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PENet—a scalable deep-learning model for automated
diagnosis of pulmonary embolism using volumetric CT
imaging
Shih-Cheng Huang 1,2,10✉, Tanay Kothari3,10, Imon Banerjee 1,2,4,5, Chris Chute3, Robyn L. Ball2, Norah Borus3, Andrew Huang3,
Bhavik N. Patel 5, Pranav Rajpurkar3, Jeremy Irvin3, Jared Dunnmon5, Joseph Bledsoe6, Katie Shpanskaya5, Abhay Dhaliwal7,
Roham Zamanian8,9, Andrew Y. Ng3,11 and Matthew P. Lungren1,2,5,11✉

Pulmonary embolism (PE) is a life-threatening clinical problem and computed tomography pulmonary angiography (CTPA) is the
gold standard for diagnosis. Prompt diagnosis and immediate treatment are critical to avoid high morbidity and mortality rates, yet
PE remains among the diagnoses most frequently missed or delayed. In this study, we developed a deep learning model—PENet, to
automatically detect PE on volumetric CTPA scans as an end-to-end solution for this purpose. The PENet is a 77-layer 3D
convolutional neural network (CNN) pretrained on the Kinetics-600 dataset and fine-tuned on a retrospective CTPA dataset
collected from a single academic institution. The PENet model performance was evaluated in detecting PE on data from two
different institutions: one as a hold-out dataset from the same institution as the training data and a second collected from an
external institution to evaluate model generalizability to an unrelated population dataset. PENet achieved an AUROC of 0.84
[0.82–0.87] on detecting PE on the hold out internal test set and 0.85 [0.81–0.88] on external dataset. PENet also outperformed
current state-of-the-art 3D CNN models. The results represent successful application of an end-to-end 3D CNN model for the
complex task of PE diagnosis without requiring computationally intensive and time consuming preprocessing and demonstrates
sustained performance on data from an external institution. Our model could be applied as a triage tool to automatically identify
clinically important PEs allowing for prioritization for diagnostic radiology interpretation and improved care pathways via more
efficient diagnosis.
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INTRODUCTION
With an estimated 180,000 deaths per year, pulmonary embolism
(PE) remains a leading cause of death in the United States.1 The
definitive diagnosis of PE is made on imaging via computed
tomography pulmonary angiography (CTPA).2 Prompt recognition
of the diagnosis and immediate initiation of therapeutic action
(anticoagulation and mechanical thrombectomy) is important
because delay in PE diagnosis and treatment is associated with
substantially increased morbidity and mortality rates.3,4 Unfortu-
nately PE remains among the diagnoses most frequently missed,
in part due to lack of radiologist availability, physician fatigue, and
diagnostic error. Studies has shown that there can be up to a 13%
discrepancy rate between overnight radiologists and daytime
faculty.5–7 Increasing pressure is placed on hospital systems to
provide 24–7 access to advanced imaging and to ensure that the
results of urgent findings, such as PE, are rapidly and accurately
communicated to the referring clinician.8,9 However, providing
rapid and accurate diagnostic imaging is increasingly difficult to
sustain for many medical systems and radiology providers as
utilization has expanded; for example, CTPA usage alone in the
emergency setting has increased 27-fold over the past 2
decades.10,11

Applications of deep learning have already shown significant
promise in medical imaging including chest and extremity X-
rays,12–15 head CT,16 and musculoskeletal magnetic resonance
imaging (MRI).17 But despite the potential clinical and engineering
advantages for utilization of deep learning automated PE
classification on CTPA studies, significant development challenges
remain when compared to other applications. For example, CTPA
examinations are orders of magnitudes larger than most common
medical imaging examinations (i.e., chest X-rays or head CT) and
PE findings represent only a small fraction of the pixel data relative
to the 3D CTPA volume. Further exacerbating this signal-to-noise
problem are the extreme inter-image and interclass variance
unique to CTPA studies caused by a reliance on timing of
intravenous contrast injection protocol and patient compliance
with breath holding instructions; the variations in breathing
motion and timing of contrast bolus injection lead to artifacts and
increased noise.18 Lastly, generalization across institutions parti-
cularly in the setting of varying CT scanner models and
reconstruction methods present another difficult problem in
generalization for automated diagnosis.
Despite these challenges, deep learning for automated PE

diagnosis on CTPA as an end-to-end solution, if successful, could
serve as an excellent clinical use case because (1) PE is a common
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lethal disease and strategies for rapid, accurate, diagnosis is of
high concern to clinicians, patients, payers, and regulatory bodies;
(2) CTPA imaging is the most commonly performed imaging
examination for PE diagnosis; (3) definitive diagnosis of PE can be
made on CT imaging (further diagnostic work-up or pathologic
confirmation not needed) which fits well for an supervised
learning approach. The emerging application of deep learning
models in medical imaging is enabling a collaborative man-
machine environment by intelligent prioritization of radiology
studies for interpretation to reduce time to diagnosis for critical
diseases and identifying abnormalities (i.e., brain hemorrhage on
head CT imaging) and motivates the development of new
algorithms for other emergent conditions such as PE on CTPA
exams.17,19,20

The bulk of the early work in automated PE diagnosis has
focused on leveraging clinical variables and/or ventilation-
perfusion imaging (rather than CTPA) as inputs to run simple
artificial neural networks with modest success and limited clinical
applicability due to poor generalization.21–24 Prior efforts toward
automation of PE diagnosis using CTPA have focused on
traditional feature engineering methodologies; while the higher
performing among these have reported sensitivity as high as 75%
for diagnosing PE on CTPA studies, each have significant
drawbacks due to the relatively high burden of development
and implementation, including manual feature engineering,
complex preprocessing adding significant time and infrastructure
costs, and a lack of external validation to understand the
generalizability and identify overfitting.25–30 In contrast, advance-
ments in deep learning possess inherent advantages over prior
approaches due, in part, to obviating the need for hand crafted
feature engineering and flexibility as an “end-to-end” classification
solution.
More recent work has turned toward CTPA imaging PE

diagnosis using convolutional neural networks (CNNs); for
example, Tajbakhsh et al.30 applied 3D CNN on CT imaging to
detect PE and relied on extensive preprocessed generated
features via segmentation and vessel-alignment as an input for
their CNN model. Similarly, Yang et al.31 reported a two-stage
convolutional neural network with a state-of-the-art 0.75 sensitivity
on a small test set (20 patients), however, they subdivided each
CTPA into small cubes to evaluate model performance rather than
the entire CTPA scan. These approaches, while among the first to
address the significant technical challenges of automated PE
diagnosis on CTPA, suffer from artificially constrained study
conditions and lack a viable “end-to end” solution required for
realistic real time clinical application.
The purpose of this work is to develop and evaluate an end-to-

end deep learning model capable of detecting PE using the entire
volumetric CTPA imaging examination with simultaneous

interpretability at the volumetric level that is robust to application
on external dataset. If successful this work may lead to
applications for timely PE diagnosis, including in resource
constrained settings.

RESULTS
Model performance
The performance of PENet on the internal (Stanford) and external
(Intermountain) tests sets are detailed in Table 1. Over the entire
Stanford hold-out test set of 169 studies (84 negative and 85
positive), the PENet achieved an AUROC of 0.84 [0.82–0.87] (Fig. 1).
For the external validation dataset from Intermountain with
200 studies (106 negative and 94 positive), the PENet model
trained only on Stanford dataset, achieved an AUROC of 0.85
[0.81–0.88]. The published overall rate of positive diagnosis of PE
on pulmonary CTA varies from study to study but usually ranges
between 14 and 22%.32,33 To simulate prevalence of PE in the real
world, we adopted a new bootstrap testing strategy where we
randomly selected within a range of 14–22% of positive cases and
the remaining negative cases. In order to test generalizability, we
simulated the sampling 100 times and this gave us an AUROC of
0.84 [0.79–0.90] on the Stanford dataset and 0.85 [0.80–0.90] on
the Intermountain dataset (Table 1). The accuracy, specificity and
sensitivity stayed fairly consistent between the balanced test set
and bootstrapped experiment. As expected, the positive pre-
dictive value (PPV) and negative predictive value (NPV) were
affected by the difference in positive and negative case
distribution—low number of true positives (only 14–22%) in the
dataset and our choice of a high sensitive operating point (as
mentioned in the Discussion) contributes to lower PPV and higher
NPV. In the clinical setting, however, optimizing sensitivity of the
positive cases is more relevant than PPV (more false positives)
since our system will be used as a worklist triage tool and all cases
with probabilities higher than the threshold can be further
checked and filtered by radiologists. Such human–machine
interaction will improve both PPV and NPV value.

Comparison with state-of-the-art 3D CNN models
As detailed in Table 2, PENet with 24 slices input outperforms
ResNet3D, ResNeXt3D and DenseNet3D by a wide margin: 0.04
AUROC higher on the internal test dataset and 0.02 AUROC higher
on the external test dataset as compared to the next best
performing model. It is important to note that all models
converged during the training process. We also compare the
effect of pretraining our PENet model with the Kinetics dataset.
The no-pretrain version of PENet is trained first by using the same
pretrain hyperparameters then the same fine-tune hyperpara-
meters as the standard PENet. Pretraining PENet increases

Table 1. Model performance.

Internal dataset: Stanford Internal dataset: Stanford
(real prevalence)

External dataset: Intermountain External dataset: Intermountain
(real prevalence)

Metric

Accuracy 0.77 [0.76–0.78] 0.81 [0.80–0.82] 0.78 [0.77–0.78] 0.80 [0.79–0.81]

AUROC 0.84 [0.82–0.87] 0.84 [0.79–0.90] 0.85 [0.81–0.88] 0.85 [0.80–0.90]

Specificity 0.82 [0.81–0.83] 0.82 [0.82–0.83] 0.80 [0.79–0.81] 0.81 [0.80–0.82]

Sensitivity 0.73 [0.72–0.74] 0.75 [0.73–0.77] 0.75 [0.74–0.76] 0.75 [0.73–0.77]

PPV/precision 0.81 [0.80–0.81] 0.47 [0.45–0.48] 0.77 [0.76–0.78] 0.44 [0.43–0.46]

NPV 0.75 [0.74–0.76] 0.94 [0.94–0.95] 0.78 [0.77–0.79] 0.94 [0.94–0.95]

Model performance on the internal test set (Stanford) and external test set (Intermountain) with 95% confidence interval using probability threshold of 0.55
that maximizes both sensitivity and specificity on Stanford validation dataset. Bootstrapping is used to generate prevalence of PE in real world (between 14
and 22%).
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performance by 0.15 AUROC on the internal test set and 0.23
AUROC on the external test set. The current state-of-the-art PE
detection model by Yang et al.31 reported a sensitivity of 0.75.
based on 20 patients, however, these results are incomparable to
ours since the authors subdivided each CTPA into small cubes to
evaluate model performance rather than the entire CTPA scan. We
attempted to test the model developed by Yang on our dataset to
produce a comparable result, but the codebase published by the
authors is not trivial to reproduce.

Clinical utility
In order to understand the clinical utility of the pretrained PENet
model, Fig. 2 shows the sensitivity and specificity of our model as
a bar graph under different operating points. In this study, we set
our operating point at a threshold that maximizes both sensitivity
and specificity on the Stanford validation set to dichotomize the
model’s predictions with P ≥ 0.55 (Table 1). This threshold allows
our model to achieve a sensitivity of 0.73 [0.72–0.74] and
specificity of 0.82 [0.81–0.83] for the Stanford test data, as well
as sensitivity of 0.75 [0.74–0.76] and specificity of 0.80 [0.79–0.81]
for the Intermountain dataset. While a standard probability
threshold of 0.5 results in 0.80 sensitivity and 0.75 specificity for
Stanford, as well as 0.79 sensitivity and 0.68 specificity for
Intermountain. Applications in clinical settings, however, are
usually tuned to maximize sensitivity in order to minimize the
false negative rate. If we use an operating point of 0.40 to increase
sensitivity, our model can achieve a sensitivity of 0.91 for both the
internal and external test set but sacrifices specificity to 0.43 and

0.45, respectively and results more false-positive cases (Fig. 2). We
can further improve PENet’s sensitivity with the cost of higher
false-positive rates. In Fig. 3, we represent the Class activation map
(CAM) for Stanford and Intermountain sample data. The CAMs not
only add explain-ability to the model and localization of the PE but
also help to understand the error-rate through visualization. For
both dataset, we also showed CAMs for false-positive and false-
negative samples which reflect the fact that the model is confused
with mirroring appearance of difference disease for false-positive
cases.

DISCUSSION
The purpose of this work was to develop and evaluate an end-to-
end deep learning model capable of detecting a PE using the
entire volumetric CTPA imaging examination with simultaneous
interpretability at the volumetric level that is robust to application
on external dataset. Our model achieved AUROC of 0.84 on
automatically detecting PE on the hold out test set from Stanford
and AUROC of 0.85 on external Intermountain datasets. The high
performance of our model on the external dataset which had both
different slice thickness and scanner manufacturer type, indicating
that the model was robust to the differences between datasets
and not, as has been seen in prior work, failed by learning non-
clinical features as has been demonstrated in other cross-
institutional work.34 In contrast to state-of-the-art, our results
demonstrate feasibility for study-level, robust, and interpretable
diagnosis including sustained cross-institutional AUROC

Table 2. Comparison with state-of-the-art 3D CNN models.

Internal dataset: Stanford External dataset: Intermountain

Metric (AUROC)

PENet—24 slices kinetics pretrained 0.84 [0.82–0.87] 0.85 [0.81–0.88]

PENet no pretraining 0.69 [0.74–0.65] 0.62 [0.57–0.88]

ResNet3D-50 kinetics pretrained 0.78 [0.74–0.81] 0.77 [0.74–0.80]

ResNeXt3D-101 kinetics pretrained 0.80 [0.77–0.82] 0.83 [0.81–0.85]

DenseNet3D-121 kinetics pretrained 0.69 [0.64–0.73] 0.67 [0.63–0.71]

AUROC on the internal test set (Stanford) and external test set (Intermountain) with 95% confidence interval: ResNet3D47, ResNeXt3D45 and DenseNet3D46

were pretrained with Kinetics-600 and finetuned using the Internal dataset using the same training hyperparameters as PENet. PENet outperforms each of
these models on both the internal and external test set.

Fig. 1 PENet performance on independent test datasets. Receiver operating characteristic curve (ROC) with bootstrap confidence intervals
on Stanford internal test set (a) and Intermountain external test set (b).
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performance on an external dataset. Thus, this work supports that
successful application of deep learning to the diagnosis of a
difficult radiologic finding such as PE on complex volumetric
imaging in CTPA is possible, and can generalize on data from an
external institution despite that the external institution used a
different CT scanner and imaging protocol settings. The proposed
model also outperformed state-of-the-art 3D CNN models—
ResNeXt3D and DenseNet3D for the same task.
To summarize, the core contributions of this work is: (1)

development of a scalable (and open-source) 3-D convolution
model for diagnose of PE on CT imaging that has been tested on
patient data from two hospital systems (Stanford and Intermoun-
tain); (2) an outcome-labeled imaging dataset composed of CTPA
studies to enable others to reproduce our methods, validate
results, and to ideally allow for further innovation (3) an end-to-
end model that can ingest volumetric CTPA imaging studies
without pre-processing or feature engineering. Ultimately clinical
integration may aid in prioritizing positive studies by sorting CTPA
studies sensitivity for timely diagnosis of this important disease
including in settings where radiological expertize is limited.

Radiologists all over the world are reading rising numbers of
imaging studies with ever increasing complexity amidst ongoing
physician shortages; this trend affects both medically under-
served populations as well as modern healthcare systems.35

Further, even experienced radiologists are subject to human
limitations, including fatigue, perceptual biases, and cognitive
biases, all of which lead to errors.36 These forces strongly
motivate leveraging deep learning to perform tasks in medical
imaging, and as demonstrated here, could be used to detect PE
automatically via worklist prioritization, allowing the sickest
patients to receive quicker diagnoses treatment. In this scenario,
the studies detected as abnormal by the model could be moved
ahead in the image interpretation workflow to aid the
radiologist, while the examinations identified as confidently
normal could be automatically assigned a preliminary reading of
“normal” allowing both triage for lower priority on a worklist.
Our model may best suited in identifying medically important
PEs as a triage tool.35,37 We engineered the model such that it
could automatically generate an interpretable prediction value
to provide an objective quantification of PE positive risk to help
inform ideal thresholds for clinical application in a diagnostic

Fig. 2 (Sensitivity vs. specificity plot): Sensitivity and specificity across different operating point (probability threshold) with increment of 0.05
on the Stanford internal test set (a) and Intermountain external test (b).
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workflow. For example, we could set probability thresholds of
0.3 allowing the model to be more sensitive while sacrificing
accuracy and increasing false positives (see Fig. 2), something
that would be tolerated in a worklist triage tool that functions to
reorder the radiologist’s studies to be read by order of likelihood
of PE (rather than the current model of by time acquired). Rapid
preliminary results by the model can be conveyed to the
ordering provider (and patient) which could improve disposition
in other areas of the healthcare system (i.e., discharged from the
ED more quickly). Further, the objective prediction score output
may allow earlier treatment for PE in patients that return a high
positive PE prediction score, which may improve clinical
outcomes for those patients as it may allow for rapid/early
treatment.38 More studies are necessary to evaluate the optimal

integration of this model and other deep learning models in the
clinical setting.
This study had important limitations. This was a retrospective

study design with well described shortcomings. The deep learning
model described was developed and trained on data from one
large academic institution and although performance was
sustained in a new dataset from another institution, universal
generalizable performance is not known. We optimized develop-
ment of the model to focus on clinically important PE as an
emergent triage tool in keeping with clinical definitions for
recommended treatment and cases of chronic or subsegmental PE
were not included.35 In a clinical environment, CTPA examinations
can also be used to evaluate for other important diagnoses not
just for PE, though this is not common practice, and our model as

Fig. 3 (Class Activation Maps): Class activation map (CAM) representation of true positive (Stanford (a) and Intermountain (b), false-positive
(Stanford (c) and Intermountain (d) and false-negative samples (Stanford (e) and Intermountain (f)—axial contrast enhanced CT pulmonary
angiogram (left) and CAM inferred by the model overlay with the scan (right). a (Stanford test set: true positive): (left) demonstrates a non-
occlusive filling defect in a left lower pulmonary artery segmental branch that is correctly localized by the model as seen in the CAM image
overlay (right). b (Intermountain test set: True Positive): (left) demonstrates a non-occlusive filling defect in a left main pulmonary artery that is
correctly localized by the model as seen in the CAM image overlay (right). c (Stanford test set: false positive): left) demonstrates a large left
hilar node adjacent to the pulmonary artery that is incorrectly labeled as PE by the model as seen in the CAM image overlay (right).
d (Intermountain test set: false positive): (left) demonstrates an enlarged unopacfied left lower lobe pulmonary vein invaded by tumor that is
incorrectly labeled as PE by the model as seen in the CAM image overlay (right). e (Stanford test set: false negative): (left) Pulmonary embolism
in right middle lobe segmental branch that is missed by the model as seen in the CAM image overlay (right). f (Intermountain test set: False
negative): (left) Pulmonary embolism in left upper lobe segmental branch that is missed by the model as seen in the CAM image overlay
(right).
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designed would not identify other important pathologies. Lastly,
We did not perform an analysis on specific artifacts in either the
internal or external dataset (this is difficult to quantify as a label on
what constitutes artifact in terms of limiting diagnostic perfor-
mance) as this was not a primary label for the dataset. However,
we used retrospective datasets from both institutes (Stanford and
Intermountain) and did not exclude studies for the purpose of
motion artifact (used clinical labels). Therefore, we believe that our
results are, while less than perfect, are more representative of
routine clinical practice than had we intentionally removed cases
with motion or bolus artifacts.
In conclusion, we developed a predictive deep learning model

capable of detecting PE on CTPA with validation on data from an
outside institution. The sustained performance on external
validation data supports potential applicability of this technology
to improve healthcare delivery for patients being evaluated for PE
with CT. Further studies are necessary to determine patient
outcomes and model performance in a prospective clinical setting.

METHODS
Internal dataset
We retrospectively collected 1797 CTPA studies from 1773 unique patients
performed under the PE Protocol (LightSpeed QXi, GE Healthcare,
Milwaukee, USA) at Stanford University Medical Center (SMC) (Table 3).
These studies were pulled from local picture archiving and communication
system (PACS) servers and anonymized in compliance with internally
defined Health Insurance Portability and Accountability Act (HIPAA)
guidelines. Axial CT series with a slice thickness of 1.25mm were extracted
for the development of our algorithm. These studies were split into a
training set (1461 studies from 1414 patients), a validation set (167 studies
from 162 patients) and a hold-out test set (169 studies from 163 patients).
To generate the validation and test sets, stratified random sampling was
used to ensure that there was an equal number of positive and negative
cases. Care was taken to ensure that there was no patient overlap between
training, validation, and test sets.

External validation
In order to evaluate the generalizability across institutions of the model
performance for PE detection, 200 CTPA studies from 198 patients
performed under the PE protocol (Aquilion Toshiba Medical Systems,
Otawara, Japan) were collected from Intermountain healthcare system.
This external dataset was not available during the training process and was
only used to evaluate the model performance. Axial CT series with a slice
thickness of 2 mm were extracted. Stratified random sampling technique is
used to create the external test set. Table 3 describes the datasets and
patient demographics for each data partition.

Annotations and image preprocessing
For the entire cohort (internal and external) two board-certified radiologist
manually reviewed each study (scans and radiology reports). One

radiologist BP has 8 years of experience and the other ML has 10 years
of experience in clinical radiology practice. Interrater reliability was
estimated as Cohen’s Kappa Score and the raters were highly consistent
for determining PE present with kappa scores of 0.959. The senior
radiologist resolved all conflicting cases manually for preparing the ground
truth labels. We used standard descriptions of PE to label PE negative, PE
positive and subsegmental-only PE positive studies, with slight modifica-
tions to account for anatomic variations and the orientation of vessels in
the transverse plane on CT scans.39 Particularly, subsegmental only PE was
defined as the location of the largest defect at the subsegmental level on a
spiral CT allowing a satisfactory visualization of all pulmonary arteries at
the segmental level or higher. Subsegmental only PE is felt to be of
questionable clinical value, so we removed all subsegmental only PE
studies from our dataset.40 Training data were labeled on a slice level for
the presence/absence of a PE. Before feeding into the model, examinations
were extracted from Digital Imaging and Communications in Medicine
(DICOM) format and scaled to 512 × 512 pixels. The entire series of N slices
was saved as a N × 512 × 512 array.

PENet architecture
PENet is a 3D convolutional neural network that aims to detect the PE in a
series of slices from a CTPA study (Fig. 4). The use of 3D convolutions
allows the network to use information from multiple slices of an exam in
making each prediction. That is, with 2D convolutions each slice would be
considered independently, whereas 3D convolutions aggregate informa-
tion from many consecutive slices. This is especially relevant in diagnosing
PE, where the abnormality rarely occupies just a single slice. The model
that we developed, the PENet, is built using four architectural units: the
PENet unit, Squeeze-and-Excitation block, the PE-Net bottleneck and the
PE-Net encoder41 (Supplementary Table 1). The PENet unit is meant to
process 3D input data, using a 3D CNN followed by group normalization
and activated by LeakyReLu.42 The Squeeze-and-Excitation block (SE-block)
serves to model the interdependencies between channels of the input and
adaptively recalibrates channel-wise features. A PENet bottleneck is built
using three PENet units, with a SE-block inserted after the group
normalization layer of the last PENet unit. A skip-connection is also
applied between the PENet bottleneck input and the SE-block output.
Multiple PENet bottlenecks, ranging from three to six, join in sequence to
build the PENet encoder. Our final model consists of an individual PENet
Unit, following by four PENet encoders and GapLinear activation. The
depth of the network was chosen via cross-validation on the training data:
shallower networks were not able to model the complexity of the dataset,
whereas deeper networks showed lower performance on a held-out
validation set due to overfitting.

Network training strategy
The PENet was pretrained on the Kinetics-600 dataset,43 after which we
replace the 600-way softmax layer with a single-output linear layer and
sigmoid activation. To accommodate large input sizes with limited GPU
memory requiring small batch sizes, we replaced batch normalization with
group normalization throughout.44 For regularization, we applied L2
regularization of 1 × 10−3 to all learnable parameters. For the loss function,
we used binary cross-entropy focal loss to counteract class imbalance and
focus training on difficult examples (despite the balanced number of

Table 3. Data characteristics of the internal (SMC) and external (Intermountain) dataset.

Overall Train Validation Test External test
(intermountain)

Number of studies 1797 1461 167 169 200

Median age (IQR) 66.14 (53.24–82.40) 66.13 (53.14–82.95) 64.10 (50.88–78.38) 67.24 (56.62–82.76) 55.3 (42.0–69.5)

Number of patients (Female %) 1773 (57.07%) 1414 (56.64%) 162 (67.36%) 163 (52.08%) 198 (58.5%)

Median number of slices (IQR) 386 (134) 385 (136) 388 (132) 388 (139) 324

Number of positive PE 655 488 82 85 94

Number of negative PE 1142 973 85 84 106

The internal SMC dataset was divided into training, validation and test. The training set was used to optimize model parameters and the validation set was
used to select the best model and operating points. The hold-out test set was used to evaluate the model’s performance. The external Intermountain dataset
was used solely for evaluation.
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positive and negative cases, the window-level dataset is heavily skewed
towards negative examples). The optimized hyper-parameters for PENet
can be found in Supplementary Table 2.
Given the small PE targets relative to the input volume, PENet takes in a

sliding window of 24 slices at a time instead of the entire volumetric CT
scan. Using this sliding window approach increases the proportion of the
target PE relative to the input which ultimately escalates the model
optimization and reduce the requirement of computational resources. The
choice of 24 slices is determined through experimentation on the
validation data (Table 4); smaller number of input slices does not provide
enough information for the model to learn while too many input slices
makes PE hard to detect. Before training, all slices consisting of raw
Hounsfield Units are clipped to the range [−1000, 900] and zero-centered.
During training we resized each CT slice to 224 × 224 for computational

efficiency, randomly cropped to 192 × 192 along the height and width
axes, rotated up to 15°, and jittered up to 8 slices along the depth
dimension for data augmentation. After passing each batch, the gradient
of the loss was computed on the batch, and PENet’s parameters were
adjusted in the opposite direction of the gradient. We used stochastic
gradient descent with momentum of 0.9 and an initial learning rate of 0.1
for the randomly initialized weights and 0.01 for the pretrained weights.
We labeled a window as positive if it contains at least 4 abnormal slices,
and we up-sampled positive windows at a rate of 35%. Since the smallest
PE still takes up 4 slices of CT, the number of abnormal slices for a positive
window is chosen via cross validation, ranging from 1 slice to 4 slices. The
upper limit of our cross-validation range is determined by the number of
slices the smallest PEs in our dataset take up. During the training process,
we realize that if we chose more than this upper limit, some positive
studies will contain no positive window which may introduce more outlier.
For the learning rate schedule, we adopted a linear warmup for 10k
iterations, followed by cosine annealing for 600k iterations. Additionally,
we delayed the learning rate schedule by 10k iterations for the pretrained
weights. The model parameters were saved after every epoch and the
model with the highest AUROC on the validation set was chosen for
evaluation on the test set.
In order to setup a benchmark for this task, we compare PENet to several

common 3D CNN architectures in Table 2. This includes the current state-
of-the-art model architecture for Kinetics dataset, ResNeXt3D-101,45 as well
as memory efficient DenseNet3D-12146 and the classic ResNet3D-50.47 All
of these models are pretrained on the Kinetics dataset then fine-tuned on
the internal PE dataset until convergence (exactly like PENet).48 A learning
rate finder49 described by Smith et al. is used to find the optimal learning
rate for each of the model architectures mentioned above.

Test strategy
We sequentially sampled 24-slice windows from each study and passed it
through the model to get a window-level prediction. We took the
maximum window-level prediction as the series-level prediction. Thus, the

Fig. 4 PENet architecture used in this study. PENet is built using four architectural units: the PENet unit, Squeeze-and-Excitation block, the
PE-Net bottleneck, and the PE-Net encoder. Each building block in the network is color-coded.

Table 4. Input slice number experimentation.

Internal dataset:
Stanford

External dataset:
Intermountain

Metric (AUROC)

PENet—1 slice 0.48 [0.45–0.51] 0.51 [0.47–0.54]

PENet—6 slices 0.57 [0.53–0.60] 0.58 [0.55–0.59]

PENet—12 slices 0.74 [0.70–0.77] 0.69 [0.67–0.72]

PENet—24 slices 0.84 [0.82–0.87] 0.85 [0.81–0.88]

PENet—48 slices 0.80 [0.77–0.83] 0.83 [0.76–0.86]

AUROC on the internal test set (Stanford) and external test set
(Intermountain) with 95% confidence interval: smaller input slice number
does not provide enough structural information to learn while too many
input slices makes pulmonary embolism hard to detect.
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series was predicted as PE positive, if the model predicted any one of the
windows as positive. This method is intuitive because PE often resides in a
few slices of CT scans, therefore one sliding window that is predicted with
PE should represent the entire CTPA series. The same testing strategies
that were applied on the Stanford test data were used on the
Intermountain dataset to ensure consistency between evaluations.

Interpretation of the model prediction
To ensure interpretability, we identified locations in the scan that
contributed most to the classification using CAMs. We have implemented
the Class Activation Mapping based on the descriptions from Zhou et al.50

Briefly, the authors used a trained CNN classifier to localize the input image
by using CAM. After running the CTPA study thought PENet, the CAMs
from the final convolutional layer for the input window are extracted. The
discriminative image regions used by the model to classify positive PE
candidates is computed by taking the global average pooling on all 2048
output features from the last convolutional layer with weights from the
fully connected layer. This is then mapped to a color scheme and up
sampled and overlaid with the original input slices. Using the weights from
the final layer, more predictive features appear brighter, and thus the
brightest areas of the heatmap are regions that influence the model
prediction the most.
https://www.youtube.com/watch?v=ZdOabYt4Cjo

Statistical methods
The comprehensive evaluation of the performance of the model on the
test sets included area under the receiver operating characteristic curve
(AUROC), sensitivity, specificity, accuracy, PPV, and NPV. The predicted
probability threshold for returning a positive finding was determined on
validation set, ensuring a high sensitivity for PEs while maintaining a
reasonable specificity for subsegmental PEs. To measure the variability in
these estimates, we calculated 95% DeLong CIs for the AUROC of the
model, and 95% Wilson score CIs for sensitivity, specificity, accuracy, PPV,
and NPV at each operating point. In addition, to better understand the
performance of the algorithm in diagnosing PEs, we calculated these
performance metrics and confusion matrices for the entire dataset.
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