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Abstract: Hemorrhagic fever with renal syndrome (HFRS) is an important public health 

problem in China. The identification of the spatiotemporal pattern of HFRS will provide a 

foundation for the effective control of the disease. Based on the incidence of HFRS, as well 

as environmental factors, and social-economic factors of China from 2005–2012, this paper 

identified the spatiotemporal characteristics of HFRS distribution and the factors that 

impact this distribution. The results indicate that the spatial distribution of HFRS had a 

significant, positive spatial correlation. The spatiotemporal heterogeneity was affected by 
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the temperature, precipitation, humidity, NDVI of January, NDVI of August for the 

previous year, land use, and elevation in 2005–2009. However, these factors did not 

explain the spatiotemporal heterogeneity of HFRS incidences in 2010–2012. Spatiotemporal 

heterogeneity of provincial HFRS incidences and its relation to environmental factors 

would provide valuable information for hygiene authorities to design and implement 

effective measures for the prevention and control of HFRS in China. 

Keywords: hemorrhagic fever with renal syndrome (HFRS); geographically weighted 

regression (GWR); spatiotemporal heterogeneity; affecting factors 

 

1. Introduction 

Hemorrhagic fever with renal syndrome (HFRS), a rodent-born endemic disease caused by 

hantaviruses (family Bunyaviridae), has a wide global distribution. China is the most severely 

hantavirus-affected country and has accounted for 90% of global HFRS cases in the last decade. 

Moreover, there is a tendency of HFRS prevalence in the autonomous regions and metropolitan areas, 

with the exception of Qinghai and Taiwan Provinces [1]. During previous decades, the overall HFRS 

incidence has declined considerably in mainland China [2]. However, in recent years, the HFRS 

incidence has tended to increase in some regions of China [2,3]. It is necessary to identify the specific 

regions and potential factors that comprise this distribution. 

In China, HFRS is caused mainly by two types of hantavirus, Hantaan virus (HTNV) and Seoul 

virus (SEOV), each of which has co-evolved with a distinct rodent host. HTNV is carried 

by Apodemusagrarius, and SEOV by Rattusnorvegicus. Rodents are the predominant reservoir of 

hantavirus and excrete virus-containing urine, feces, and saliva when chronically infected. Humans 

usually become infected with hantaviruses through contact with or inhalation of aerosols and 

secretions from infected rodent hosts [4].The external environmental factors, including temperature, 

rainfall, relative humidity, NDVI, elevation and land use, not only affect the rate of replication of 

virus, but also have an impact on disease reservoir-rodents and contact between the human and rodent 

populations [5], which eventually affects HFRS incidence. 

Studies in different areas of China and other countries have suggested that external environmental 

factors, including natural factors (such as temperature [6–8], precipitation [4,5,9], humidity[7], 

normalized difference vegetation index (NDVI)[10,11] and elevation[6]) and social-economic factors 

(such as land use [6,12]), may affect the incidence of HFRS. These factors may differentially influence 

the incidence of HFRS in different regions because of the spatiotemporal heterogeneity in climate 

types, ecological characteristics, population immunity, public health intervention measures, and 

socioeconomic factors within different regions [13]. 

Many studies have been conducted regarding the pathogenesis of hantaviruses, the epidemiologic 

characteristics of HFRS, and the potential affecting factors [3,6,10,14–16]; these studies have 

facilitated an understanding of the severity of HFRS and its spatial distribution in China [12,17–21]. 

However, only a few studies have investigated the impact of natural and social-economic factors on 

the spatiotemporal heterogeneity of HFRS. The distribution of HFRS has changed in recent years, and 
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the reasons for this change remain unclear. It is important to characterize the HFRS spatial-temporal 

trend and reveal the potential affecting factors. Given the spatiotemporal heterogeneity of HFRS cases, 

the geographically weighted regression (GWR) model serves a good means of finding the local factors 

affecting HFRS epidemics. The objective of this study was to characterize the spatiotemporal 

dynamics of HFRS epidemics and to identify the impact of environmental factors and social-economic 

factors for the spatiotemporal heterogeneity with the GWR model. This study should provide valuable 

information for health authorities to design and implement effective measures for the prevention and 

control of HFRS in China. 

2. Material and Methods 

2.1. Data Collection 

Data regarding the HFRS incidence, population, environmental factors, and social-economic factors 

at the province level of China in 2005–2012 were collected. The environmental factors [22] included 

temperature [6,7], precipitation [6,23], humidity [7], NDVI [10], and elevation[9,24]. The social-economic 

factors included land use [6], cultivated land area and grain yield. The specific variables used are listed 

in Table 1. 

Table 1. List of variables used in the HFRS incidence analysis in China, 2005 to 2012. 

Variables Type and Year Data Source 

Temperature Yearly mean temperature China Meteorological Data Sharing Service System 

Precipitation Yearly mean temperature China Meteorological Data Sharing Service System 

Humidity Yearly mean temperature China Meteorological Data Sharing Service System 

NDVI Yearly mean temperature ftp://ladsweb.nascom.nasa.gov/ 

NDVI01 Monthly mean NDVI of January ftp://ladsweb.nascom.nasa.gov/ 

NDVI08 Monthly mean NDVI of January ftp://ladsweb.nascom.nasa.gov/ 

Cultivatedland area Acreage sown to grain China Statistical Yearbook 

Grain yield Grain production China Statistical Yearbook 

Land50 Closed (>40%) broad-leaved deciduous forest (>5 m) http://due.esrin.esa.int/globcover/ 

Land100 
Closed to open (>15%) mixed broad-leaved and  

needle-leaved forest (>5 m) 
http://due.esrin.esa.int/globcover/ 

Land110 Mosaic forest or shrub-land (50–70%)/grassland (20–50%) http://due.esrin.esa.int/globcover/ 

Land120 Mosaic grassland (50–70%)/forest or shrub-land (20–50%) http://due.esrin.esa.int/globcover/ 

Elevation DEM data 
Data Center for Recourses and Environmental 

Sciences Chinese Academy of Sciences 

The epidemiologic data from 31 provinces in mainland China were provided by the China 

Information System for Disease Control and Prevention. Because of the limitations of the data sources, 

the CDC records were insufficient to distinguish whether the reported numbers of human HFRS cases 

were caused by HNTV or by SEOV. However, according to Zhang’s study, from 2006 to 2012, HFRS 

infection in China was mainly caused by Apodemus, and the proportion of Apodemus-type infection in 

China had been increasing [25], so in the study, we did not distinguish HFRS cases caused by HNTV 

or by SEOV. Meteorological data as yearly means of precipitation, temperature and humidity were 

obtained from the China Meteorological Data Sharing Service System. Population and social-
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economicfactors (including cultivatedland area and grain yield) were obtained from the China 

Statistical Yearbook. Geographical data, including administrative data and Digital Elevation Model 

(DEM), were provided by the Data Center for Recourses and Environmental Sciences Chinese 

Academy of Sciences. NDVI data (including yearly mean NDVI and monthly mean NDVI) were 

obtained from ftp://ladsweb.nascom.nasa.gov/. Land use data (resolution of 300 m) were obtained 

from http://due.esrin.esa.int/globcover/. 

2.2. Methods 

2.2.1. Spatial Auto-Correlation 

Spatial auto-correlation [26] measures the degree of dependency among events while simultaneously 

considering their similarities and distance relationships [27–29]. 

(1) Global Indicators of Spatial Auto-Correlation 

Global indicators of auto-correlation measure if and how much a dataset is auto-correlated throughout 

the study region. One of the principal global indicators of auto-correlation is Moran’s index I [28], 

which is defined in Equation (1): ݊ܽݎ݋ܯᇱݏ	Ｉ = ܰܵ · ∑ ∑ ௜௝൫ݓ ௜ܻ − ܻ൯൫ ௝ܻ − ܻ൯ே௝ୀଵே௜ୀଵ ∑ ൫ ௜ܻ − ܻ൯ଶே௜ୀଵ  (1)

where N is the total pixel number, and in this study N refers to 31, the number of study provinces;  

Yi and Yj are the attribute value at points i and j (with i ≠ j), and in the study Yi refers to the HFRS 

incidence at province i; തܻ is the average value of HFRS incidence; wij is an element of the weight 

matrix (N × N). wij is a weight which can be defined as follows: when location i is contiguous to 

location j, the weight wij is given the weight of 1, otherwise the wij is given the weight of 0. S = ∑ ∑ w୧୨୒୨ୀଵ୒୧ୀଵ ܫ. ∈ ሾ−1,1ሿ. If ܫ ∈ ሾ−1,0ሻ, there is a negative auto-correlation; ifܫ ∈ ሺ0,1ሿ, there is a 

positive auto-correlation; if I=0, there is no auto-correlation. 

(2) Local Indicators of Spatial Auto-Correlation (LISA) 

Local indicators of spatial auto-correlation (LISA) enable the localization of clustered pixels by 

measuring the number of features inside the fixed neighborhood that are homogeneous [27,30]. In this 

study, we used the Local Moran’s I formula as defined below in Equation (2): 

௜ܫ = ܼ௜෍ݓ௜௝ ௝ܼே
୨ୀଵ  (2)

where ܼ௜ = ൫௒೔ି௒൯ටభొ ∑ ൫௒೔ି௒൯మ೔ಿసభ  and ௝ܼ = ൫௒ೕି௒൯ටభొ ∑ ൫௒ೕି௒൯మೕಿసభ are the standardized intensities at points i and j (i ≠ j) 

and wij is an element of the weight matrix. 

A high positive local Moran’s I value implies that the location has similarly high or low values as 

its neighbors, thus the locations are spatial clusters. Spatial clusters include “High-High” clusters  
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(high values in a high value neighborhood) and “Low-Low” clusters (low values in a low value 

neighborhood).A high negative local Moran’s I value means that the location under study is a spatial 

outlier. Spatial outliers are those values that are obviously different from the values of their 

surrounding locations. Spatial outliers include “High-Low” (a high value in a low value neighborhood) 

and “Low-High” (a low value in a high value neighborhood) outliers [31]. 

2.2.2. Geographically Weighted Regression (GWR) Model 

Given the spatiotemporal heterogeneity of HFRS, the related factors may affect HFRS in different 

ways and to different degrees, which is appropriate to analyze using a GWR model. Geographically 

weighted regression is an extension of the traditional multiple linear regression toward a local regression 

in which the regression coefficients are specific to a location rather than global estimates [26,27]. The 

geographically weighted regression (GWR) model is based on the spatial non-stationarity, which is 

common in spatial process: an explanation might be highly relevant in one application, but seemingly 

irrelevant in another; parameters describing the same relationship might be negative in some 

applications but positive in others; and the same model might replicate data accurately in one system but 

not in another [32]. A GWR model embeds the data’s spatial location into the regression parameter [32]. 

The local estimation of the parameters with GWR is expressed by Equation(3)[33]: ݕ௜ = ,௜ݑ଴ሺߚ ௜ሻݒ +෍ߚ௜௞ሺݑ௜, ௜௞ݔ௜ሻݒ + ௜௡ߝ
௞ୀଵ  (3)

I = 1, 2, …, m 

where i = 1, 2, …, 31 denotes the spatial location of provinces in China; yi is the dependent variable 

HFRS incidence at location i; independent variables xik is the value of the k parameter at location i, and 

in this study xik referred to the value of an affecting factor k (such as temperature, precipitation, NDVI) 

at province i, which is specific for every province; β0 is the intercept; βik is the correlation coefficient 

for the independent predictor variable xik, which is to be estimated; and ε୧ represents random error. 

Therefore every province in our study has a set of specific parameters to reflect the relationship 

between HFRS incidence and affecting factors. The regression coefficients of this equation are 

estimated at each location using data within a neighborhood. Therefore, this GWR model can measure 

the spatial variations in relationships [34]. 

2.3. Data Analyses Using Computer Software 

The calculation of spatial clusters and spatial outliers was performed using the software GeoDa 

(version 1.6.6, Spatial Analysis Laboratory, Urbana, IL, USA, 2014). Spatial analysis and GWR model 

analysis were performed using the software ArcGIS10.1 (ESRI, Redlands, CA, USA). 
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3. Results and Discussion 

3.1. Descriptive Statistics 

In 2005–2012, the epidemic situation presented an initial decline, which was followed by a slight 

increase (Figure 1). The incidence was 1.63/100,000 in 2005, declined to 0.66/100,000 in 2009, and 

then increased to 0.99/100,000 in 2012.The declining trend prior to 2009 fits well with the investment 

in public health and the improvement in health care and quality of life during these years [14]. Some 

efforts should be made to define the factors contributing to the increasing trend of HFRS incidence 

since 2009. 

Figure 1. The incidence of HFRS in China, 2005–2012. 

 

The HFRS incidence varied between provinces (Figure 2). In 2005–2009, Heilongjiang, Jilin, 

Liaoning, Shandong, Inner Mongolia, Shaanxi, and Zhejiang presented higher incidences; except for 

Shaanxi, these provinces with high HFRS incidences showed a declining trend. From 2010–2012, 

Shaanxi surpassed Heilongjiang and became the province with the highest HFRS incidence; however, 

the incidence in Shaanxi Province was not higher than the incidences in Heilongjiang and Liaoning in 

2005 and 2006. The HFRS incidences of traditional HFRS epidemic area in northeast China declined, 

which maybe the result of large-scale vaccination campaigns [25,35]. 

3.2. Correlation Analysis 

In this study, we adopted Pearson’s correlation coefficient to measure the correlation between 

HFRS incidence and possibly affecting factors. Pearson’s correlation coefficient is a measure that 

determines the degree to which two variable’s movements are associated. Many factors affected the 

HFRS incidence. According to Yan’s study, the peak HFRS frequency occurred three or four months 

later than the monthly NDVI peak [10]. Considering the results from Yan’s study [10] and the seasonal 

characteristics of HFRS, the correlation between the annual HFRS incidence and the yearly mean 

NDVI and monthly mean NDVI were considered. According to the results (Table 2), temperature, 
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NDVI of January, grain yield, and land use (Land50/Land100/Land110/Land120) were strongly 

correlated; the other factors were not significantly correlated. 

Figure 2. Yearly distribution of HFRS incidence in China, 2005–2012. * Per 100,000 individuals. 

 

This result might be because of the large scale of HFRS incidence. The correlation analysis also 

indicated that the relative factors of HFRS incidence varied with years. 

Table 2. Correlations between HFRS incidence and potential related factors. 

Potential Related Factors 2005 2006 2007 2008 2009 2010 2011 2012 

Temperature −0.390 * −0.396 * −0.298 −0.257 −0.314 −0.229 −0.19 −0.169 

Precipitation −0.226 −0.189 −0.206 −0.208 −0.137 −0.084 −0.077 −0.092 

Humidity −0.077 −0.061 −0.006 −0.018 0.063 0.106 0.121 0.064 

NDVI −0.075 −0.047 0.003 0.026 0.004 0.023 0.048 0.056 

NDVI01 −0.389 * −0.313 −0.185 −0.207 −0.205 −0.175 −0.092 −0.056 

NDVI08 0.279 0.301 0.297 0.269 0.294 0.245 0.258 0.182 

Cultivated land area 0.237 0.307 0.342 0.288 0.325 0.228 0.18 0.157 

Grain yield 0.355 * 0.399 * 0.380 * 0.356 * 0.335 0.262 0.271 0.235 

Land50 0.612 ** 0.738 ** 0.811 ** 0.727 ** 0.695 ** 0.486 ** 0.460 ** 0.381 * 

Land100 0.645 ** 0.758 ** 0.776 ** 0.173 0.18 0.139 0.166 0.131 

Land110 0.756 ** 0.847 ** 0.861 ** 0.720 ** 0.702 ** 0.481 ** 0.444 * 0.365 * 

Land120 0.496 ** 0.584 ** 0.613 ** 0.452 * 0.448 * 0.338 0.308 0.266 

Elevation −0.243 −0.234 −0.229 −0.212 −0.216 −0.161 −0.164 −0.141 

Notes: * represents p < 0.05; ** represents p < 0.01. 

3.3. Spatiotemporal Heterogeneity 

Based on the statistical and spatial analyses of HFRS incidence, the spatial auto-correlation was 

analyzed (Table 3). The HFRS incidence was significantly and positively auto-correlated in 2005–2009. 
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The Global Moran’s I scores were above 0.21 (p < 0.03), and the Global Moran’s I scores from  

2010–2012 significantly declined. The HFRS incidence was clustered from 2005–2009 and was then 

randomly distributed from 2010–2012. 

Table 3. Global Moran’s I. 

Year Moran’s I p 
2005 0.50 <0.01 
2006 0.45 <0.01 
2007 0.28 <0.01 
2008 0.21 0.03 
2009 0.26 0.02 
2010 0.05 0.18 
2011 0.00 0.29 
2012 −0.04 0.46 

 

Local indicators of spatial auto-correlation (LISA) can reflect the spatial clustering. The yearly 

LISA cluster maps of HFRS (Figure 3) demonstrated that Heilongjiang, Jilin, Liaoning, and Inner 

Mongolia constituted “High-High” zones in 2005. 

Figure 3. Yearly LISA cluster maps of hemorrhagic fever with renal syndrome (HFRS) in 

the People’s Republic of China, 2005–2012. * Per 100,000 individuals. 
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In 2006 (in contrast to 2005), Inner Mongolia became a “Low-High” zone. In 2007 (in contrast to 

2006), Shaanxi transitioned to a “High-Low” zone. In 2008 (in contrast to 2007), Jilin separately 

composed a “High-High” zone. In 2009 (in contrast to 2008), Shaanxi was not different from the 

surrounding provinces. From 2010–2012, Shaanxi constituted an obvious “High-Low” zone. The 

results demonstrate that since 2010, the traditional HFRS epidemic area in Northeast China appeared 

to be random, and Shaanxi became an HFRS “hot spot”, which indicated that HFRS incidence in 

Shaanxi exceeded the neighboring provinces’. 

3.4. Correlation between HFRS Spatiotemporal Heterogeneity and Related Factors 

3.4.1. 2005–2009: GWR Modeling and Spatiotemporal Heterogeneity Cause Analysis 

The correlation analysis indicated the HFRS incidences were significantly correlated with 

temperature, NDVI of January, grain yield, and land use (Land50/Land100/Land110/Land120), but not 

significantly with others, which meant the HFRS incidences were globally associated with the 

significant variables, but not globally associated with the others. The other factors were affecting 

factors chosen in many studies [5,9,20,36,37] and were significantly associated with HFRS incidence 

at some local scales. Exclusion of these factors might lead to losing potential information affecting 

HFRS epidemics. 

Based on the correlation analysis and other studies [10,13,20,22], the factors chosen for the GWR 

model included temperature, precipitation, humidity, NDVI01 (NDVI of January), NDVI08 (NDVI of 

August for the previous year), cultivated land area, grain yield, Land50, Land100, Land110, Land120 

and elevation. 

The GWR models of the HFRS incidence and related factors were constructed on the basis of the 

spatiotemporal heterogeneity of HFRS incidence rates. In this study, we have chosen an ADAPTIVE 

kernel whose bandwidth will be found by minimizing the corrected Akaike Information Criterion 

(AICc) value, which attempts to identify the best fixed distance or the best appropriate number of 

adjacent points of the regression province. The optimal GWR model for different year was chosen by 

the highest R2 value, which indicated the HFRS incidence was explained to a maximum extent. The 

results of the GWR model were compared with the results of an OLS model to identify the best 

interpretation for the spatiotemporal heterogeneity of the HFRS incidence rates. The R2 values 

obtained from the GWR model were between 0.60–0.88 in 2005–2009, and the R2 values obtained 

from the OLS model were between 0.41–0.84.The AICc values with the GWR model were lower than 

the AICc values with the OLS model (Table 4). The R2 values with the GWR model first increased and 

then decreased from 2005–2009 (Table 4). 

The results from the GWR model indicated a significant improvement compared with the OLS 

model, which could indicate that the GWR model explained more of the spatiotemporal heterogeneity. 

The GWR models for different years differed in their abilities to explain the spatiotemporal 

heterogeneity of HFRS. 

The R2 values exhibited a dissimilar distribution within each province in different years (Figure 4). 

In 2005–2007, the R2 values were relatively higher than the values in 2008 and 2009. The values in 

2005–2009 were 38–82%, 51–90%, 26–84%, 21–68%, and 33–47%, respectively. In 2005–2007, the 
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R2 values varied among the provinces, and the spatial distribution of the R2 values revealed a general 

decreasing trend from northeast to southwest, which indicated the factors of the GWR model explained 

the HFRS incidence well and the ability to explain the HFRS incidence was better in the traditional 

HFRS epidemic area in Northeast China compared with other areas. 

Table 4. Comparison of the OLS and GWR models. 

Year Model AICc R2 R2 adjusted p 
2005 OLS −583.57 0.70 0.66 0.000 

2005 GWR −591.09 0.81 0.76 <0.001 

2006 OLS −617.29 0.84 0.81 0 

2006 GWR −619.38 0.88 0.84 <0.001 

2007 OLS −620.36 0.69 0.66 0.000 

2007 GWR −628.60 0.82 0.76 <0.001 

2008 OLS −621.64 0.48 0.42 0.001 

2008 GWR −616.35 0.60 0.44 <0.001 

2009 OLS −622.18 0.41 0.34 0.004 

2009 GWR −627.27 0.63 0.55 <0.001 

Figure 4. Distribution of GWR local R2 values, 2005–2009. 
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The differences in the explanatory ability of the GWR model might be caused by differences in the 

HFRS incidences within different areas. This result is supported by the fact that the GWR model 

performed better in Northeast China (higher incidence) than Southwest China (lower incidence).  

In 2008 and 2009, the spatial differences in the R2 values were not obvious, which indicated there 

might be other factors not considered in this study. 

Different factors were chosen for the different optimal GWR models in different years(Table 5), and 

the coefficients (slope of variables) for specific year were different, which indicated that some factors 

affected the HFRS incidence in some years while some others did not, and that some factors weighed 

more than others in explaining the incidence. In 2005–2009, temperature, the NDVI of August for the 

previous year, and elevation were chosen for the model three times; precipitation and Land120 were 

chosen for the model twice; humidity, NDVI of January, and Land110 were chosen once. Additionally, 

different factors performed differently in the models. Temperature, precipitation and elevation 

decreased the HFRS incidence, while other factors promoted the HFRS incidence. 

Table 5. The GWR model coefficients, 2005–2009. 

Year 
Temperature 

10E−6 

Precipitation 

10E−7 

Humidity 

10E−7 

NDVI01 

10E−9 

NDVI08 

10E−9 

Elevation 

10E−9 

Land110 

10E−11 

Land120 

10E−10 

2005 −6.93–−2.29    3.20−12.31 −19.92–−8.69   

2006 −2.95–−1.21    1.82−8.41 −6.52–−5.67 3.75−6.57  

2007 −7.03–−1.97   3.28−14.08  −26.11–−7.23   

2008  −1.25–−0.64   2.95−5.25   0.37−1.95 

2009  −2.00–−1.55 8.41−10.39     1.14−1.50 

Taking the year 2006 as an example, the GWR model was analyzed (Figures 5 and 6). According to 

the temperature distribution in 2006 (Figure 5a), the temperatures presented a declining trend from the 

south to the north, and except for Qinghai and Xizang, the temperatures were between 0–25 °C. 

Corresponding to GWR model temperature coefficient distribution (Figure 6a), temperature decreased 

the HFRS incidence (the coefficients were negative), and the absolute value of the coefficient 

presented a declining trend from the northeast to the southwest, which indicates the temperature 

constraints were more effective in the northeast compared with the southwest. The result indicates that, 

at a year scale, in 2006, the temperature rise led to HFRS incidence decrease, and this effect in 

Northeast China was more obvious than in the southwest. The result was consistent with study in 

Shandong [24].Temperature influences the rodent population by affecting the pregnancy rate, number 

of fetuses, birth rate, and survival rate. Higher temperatures restrict the number of rodents [36]. 

According to the NDVI08 distribution in 2006 (Figure 5b), Northeast China and Eastern China 

presented higher NDVI values than other areas. Corresponding to the GWR model NDVI08 coefficient 

distribution (Figure 6b), the NDVI of August for the previous year promoted the HFRS incidence (the 

coefficients were positive). Furthermore, the coefficient presented a declining trend from the northeast 

to the southwest, which indicates the promoting role of the NDVI of August for the previous year was 

more effective in the northeast compared with the southwest. The result was consistent with recent 

studies [38,39]. The NDVI of August for the previous year reflected the level of vegetation coverage, 

which was an indicator of food and living conditions for rodents in the winter epidemic time. The 

northeast China with higher NDVI08 value took a higher HFRS epidemic risk. 
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Figure 5. Independent factor distribution, 2006. 

 

According to the Land110 distribution in 2006 (Figure 5c), this land use type is widely distributed 

in Northeast China, North China and West China, with a few regions in Southwest China. 

Corresponding to GWR model Land110 coefficient distribution (Figure 6c), Land110 promoted the 

HFRS incidence (the coefficients were positive), and the coefficient presented an increasing trend from 

the northwest to the southeast, which indicates the promoting role of Land110 was more effective in 

the southeast than in the northwest. According to the legend of land use, Land110 represents “Mosaic 

forest or shrub-land (50–70%)/grassland (20–50%)”, which may provide good habitats for rodents. 



Int. J. Environ. Res. Public Health 2014, 11 12141 

 

 

According to the elevation distribution in 2006 (Figure 5d), the southeastern terrain is lower than 

the northwestern part in China. Corresponding to GWR model Elevation coefficient distribution 

(Figure 6d), Elevation was protective against HFRS incidence (the coefficients were negative), and the 

absolute value of the coefficient presented an increasing trend from the northwest to the southeast, which 

indicates the elevation constraints were more effective in the southeast compared with the northwest. 

Figure 6. GWR model coefficients, 2006. 

 

Elevation presented a smaller constraint for HFRS incidence in the area below 1000 m than in other 

areas. And the result can be verified with Yan’s study [40], which proved that approximately 86.4% 

HFRS cases occurred in areas with 0–500 m elevation in the eastern part of China and the Sichuan Basin. 

The intercept in Figure 6 epresented an increasing trend from the northeast to the southwest, which 

indicates the GWR model explains the HFRS incidence in the high-risk areas of Northeast China and 

North China better than in the low-risk areas of Northwest China and Southwest China. In the area 

with intercept below 0, there may be other factors reducing the incidence; and in the area with intercept 

above 0, there might be factors increasing the incidence, which should be explored in further study. 

In our analysis, the optimal GWR model for 2005–2009 revealed that HFRS incidence was 

negatively correlated with temperature, precipitation, elevation, and positively correlated with 
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humidity, NDVI01, NDVI08, Land110 and Land120. Temperature was negatively associated with 

HFRS incidence in 2005, 2006 and 2007. By affecting rodents’ rodent pregnancy rate, litter size, birth 

rate, and survival rate, temperature affects the HFRS incidence [5,38]. The appropriate temperature 

promotes rodent population growth, and high temperatures restrict the number of rodents [36]. 

According to Yu’s [41] and Tang’s [42] studies, 2007 was the warmest year on the historical record, 

which may have threatened rodents and therefore decreased the HFRS incidence. Precipitation was 

negatively associated with HFRS incidence in 2008 and 2009, and the result was consistent with the 

findings of previous studies [5,39]. Appropriate precipitation not only functions as a stimulus for 

plant growth, but also improves the bionergy and infection rate of the hantavirus, which eventually 

increases HFRS incidence. However, excessive rainfall could have a negative impact on rodents by 

destroying their habitats, and frequent rain may decrease the likelihood of rodent-to-rodent contact, 

rodent-to-human contact, and virus transmission due to decreased rodent activity and reduced human 

exposure [5]. Humidity was positively associated with HFRS incidence in 2009, which was consistent 

with Xiao’s studies [38,39]. The moist environment provided suitable conditions for rodents. NDVI 

was positively associated with HFRS incidence. NDVI reflects the level of vegetation coverage, which 

provides not only food but also shelters for rodents. The positive correlation of NDVI and HFRS 

incidence was proved in many studies [37,38].Yan’s study[10] showed that the highest correlation 

coefficient was 0.67 between three months backward from the NDVI and the number of cases of 

HFRS in farmland, which laid foundation for choosing monthly NDVI for analysis and also verified 

our results. Elevation was negatively associated with HFRS incidence in 2005, 2006 and 2007. 

According to Yan’s study, HFRS incidence significantly declined as elevation increased and the 

highest incidence was observed in areas with elevation of 100–200 m [6]. In Liu’s study [9], they 

found that DEM had a great impact on HFRS transmission in January, February, June and July, and 

that the risk of HFRS decreased with the increase of DEM. The negative effect of DEM for HFRS 

incidence is consistent with the mentioned studies. Land use is a traditional affecting factor for the 

rodents and HFRS incidence, which can be proved by many studies [38,40,43]. Land use provides 

different habitats for different rodents which adapt to various environments [43]. Since different 

studies were conducted on different spatial scales at different study area, the correlated land use types 

were different. Yan’s study [6] showed Timber forest and orchard land were appropriate environments 

for rodent hosts in China. In this study, HFRS was positively correlated with land use type: Land110 

(Mosaic forest or shrub-land (50–70%)/grassland (20–50%)) and Land120 (Mosaic grassland  

(50–70%)/forest or shrub-land (20–50%)). 

3.4.2. 2010–2012: Spatiotemporal Heterogeneity Cause Analysis 

The spatial auto-correlations of HFRS incidences in 2010–2012 were not significant; thus, the 

GWR model was not suitable for the analysis. Reasonable explanations for the HFRS incidence were 

explored. Because of the significant correlations between the HFRS incidence and Land50 and 

Land110, it made sense that Northeast China, which had more land use types of Land50 and Land110 

distributions, had a relatively higher HFRS incidence. 

Shaanxi simultaneously became the highest HFRS incidence area in 2010–2012. According to some 

studies [3,44], HFRS was mainly distributed in Huxian, Zhouzhi and Changan of Shaanxi [3]. 
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According to Ma’s study in Xi’an, the dominant virus in Xi’an was HNTV and no SEOV was found, 

and there might be a ten-year cycle of HFRS in Xi’an, which can serve as a good explanation for the 

HFRS epidemic in Xi’an in recent years [45]. According to Li’s study conducted in Xi’an, the risk 

factors for HFRS included the workplace building site (near a rat’s nest), living at the edge of the 

village, and the presence of a river or pound around the workplace [3,44].The risk factors in this study 

explained the HFRS incidence in 2010–2012 to some extent. According to Barrios’s study [46], the 

increasing hantavirus incidence in recent years has been associated to global scale climate changes 

influencing the dynamics of forests and thereby inducing changes in rodents’ habitats, which might be 

the potential cause for HFRS epidemic in Shaanxi. Future studies should be conducted to clarify the 

potential cause. 

4. Conclusions 

In this study, the spatiotemporal heterogeneity of the HFRS incidence was analyzed, and GWR 

models were built based on the HFRS incidence data from 2005–2012 and the affecting factors. The 

findings suggested the chosen factors explained the spatiotemporal heterogeneity of HFRS incidence 

well for 2005–2009 and had better effects in Northeast China and North China than in the low incidence 

areas. At the same time, the chosen factors explained, in part, the HFRS incidence in 2010–2012. 

Regarding Shaanxi, which represents the highest HFRS risk province in recent years, environmental 

conditions, work conditions and mega-construction projects may have affected the incidence. 

This study had some limitations. The spatial scale of the study was performed at the province level 

and the incidences were annual, which might miss or conceal the heterogeneity of HFRS incidences. 

Additionally, the absence of rat density and vaccination data, no distinguishing between the HNTV 

and SEOV, may have affected the explanations of the HFRS incidences. Future studies should make 

efforts to solve the mentioned limitations. 

HFRS incidence demonstrated clear spatiotemporal heterogeneity in 2005–2012 and was primarily 

affected by meteorological elements (such as temperature and precipitation), landscape factors (such as 

NDVI and land use), and geographical factors (such as elevation). In recent years, the frequency of 

HFRS has been affected by human activities. Effective vaccination programs, rodent control measures 

and improvements in the living and work environments play important roles in HFRS control. 
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