PI phosphatases and
inositol polyphosphate phosphatases (PTases). In the case of IP3, 5TPases have the ability
to hydrolyze it to prevent its accumulation and consequently alter the oscillations of Ca2+

in stress-related pathways. In this sense, strategies such as mutation or overexpression
of inositol type I 5PTase genes have been used to establish the importance of IP3 in saline
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signaling. For example, Golani and coworkers [66] reported that T-DNA insertion mu-
tants of At5PTase9 increase salt sensitivity and that overexpression of this gene increased
salt tolerance. Another example is Arabidopsis SAL1 [also known as FIERY1 (FRY1)], a
gene encoding an inositol polyphosphate-1 phosphatase in Arabidopsis that enhances
salt tolerance.

Multiple laboratories have developed mutants to evaluate the importance of FRY1
in of IP3 metabolism [55,67,68]. It has been shown that fry1-mutant plants treated with
ABA induces a sustained increase in IP3 levels (not transient levels), which improves stress
responses. For instance, Xiong et al. [55] showed that loss-of-function mutations in FRY1
enhanced the induction of stress-responsive genes such as RD29A, KIN1, and COR15A
upon drought, salt and ABA treatments. However, overexpression or ectopic expression of
Arabidopsis SAL1 could not enhance salt tolerance [69]. These findings are very interesting
and have allowed us to raise the possibility that specific genes could be regulated through
a different pathway.

4.3. Involvement of PLD-Derived PA in Osmotic Stress

PA plays an important and complex role in plant drought and salt stress tolerance
in plants [70]. PA reportedly has the ability to act as a docking site for proteins that
play an important role in salinity or drought conditions. Likewise, putative proteins and
PA binding motifs have been identified, making it possible to know the identity of the
signaling components involved in the response to osmotic stress [41,57]. In this context,
McLoughlin et al. [41] identified eight putative PA-binding proteins recruited to membranes
in response to salt stress in Arabidopsis roots through a proteomic approach. Among these
were clathrin heavy chain (CHC) isoforms and glyceraldehyde 3-phosphate dehydrogenase
(GAPDH), which were recruited towards the membrane for their interaction with PA in
response to saline stress. Other examples are proteins of the sucrose nonfermenting-
1-related protein kinase 2 (SnRK2) family [29,41,71]. Julkowska et al. [57] performed
an in planta study to characterize the interaction of the PABD in SnRK2 upon saline
stress. Their results showed that PABD/domain 1 in SnRK2.4 plays a role in the response
to saline stress in Arabidopsis. An interesting approach was taken by Yu et al. [72] to
investigate the relationship between PA and MAPK (mitogen-activated protein kinase)
signaling in response to salt stress in Arabidopsis. The authors reported that salt stress
induces a transient increase in the amount of PA and its binding to mitogen protein kinase
6 (MPK6) and stimulates its kinase activity, which phosphorylated salt overly sensitive
1 (SOS1 Na+⁄H+ antiporter) [72]. However, knockout of PLDaœ1-derived PA resulted in
the generation of less PA and reduced MPK6 activity, leading to the accumulation of more
Na+ in leaves and increased sensitivity to NaCl stress.

In contrast, some reports have that the molecular species of PA (i.e., PAs with different
fatty acyl chains) may exhibit different affinities towards their target proteins [73]. For
example, the PA molecular species 16:0/18:2 has the highest affinity for MAPK6. Together,
these results indicate that the regulation of PA towards its target proteins under stress
conditions is extremely complex due to (1) the fatty acid composition of PA formed by the
different contributions of the PI-PLC and PLD pathways that would be active, (2) different
PA species interacting with the different target proteins, and (3) different isoforms of PLD
and their preference for different substrates (i.e., PC, PE, or PG). This raises the possibility
of specificity in signaling, which consequently allows interaction with different effectors.
PA and cytoskeletal dynamics are intimately interconnected in plant cells to adapt to
saline concentrations. During the response to salt stress, plant cells undergo microtubule
depolymerization and reorganization, and both processes are believed to be essential for
plant survival under salt stress [64,74]. However, what are the molecular mechanisms that
mediate the changes in actin or tubulin dynamics by PA?

Currently, it is known that both the enzyme PLD and its PA product are important
regulators of the behavior of actin filaments through the regulation of actin capping proteins
(CPs) [75] or the arrangement of cortical microtubules [76,77]. In this context, it has been
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reported that PLD may be a linker that connects microtubules with the plasma membrane.
Gardiner et al. [78] reported a microtubule-binding protein (MAP) with PLD activity in
Arabidopsis. Later, Lee et al. [79] demonstrated for the first time that PLD is involved
in the regulation of the actin cytoskeleton in soybean cell culture, since the exogenous
addition of PA induced actin polymerization. Through proteomic analysis, it has been
observed that tubulin is also a target protein for PA [29] and that the binding might not
be direct but might occur through a MAP called AtMAP65-1, since the increase in PA
by PLDα action recruits AtMAP65-1 to the membrane and induces stabilization of the
microtubules, which confers survival against saline stress [80]. Our understanding of
the role of PA formation in the osmotic stress response has greatly increased through
traditional model systems. However, it is necessary to explore the potential mechanisms by
which PA causes downstream effects in emergent models that are of agronomic importance.
For example, barley (Hordeum vulgare) crops are severely affected by the high salinity
of soils and hyperosmotic stress, which makes them excellent experimental models to
study the role of PA and its relationship with tubulin in the cytoskeleton. Probing this
hypothesis, we explored by confocal microscopy whether microtubule organization was
affected by osmotic stress, when the coleoptiles and barley roots were treated with NaCl
and mannitol (Figure 2A–F). The distribution of the microtubules was heterogeneous in
the cytoplasm of the coleoptiles cells subjected to saline stress (Figure 2B) while in the
roots, it became evident that the organization of the microtubules was interrupted by the
increase in intracellular compartments (Figure 2E) compared to the control. In relation to
mannitol, no differences were observed in the distribution of microtubules in coleoptiles
and roots (Figure 2C,F). These results indicate that the activation of PLD under saline stress
is important for the reorganization of microtubules in coleoptiles and barley roots, but
whether PLD interacts directly or indirectly via PA needs to be determinate.

Figure 2. Organization of microtubules in coleoptiles and barley roots under osmotic stress. The images (A,D) show the
distribution of the microtubules in the central plane of the cells of the coleoptile apex and the radical apex in roots without
treatment. The distribution of the microtubules was disrupted when cells of coleoptiles and root were treated with NaCl
(100 mM, images B,E) or mannitol (200 mM, images C,F). Fluorescence-labeled microtubules were visualized with a confocal
laser microscope (Nikon Eclipse Ti). Scale bar = 20 µm.
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4.4. Other Second Messengers Involved in Osmotic Stress

In comparison to the large body of work related to sphingolipids in the mammalian sys-
tem, there is a paucity of published studies analyzing bioactive sphingolipids in plants [81].
However, an understanding of the roles of sphingolipids in the response to osmotic stress
has been facilitated by mutants in plants. Experiments by Wu et al. [82] showed that At-
ACER (an Arabidposis thaliana alkaline ceramidase) mutants were more sensitive to salinity
stress and displayed increased ceramides and reduced LCBs, which suggests that ceramides
are an important component in the response to salinity. In another work, Zhang et al. [80]
explored the participation of the rice S1P lyase gene (OsPL1) in transgenic tobacco plants
under saline stress through a functional analysis. Another bioactive component that has
generated interest is sphingosine kinase (SPHK), which phosphorylates phytosphingosine
to generate phyto-S1P. This is due to its interaction with PA as a component in transduction
and the ABA effect in stomatal closure. Guo et al. [83] reported that SPHK1 and SPHK2 are
molecular targets of PA and are part of the signaling networks in Arabidopsis. This could
suggest that the interaction between PA and sphingolipids is a critical point to coordinate
the response to stress in plants. Another compound analyzed is phosphoryl ceramide
(GIPC). Jian et al. [84], using a mutant, identified the importance of plant-specific GIPC
sphingolipids in the modulation of salt-associated ionic stress in the plasma membrane.
Recently, Yang et al. reported that NaCl (300 nM) inhibited sphingolipid accumulation in
a ceramide kinase-deficient mutant. These observations suggest that these compounds
may also fulfill important signaling roles. Although there is no direct evidence linking
sphingolipids and salt stress, sphingolipidomic analysis could yet reveal a link.

In relation to lysophospholipids, it has been suggested that LPC could be a candidate
second messenger since it regulates different protein kinases, phosphatases and other
signaling molecules. For example, MPK6 has been reported to be a target protein for
lysophospholipids derived from pPLAIIIγ. Studies suggest that the activation of MAPK6
causes the phosphorylation of the antiporter Na+/H+ SOS1, which contributes to reduc-
ing Na+ levels in plants [85]. In contrast, analysis of a pPLAIIIγa knockout mutant in
Arabidopsis showed that the plants were sensitive, while overexpression improved the
tolerance of the plants to saline stress [86]. Future studies should be carried out to establish
whether pPLAIIIγ responds by modulating other independent pathways to SOS during
osmotic stress.

5. Conclusions and Perspectives

Plants constantly face different types of abiotic stresses and their response involves
the generation of second messengers. In this review, we summarize the second messengers
derived from lipids and the molecular scenarios of their involvement in the response to
osmotic stress in plants (Figure 3). Interestingly, multiple studies indicate that these second
messengers drive downstream responses involving protein-protein interactions. Although
research using omics studies has contributed to the understanding of the mechanism
that these signaling molecules carry out, it is necessary to further exploit the field of
genetic manipulation. In this sense, it would be interesting to use editing technologies
and genetic approaches such as knockout lines, to learn more about the function of IP6,
lysophospholipids and sphingolipids in planta in other experimental models. Another
aspect to be addressed is the identification of more molecular targets of lysophospholipids
and sphingolipids that allow to explain the effects of osmotic stress in different plant cells.
Therefore, in the future, efforts should be devoted to conducting new studies that combine
genetic and molecular approaches that could contribute to the understanding of osmotic
signaling in plant cells. In conclusion, lipid second messengers are important players
in osmotic signaling in plant cells, and there are still potential studies that need to be
conducted to clarify the molecular mechanism. This will allow to development of strategies
to generate crops with least negative impacts on normal physiology due to osmotic stress.
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Figure 3. Proposed model for lipid-derived second messengers under osmotic and salt stress in plant cells. Osmotic and
salt stress is perceived at the cell membrane, which activates PI-PLC, PLD and sphingolipid signaling to produce lipid
second messengers that trigger the release of calcium from different sources, directly or indirectly. The changes in calcium
concentration are sensed by calcium sensor proteins (e.g., CaM calmodulin, CML calmodulin-like protein sensors). In
this response, PI-PLC and PLD signaling promotes a chain of reactions that includes IP3, IP6, and PA. PA has numerous
targets, such as SNRK2 (snf1-related protein kinase2), MAD 65-1 (microtubule-associated protein MAD 65-1), and MPK6,
that produce diverse cellular effects, such as actin and cortical microtubule polymerization. Finally, lysophosphatidic acid
(lyso-PA) or lysophosphatidylcholine (LPC) can also stimulate many cellular processes.
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