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Abstract

Background

Teff is a staple food in Ethiopia that is rich in dietary fiber. Although gaining popularity in

Western countries because it is gluten-free, the effects of teff on glucose metabolism remain

unknown.

Aim

To evaluate the effects of teff on body weight and glucose metabolism compared with an

isocaloric diet containing wheat.

Results

Mice fed teff weighed approximately 13% less than mice fed wheat (p < 0.05). The teff-

based diet improved glucose tolerance compared with the wheat group with normal chow

but not with a high-fat diet. Reduced adipose inflammation characterized by lower expres-

sion of TNFα, Mcp1, and CD11c, together with higher levels of cecal short chain fatty acids

such as acetate, compared with the control diet containing wheat after 14 weeks of dietary

treatment. In addition, beige adipocyte formation, characterized by increased expression of

Ucp-1 (~7-fold) and Cidea (~3-fold), was observed in the teff groups compared with the

wheat group. Moreover, a body-weight matched experiment revealed that teff improved glu-

cose tolerance in a manner independent of body weight reduction after 6 weeks of dietary

treatment. Enhanced beige adipocyte formation without improved adipose inflammation in a

body-weight matched experiment suggests that the improved glucose metabolism was a

consequence of beige adipocyte formation, but not solely through adipose inflammation.

However, these differences between teff- and wheat-containing diets were not observed in

the high-fat diet group.
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Conclusions

Teff improved glucose tolerance likely by promoting beige adipocyte formation and

improved adipose inflammation.

Introduction

Teff (Eragrostis tef) is an ancient, indigenous cereal crop and the main staple food in Ethiopia

that is believed to have been domesticated before 1000–4000 BCE [1]. It is also grown in India,

Europe, Australia and the United States of America [2], and has become popular because it is

gluten-free [3]. Teff is one of the world’s smallest grains and is difficult to refine, making its

flour rich in fiber from the bran and germ [4]. Its name is derived from the Amharic term

“tefa”, meaning “lost”, because of its tiny size. It is estimated that 20%–40% of the carbohy-

drates in teff are resistant starches [5].

Recently, studies have shown that dietary fiber plays a role in lowering inflammation [6].

Dietary fiber also reduces body weight by acting on satiety mechanisms and post-prandial gly-

cemia by inhibiting absorption [7]. In addition, diets rich in whole grains and resistant

starches improve insulin responsiveness and reduce the incidence of type 2 diabetes compared

with diets based on refined grains [8].

Adipose tissue inflammation is a metabolic disorder implicated in the development of insu-

lin resistance mediated by macrophage recruitment [9]. Pro-inflammatory cytokines released

from adipose tissue consequently contribute to the progression of type 2 diabetes mellitus.

Adipose tissue inflammation is characterized by the increased presence of crown-like struc-

tures and upregulation of proinflammatory genes such as tumor necrosis factor α (TNFα) and

monocyte chemoattractant protein 1 (Mcp1; CCL2), and the macrophage marker, F4/80 [10].

Short chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, are products of

the microbiota in the intestine. Resistant starches and dietary fibers are the main substrates of

microbiota that produce SCFAs [11]. Notably, acetate is the most dominant product in the

intestine and attenuates chronic inflammation through activation of regulatory T cells [12].

Increasing evidence shows that SCFAs are potential targets for preventing or counteracting

obesity and its associated disorders, such as dysregulated glucose metabolism and insulin resis-

tance [13]. Although teff has become a familiar health food because of its gluten-free character-

istic, its effect on glucose metabolism remains completely unknown. Therefore, we evaluated

the effect of teff on glucose metabolism in vivo in mice.

Materials and methods

Animals and dietary groups

Male C57BL/6J mice were housed with a 12-h light–dark cycle at 24˚C. Animals had free

access to food and water. At 8 weeks, mice were randomly divided into four groups: (1) chow

diet plus 30% (w/w) wheat (CD-wheat), (2) chow diet plus 30% (w/w) teff (CD-teff), (3) high-

fat diet plus 30% (w/w) wheat (HFD-wheat), and (4) high-fat diet plus 30% (w/w) teff (HFD-

teff). Daily food intake was estimated by subtracting the food weight each day from the initial

food weight of the previous day. Mice were fed with the study diet from 8 to 22 weeks of age.

All experimental protocols were approved by the Animal Care and Use Committee of Shiga

University of Medical Science (Identification code: 2016-2-6, Approval date: 2016-03-07). Ani-

mals were treated in accordance with the Guidelines of the United States National Institutes of
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Health. All surgeries were performed under sevoflurane anesthesia and efforts were made to

minimize suffering throughout the study.

Tissue collection

Mice were euthanized after 5 h of fasting by intraperitoneal administration of 10% pentobarbi-

tal with sevoflurane inhalation before immediate tissue collection. Inguinal white adipose tis-

sue (iWAT) and epididymal WAT (eWAT) were dissected immediately, snap frozen in liquid

nitrogen, and stored at −80˚C until analysis, except for histological analysis. Ileum and cecum

feces were collected from the mice under deep anesthesia. Feces were collected and stored at

−80˚C until further analysis.

Diet composition

Teff (Eragrostis tef) was provided by The Teff Company (Nampa, ID, USA). Wheat flour was

from Nisshin Flour (Tokyo, Japan). The composition and energy density of experimental diets

are shown in Table 1. The control chow corresponded to the standard rodent diet used by the

American Institute of Nutrition (AIN-93G diet) from Oriental Yeast Co., Ltd. (Tokyo, Japan).

The amounts of micronutrients (minerals and vitamins) added were based on recommenda-

tions from the AIN-93G reference diet were adapted to the respective contents of each diet.

The high fat diet was purchased from Dyets Inc. [27% w/w safflower oil, 59% fat-derived calo-

ries; #112245, Bethlehem, PA, USA].

In vitro fermentation

Teff and wheat fermentation was performed according to a previous report [14]. Briefly, 20 g

of teff or wheat flour were mixed with 37 mL of distilled water in a 250 mL beaker. The con-

tents of the beakers were thoroughly mixed after addition of 3 mL (5%) of a previously fer-

mented batch (called ersho by the local people) to the fermenting substrate as a starter culture.

Fermentation was performed at room temperature (23 ± 1˚C) for 72 h. Samples were stored at

–80˚C until further analysis.

Table 1. Composition and energy density of experimental diets.

Variety Teff (Ivory)

(Per 100 g or %)

Wheat

(Per 100 g or %)

Calories, Kcal 369 366

Total Fat, g 3.1 1.5

Saturated Fat, g 0.8 0.34

Total Carbohydrate, g 74.5 75.9

Dietary Fiber, g 10.7 2.5

Starch, g 63.8 73.4

Protein, g 10.8 8.1

Ash, g 2.4 0.33

Moisture, % 9.2 14.17

Vitamin A, % NTa 0

Vitamin C, % NTa 0

Calcium, mg 121 20

Iron, mg 10.3 0.5

aNot tested because of insufficient levels

https://doi.org/10.1371/journal.pone.0201661.t001
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Glucose and insulin tolerance tests

The glucose and insulin tolerance tests (GTT and ITT, respectively) were performed at the

indicated time points. For the oral glucose tolerance test (OGTT), glucose (2 g/kg body weight)

was administered to mice by gavage after 15 h of fasting. For the intraperitoneal glucose toler-

ance test (IPGTT), mice received glucose (2 g/kg body weight) by intraperitoneal injection

after 5 h of fasting. For the ITT, mice received insulin by intraperitoneal injection (0.5 units/kg

body weight; human insulin, Eli Lilly, Inc., Indianapolis, IN, USA) after 5 h of fasting. Blood

glucose levels were measured at 0, 15, 30, 60, 90, and 120 min after insulin administration.

Meal tolerance test

To estimate postprandial glucose excursion in each group, the total mixed meal tolerance test

(OMTT) was performed after 6 weeks of dietary treatment by oral gavage of the assigned diet

(2.2 g/kg body weight, 33% solution in dH2O), after 15 h of fasting.

Body temperature measurements

For rectal temperature measurements, mice were placed in individual cages at room tempera-

ture (22–25˚C). Rectal temperature was measured by a rectal probe of a digital laboratory ther-

mometer (RET-3-ISO, type T thermocouple; Physitemp Instruments Inc, Clifton, NJ, USA).

The lubricated probe was inserted ~1.5 cm into the rectum for ~30 sec prior to each recording.

Blood analysis

Blood glucose levels were measured using whole blood taken from the tail vein using a Glutest

sensor (Sanwa Kagaku, Nagoya, Japan). Blood samples were collected from the tail vein with a

heparinized tube and centrifuged at 700 × g for 15 min. Plasma samples were stored at– 80˚C

until further analysis. Plasma levels of insulin were determined using a mouse insulin ELISA

kit (Morinaga, Kanagawa, Japan). For measuring mouse glucagon like peptide 1 (GLP1), fast-

ing plasma samples were stabilized with a protease inhibitor cocktail (Complete; Roche, Mann-

heim, Germany) and a specific dipeptidyl peptidase IV inhibitor (EMD Millipore Corp, St.

Charles, Missouri, USA). GLP1 plasma levels were determined using a mouse GLP1 ELISA kit

(LSBio, Seattle, WA, USA). For blood chemistry analysis blood sample were collected from

mice fed with CD-wheat, CD-teff, HFD-wheat or HFD-teff for 9 weeks, after 15 h of fasting or

feeding under deep anesthesia. The plasma levels of calcium and inorganic phosphate (enzy-

matic method), and iron [direct colorimetric method (Nitroso-PSAP)] were measured by the

Nagahama Life-science Laboratory of Oriental Yeast Co., Ltd. (Nagahama, Shiga, Japan).

SCFA analysis

SCFAs in the cecum and in vitro fermentation experiments were performed by LC-MS/MS.

For SCFAs extraction (acetate, propionate, n-butyrate, and n-valerate) from samples, ethanol:

water (3:7, v/v) was added at room temperature. After extraction, internal standard solutions,

2-nitrophenyl hydrazine, and condensation reagent were added to the tube for derivatization.

Test tubes were placed in ice water for 60 min for the labeling reaction. Alkaline solution was

added to stop the reaction and tubes were left in ice water for 30 min. After the reaction

stopped, an acidic solution and hexane were added for liquid-liquid extraction. The hexane

layer was removed, and then ether was added for liquid-liquid extraction. The ether layer was

transferred to another test tube and dried under a nitrogen stream. Ammonium formate/

methanol solution was added to re-fuse the residues in the tubes and an aliquot was injected

into the LC-MS/MS system. Liquid chromatography was performed using an ACQUITY
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UPLC system (Waters, Milford, MA, USA), separated using an analytical column (AQUITY

HSS T3 2.1 × 150 mm, 1.8 μm; Waters). For the detector, an API4000 tandem mass spectrome-

ter (AB Sciex, Foster City, CA, USA) was used.

Histology, immunofluorescence and immunohistochemistry

For histological examination, a portion of the adipose tissue (inguinal fat and epididymal fat)

was fixed with 3.7% neutrally buffered formaldehyde and embedded in paraffin. Hematoxylin

and eosin staining was carried out on paraffin sections using standard methods [15]. For

immunostaining, the paraffin-embedded sections were deparaffinized and incubated for 30

min with 0.3% H2O2 in methanol to block endogenous peroxidase. Subsequently, endogenous

avidin and biotin were blocked using an Avidin-Biotin Blocking kit (DAKO, Carpentaria, CA,

USA), as described previously [16]. Next, either immunofluorescence or immunohistochemi-

cal staining was conducted. Immunofluorescence staining: tissue sections were then incubated

overnight at 4˚C with a 1:50 dilution of primary antibodies (anti-F4/80, MCA497, Bio-Rad,

Hercules, CA, USA; anti-TNFα, ab6671, Abcam, Cambridge, MA, USA; anti-Perilipin, 9349S,

Cell Signalling Technology, Danvers, MA, USA). Sections were then incubated with a 1:1000

dilution of secondary antibodies for 1h at room temperature [rhodamine-conjugated anti-rat

secondary antibody (Cappel, MP Biomedicals, LLC, Solon, OH, USA) for F4/80 and FITC-

conjugated anti-rabbit (Cappel, MP Biomedicals, LLC) for TNFα and Perilipin)]. Nuclei were

stained with DAPI. Tissue slides were mounted with vectashield mounting media (Vector Lab-

oratories, Burlingame, CA, USA) and images were obtained using an Olympus FLUOVIEW

FV1000 confocal laser scanning microscope with an oil-immersion objective lens (Olympus

Corp, Tokyo, Japan). Double-color immunofluorescence analysis was performed to detect F4/

80 and TNFα positive cells as described previously [17].

Immunohistochemical staining: tissue sections were incubated overnight at 4˚C with pri-

mary antibodies (anti-F4/80, MCA497, Bio-Rad; anti-Ucp-1, U6382, Sigma, St. Louis, MO,

USA), followed by 1 h incubation at room temperature with peroxidase-conjugated anti-rabbit

IgG secondary antibodies [Histofine Simple Stain Max-PO (R); Nichirei, Tokyo, Japan] at a

1:1000 dilution. Immune complexes were visualized using the peroxidase stain DAB kit

(brown stain; Nacalai Tesque, Kyoto, Japan) according to the manufacturer’s instructions.

Confocal microscopy imaging was used to visualize the results.

Adipocyte size and counting

To perform adipocyte number and size analyses, we used semi-automated morphometry with

immunofluorescence staining of paraffin sections of inguinal WAT pads using perilipin anti-

body [18]. Briefly, iWAT pads of mice from each group were fixed in formalin and embedded

in paraffin, followed by immunofluorescence staining against perilipin as stated above. Adipo-

cyte size and number per area were measured per mouse from randomly selected fields using

semi-automated morphometry (ImageJ, plugin Adipocytes Tool; National Institutes of Health,

Bethesda, MD, USA; http://imagej.nih.gov/ij/). Measurements were obtained from three indi-

vidual animals per group.

Villus measurements

Villus length was measured using image J software (http://rsb.info.nih.gov/ij/) according to a

previous report [19]. For all determinations at least five villi per slide were analyzed by an inde-

pendent investigator who was blinded to the treatment.
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Pair-feeding protocol

Weight matching was conducted by calorie restriction [20, 21]. Briefly, male, C57Bl/6 mice

were either subjected to calorie restriction (CR) (wheat group, n = 3), or fed ad libitum (Teff

group, n = 4). CR was initiated at 10 weeks of age with 5% CR for one week followed by 10%

CR for 5 weeks. Food intake was typically adjusted every three days.

Real-time (RT) qPCR analysis

Total RNA from frozen adipose tissue was extracted using the RNeasy lipid tissue mini kit

(Qiagen, Germantown, MD, USA) and analyzed using a Nanodrop spectrophotometer. The

qPCR reaction setup and plate preparation were standardized and carried out according to

standard operating protocols provided by the manufacturers. Single-stranded cDNA was syn-

thesized from 1.5 μg of total RNA using the Prime Script RT Reagent Kit (Takara Bio, Shiga,

Japan), and endogenous genomic DNA was degraded with DNase I (Life Technologies, Carls-

bad, CA, USA). The primers used are shown in Table 2. RT qPCR experiments were carried

out with SYBR Green PCR master mix (Life Technologies) using an ABI 7500 Fast RT PCR

System (Applied Biosystems, Foster City, CA, USA). All quantitative data were normalized

against the expression levels of 36B4. RT qPCR conditions were 95˚C for 10 min, followed by

40 cycles of 95˚C for 15 s and 60˚C for 1 min.

Statistical analysis

Data are expressed as mean ± SE. The level of statistical significance was determined using Stu-

dent’s two-tailed t-test when the difference between the means of two populations was consid-

ered. For differences using multiple comparisons, a one-way ANOVA followed by Tukey’s

post hoc test was performed. p< 0.05 was considered statistically significant.

Results

Teff stabilizes weight gain with a normal diet

Compared with wheat, teff contains comparable calories and total carbohydrates, but is lower

in starch, and higher in dietary fiber, fat, protein, and ash compared with wheat (Table 1).

Mice were separated into two groups: chow diet with teff (CD-teff) or chow diet with wheat

(CD-wheat, 30% w/w; Fig 1A). The CD-teff group showed a significantly lower rate of weight

gain compared with the CD-wheat group (Fig 1B). At the end of the feeding period, mice fed

Table 2. RT qPCR primer sequences.

Forward primer Reverse primer

36B4 [22] 5`-GCCGTGATGCCCAGGAAGA-3` 5-`CATCTGCTTGGAGCCCACGTT-3`

TNFα [23] 5`-CCCTCACACTCAGATCATCTTC-3` 5`-GCTACGACGACGTGGGCTACAG-3`

MCP1 [24] 5`-GCCCCACTCACCTGCTGCTACT-3` 5`-CCTGCTGCTGGTGATCCTCTTGT-3`

F4/80 [24] 5`-CTTTGGCTATGGGCTTCCAGTC-3` 5`-GCAAGGAGGACAGAGTTTATCGT-3`

CD11c [23] 5`-CTGGATACCCTTTCTTCTGCTG-3` 5`-CCACACTGTGTCCCAACTC-3`

Adiponectin [25] 5'-GGCAGGAAAGGAGAACCTGG-3' 5'-AGCCTTGTCCTTCTTGAAGA-3'

Ucp-1 [22] 5'-GGGCATTCAGAGGCAAATCAGCTT-3` 5'-ACACTGCCACACCTCCAGTCATTA-3`

Cidea [22] 5'-ACTTCCTCGGCTGTCTCAATGTCA-3` 5'-TCAGCAGATTCCTTAACACGGCCT-3`

PGC1-α [26] 5'-CATTTGATGCACTGACAGATGGA-3` 5'-CCGTCAGGCATGGAGGAA-3`

Tfam [27] 5'-GCAGCCCTGTGGAGGGAGCTA-3` 5'-TCTGCCGGGCCTCCTTCTCC-3`

Lcad [28] 5'- AAACGTCTGGACTCCGGTTC-3` 5'-GTACCACCGTAGATCGGCTG-3`

Mcad [29] 5'-TCAAGATCGCAATGGGTGCT-3` 5'-GCTCCACTAGCAGCTTTCCA-3`

https://doi.org/10.1371/journal.pone.0201661.t002
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teff weighed almost 12.5% less (p< 0.05). However, there were no significant differences in

food intake observed between wheat- and teff-fed mice (Fig 1C).

Teff diet improves glucose tolerance in mice

GTT and ITT were performed to evaluate the effects of teff on glucose metabolism. Mice fed

the teff-based diet showed significantly lower plasma glucose levels during the IPGTT at 60,

Fig 1. Comparison of body weight and glucose metabolism between mice fed a chow diet with wheat (CD-wheat: Blue) or teff (CD-teff: Red). A:

Study design. B: Body weight. C: Energy intake. D: Intraperitoneal glucose tolerance test (IPGTT) at week 6 (2.0 g/kg). E: Blood glucose levels after oral

mixed meal administration of each assigned diet (2.2g/kg body weight, 33% solution in dH2O) after 16 h of fasting at week 6. F: Plasma insulin levels

during OMTT. G: Oral glucose tolerance test (OGTT) at week 9 (2 g/kg). H: Insulin concentration during OGTT. I: Intraperitoneal insulin tolerance test

(IPITT) at week 9 (0.5 U/kg). � p< 0.05, n.s. = not significant. n = 5–9 in each groups.

https://doi.org/10.1371/journal.pone.0201661.g001
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90, and 120 min after the glucose load after 6 weeks of treatment (Fig 1D). To estimate the

postprandial levels of glucose and insulin, OMTT was performed. During the OMTT, glucose

levels were significantly lower in the teff group at all time points after 6 weeks of treatment

(p< 0.05) (Fig 1E). Insulin levels were also significantly lower in the teff group during the

OMTT at 60, 90, and 120 min (Fig 1F). The blood glucose levels and plasma insulin levels dur-

ing the OGTT after 9 weeks of treatment were significantly lower in the CD-teff group com-

pared with the CD-wheat group (p< 0.05) (Fig 1G and 1H, respectively). However, the

intraperitoneal insulin tolerance test (IPITT) after 9 weeks of treatment showed no significant

differences in blood glucose levels after insulin injection (Fig 1I).

Teff diet improves insulin sensitivity in the HFD model

Mice were separated into two groups and fed either the HFD-wheat or HFD-teff diet (Fig 2A).

There was no significant difference in body weight and food intake between the two groups

(Fig 2B and 2C respectively). During the OMTT, the glucose levels were significantly lower in

the teff group compared with the wheat group at 15, 30 and 60 min after oral meal administra-

tion, after 6 weeks of treatment (p< 0.05) (Fig 2E). However, the insulin levels in the OMTT

were comparable between the two groups (Fig 2F). Furthermore, in the IPGTT, OGTT, and

IPITT, mice fed the HFD-teff diet displayed no significant differences in glucose or insulin lev-

els compared with the HFD-wheat group (Fig 2D, 2G and 2I).

Teff diet reduces adipose inflammation with a normal diet

To further investigate the effect of a teff-based diet on glucose metabolism, we next examined

the effects of a teff diet on adipose inflammation in the epididymal fat pad after 14 weeks of

dietary treatment. As shown in Fig 3A, the CD-wheat group exhibited higher macrophage

infiltration compared with the CD-teff group, as determined by F4/80 staining, which is a

macrophage marker. Surprisingly, the crown-like structures were not detected in the teff diet

mice (Fig 3A). Furthermore, the gene expression of proinflammatory cytokines such asMcp1
and TNFα, in the adipose tissue was significantly lower in the CD-teff group (p< 0.05) along

with the lower expression of macrophage markers (Fig 3B). This was confirmed by immuno-

fluorescence in which the merged staining of F4/80 and TNFα revealed reduced adipose

inflammation in the CD-teff group compared with the CD-wheat group (Fig 3C). The expres-

sion of Foxp3, a marker of regulatory T cells, was reduced in the CD-teff group compared with

the CD-wheat group (Fig 3B).

Teff does not ameliorate adipose inflammation in the HFD model

Immunohistochemical staining against F4/80 showed comparable results between the HFD-

teff and HFD-wheat groups after 14 weeks of dietary treatment (Fig 4A). Consistent with the

histological findings, there were no significant differences in the gene expression of proinflam-

matory cytokines between the two groups (Fig 4B), except for lower expression ofMcp1 in the

HFD-teff group compared with the HFD-wheat group (Fig 4B). This was confirmed by immu-

nofluorescence staining of F4/80 and TNFα demonstrating comparable adipose inflammation

between the HFD-teff and HFD-wheat groups (Fig 4C).

SCFAs concentrations in the cecum

SCFAs are products from the metabolism of dietary fiber by microbiota. Thus, the concentra-

tions of major SCFAs in the cecum after 14 weeks of dietary treatment were evaluated (Fig

5A). Acetate levels were dramatically higher in the CD-teff group compared with the CD-
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wheat group (1105 ± 80 vs. 709 ± 30 μmol/L, p< 0.05). Furthermore, the concentrations of

propionate, butyrate, and valerate tended to be higher in the CD-teff group compared with the

CD-wheat group. In contrast, there were no significant differences in the SCFAs concentra-

tions between the HFD-wheat and HFD-teff groups (Fig 5B). To determine the source of

Fig 2. Comparison of body weight and glucose metabolism between mice fed a high-fat diet with wheat (HFD-wheat: Blue) or teff (HFD-teff:

Red). A: Study design. B: Body weight. C: Energy intake. D: Intraperitoneal glucose tolerance test (IPGTT) at week 6 (2 g/kg). E: Blood glucose levels

after oral mixed meal administration of each assigned diet (2.2g/kg body weight, 33% solution in dH2O) after 16 h of fasting at week 6. F: Plasma

insulin levels during OMTT. G: Oral glucose tolerance test (OGTT) at week 9 (2 g/kg). H: Insulin concentration during OGTT. I: Intraperitoneal

insulin tolerance test (IPITT) at week 9 (0.5 U/kg). � p< 0.05, n.s. = not significant. n = 5–9 in each groups.

https://doi.org/10.1371/journal.pone.0201661.g002
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SCFAs, in vitro fermentation was performed with the starter that is commonly used in the

preparation for cooking injera in Ethiopia (Fig 5C). The concentration of acetate and

Fig 3. Adipose tissue inflammation in mice fed a chow diet with wheat (CD-wheat) or chow diet with teff (CD-teff) for 14 weeks. A:

Immunostaining of the macrophage marker F4/80 (brown) in adipose tissue (scale bar = 100 μM). B: mRNA levels of the macrophage marker, F4/
80 and CD11c, tumor necrosis factor α (TNFα), monocyte chemoattractant protein-1 (Mcp-1), Forkhead Boxprotein P3 (Foxp3), and adiponectin

in adipose tissue. All mRNA expression data were normalized to 36B4. C: Immunofluorescence staining for DAPI (blue), F4/80 (red) and TNFα
(green) in adipose tissue (scale bar, 100 μm). � p< 0.05. n.s. = not significant.

https://doi.org/10.1371/journal.pone.0201661.g003
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Fig 4. Adipose tissue inflammation in mice fed a high-fat diet with wheat (HFD-wheat) or high-fat diet with teff (HFD-teff). A: Immunostaining

of the macrophage marker F4/80 (brown) of adipose tissue (scale bar = 100 μM). B: mRNA levels of macrophage marker, F4/80 and CD11c, tumor

necrosis factor (TNFα), monocyte chemoattractant protein-1 (Mcp1), Forkhead Boxprotein P3 (Foxp3), and adiponectin in adipose tissue. All mRNA

expression data were normalized to 36B4. C: Immunofluorescence staining with DAPI (blue), and antibodies for F4/80 (red), and TNFα (green) in

adipose tissue (scale bar, 100 μm). � p< 0.05. n.s. = not significant.

https://doi.org/10.1371/journal.pone.0201661.g004
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Fig 5. Cecal short chain fatty acids (SCFAs) concentrations. A: Cecal SCFAs concentrations after 15-h fasting by LC-MS in mice fed with CD-wheat or CD-

teff for 14 weeks. B: Cecal SCFAs concentrations were measured by LC-MS after 15-h fasting in mice fed with HFD-wheat or HFD-teff for 14 weeks. C: In vitro
teff and wheat fermentation methods. D–F: Acetate, propionate and buyrate concentrations SCFA extracted from in vitro fermented teff and wheat by LC-MS.

G& I: Hematoxylin and eosin stained slides of villi. H and J: Ileum villus length determined as indicated in the Materials and Methods for the CD-teff group

compared (right panel) with the CD-wheat group (left panel). n = 3–4. �p< 0.05, ��� p< 0.0001. n.s. = not significant.

https://doi.org/10.1371/journal.pone.0201661.g005
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propionate was dramatically increased in the in vitro fermented teff but butyrate was

unchanged compared with the starter. In contrast the concentration of propionate and buty-

rate decreased in the in vitro fermented wheat compared with the starter (Fig 5D–5F). SCFAs

are an important energy substrate for intestinal epithelium. The villi height in the ileum was

higher in the CD-Teff group than in the CD-wheat group, suggesting a role for SCFAs, which

were abundant in the cecum of mice from the CD-Teff group (Fig 5G and 5H). However, this

difference in villus size was not observed in the HFD-teff group compared with the HFD-

wheat group (Fig 5I and 5J).

Beige adipocyte formation in the teff diet groups

To explore the mechanisms of body weight reduction by teff in the CD-teff group, we analyzed

the mRNA levels of thermogenic and beige adipocyte marker genes in the inguinal fat pad.

Interestingly, a marked increase in Ucp-1 and Cidea expression was observed in the CD-teff

group compared with the CD-wheat group (Fig 6A). However, these beige marker genes were

comparable between the HFD-wheat and HFD-teff groups (S3 Fig). Furthermore, a slight but

significant increase in body temperature was observed in the CD-teff group (Fig 6B). Histolog-

ically, iWAT from CD-teff mice showed high density of hematoxylin and eosin-stained struc-

tures along with increased Ucp-1 staining (Fig 6C). Immunofluorescence staining against

perilipin, a lipid droplet–specific marker, demonstrated that CD-teff mice had significantly

smaller lipid droplets compared with CD-wheat mice (Fig 6D and 6E). Moreover, the number

of adipocytes was higher in the CD-teff group than in the CD-wheat group (Fig 6F).

Teff diet shows better glucose tolerance during a pair feeding study

To justify the role of weight gain/loss in the GTT, we performed pair feeding to match the

body weight between the CD-wheat and CD-teff groups. After feeding with 5% CR during the

first week and10% CR for 5 weeks (Fig 7A), there was no significant difference in body weight

between the two groups (Fig 7B). However, there was a significant difference in IPGTT with a

better glucose tolerance in the CD-teff group at 60 and 120 min (p< 0.05; Fig 7C), and slightly

lower plasma glucose and insulin levels in the CD-teff group in the OGTT (Fig 7D and 7E).

Furthermore, the mRNA expression of Ucp-1, beige adipocyte marker, was significantly higher

in the CD-teff group compared to the CD-wheat group during pair feeding (p< 0.05; Fig 7F).

Under the weight matching intervention, there was no significant difference in the inflamma-

tory markers between the CD-teff and CD-wheat groups (Fig 7G and 7H). These results indi-

cate that not only weight loss but also beige adipocyte differentiation is the mechanism of

improved glucose metabolism by teff.

Discussion

In this study, we tested the effects of teff on glucose metabolism in mice and found three

important results (Fig 8A). First, the teff-containing diet reduced body weight without chang-

ing the food intake. Second, the teff-containing diet improved glucose tolerance possibly by

enhancing beige adipocyte differentiation. Third, continual teff feeding improved adipose

inflammation in the control diet.

The teff-containing diet reduced body weight with no change in food intake. This is consis-

tent with previous observations in epidemiological studies that high dietary fiber consumption

is associated with a lower BMI [30]. The World Health Organization has reported that only

2.5% of Ethiopian males and 4.5% of Ethiopian females have a BMI>25 [31]. Although the

rate is increasing, the current prevalence of diabetes in Ethiopia is only 3.8% [32]. Injera is a

staple food made with teff that may be associated with the maintenance of BMI in Ethiopian

Teff improved glucose metabolism via beige formation and attenuating adipose inflammation

PLOS ONE | https://doi.org/10.1371/journal.pone.0201661 August 2, 2018 13 / 21

https://doi.org/10.1371/journal.pone.0201661


Teff improved glucose metabolism via beige formation and attenuating adipose inflammation

PLOS ONE | https://doi.org/10.1371/journal.pone.0201661 August 2, 2018 14 / 21

https://doi.org/10.1371/journal.pone.0201661


people. Notably, immigrants from Ethiopia to Israel exhibited an increased BMI and increased

incidence of diabetes, potentially because of changes in food selections [33]. In the current

study, the CD-teff diet maintained body weight gain without changes in food intake compared

with the CD-wheat diet (Fig 1B). [33]. Our results suggest that this may be explained by

enhanced formation of beige adipocytes in the CD-teff group (Fig 6A and 6C–6F). To explorer

the mechanism, we focused on the metabolite of dietary fiber, SCFAs. Our results showed that

CD-teff has a remarkable potential to generate SCFAs in vivo (Fig 5A and 5B) and in vitro (Fig

5C–5F), similar to the previous study which whole grain diets increase cecal SCFAs in rats

[34]. This is further supported by increases in the villi heights in CD-teff diet (Fig 5G and 5H).

The villi heights is increased by direct infusion of SCFAs into cecum [35, 36], which is recog-

nized as a gold standard to monitor intestinal health in animals [37, 38]. Previous study

reported that SCFAs stimulated the formation of beige adipocytes through GPR43/41 signaling

[39, 40]. Moreover, direct incubation of acetate in 3T3-L1 adipocytes and infusion of acetate in

KK-Ay mice clearly showed increased Ucp-1 expression which is the central, hallmark of beige

adipocytes [41, 42]. Decreased body weight in CD-teff may be a consequence of increased

SCFAs through beige adipocytes formation.

The teff-containing diet improved glucose tolerance in the control diet but not in the HFD.

Because this effect was observed during the IPGTT, this phenomenon is not a direct effect of

fiber, such as delaying glucose absorption [43]. Rather, body weight reduction may indirectly

influence glucose metabolism improved by teff. We speculated that this may be explained in

part by body weight differences in the wheat and teff groups. However, the pair feeding experi-

ment showed that body weight reduction by teff is not the sole cause of improved glucose

metabolism (Fig 7). Another possible mechanism is adipose inflammation. The CD-teff group

showed a dramatic reduction in adipose inflammation markers compared with the CD-wheat

group (Fig 3A–3C). The lack of differences in adipose inflammation between the HFD-wheat

and HFD-teff groups support this hypothesis (Fig 4A–4C). This finding is consistent with a

previous study in which greater consumption of dietary fiber was associated with lower vis-

ceral adiposity and multiple biomarkers implicated in inflammation in adolescents [44].

GPR41 and GPR43 are receptors for SCFAs and a recent report has revealed the effect of this

pathway by showing that adipose specific GPR43 transgenic mice had reduced numbers of F4/

80-positive cells in the adipose tissue [45].

Recently, the role of FoxP3+ regulatory T cells (Tregs) was highlighted in inflammatory dis-

eases [46]. Acetate derived from dietary fiber has been reported to upregulate Treg via the

action of SCFAs through a GPR43-dependent mechanism or histone deacetylase inhibition

[46]. In our study, we hypothesized that there would be increased expression of Foxp3, a tran-

scription factor associated with Tregs, in the adipose tissue, however our data showed

decreased Foxp3 expression in the CD-teff group, suggesting acetate had a minor role in

inducing Tregs in the adipose tissue.

Teff reduced the postprandial glucose and insulin concentrations both in CD and HFD fed

mice examined by the OMTT (Figs 1E and 2E). This suggests that each glucose excursion dur-

ing dietary intervention may be lower in the CD-teff and HFD-teff groups compared with the

CD-wheat and HFD-wheat groups, respectively.

Fig 6. The possible role of beige adipocyte formation in CD-teff treated mice. A: mRNA levels of thermogenic and beige adipocyte marker genes in the

inguinal adipose tissue from mice fed for 14 weeks with CD-what or CD-teff. All mRNA expression data were normalized to 36B4. B: Core body temperatures

were measured at 10:00 AM under ad lib feeding conditions. C: Hematoxylin and eosin staining and Ucp-1 immunostaining in iWAT from CD-wheat and

CD-teff mice (left and right columns, respectively). D: Immunofluorescence staining of perilipin (green) in iWAT. E: The size and distribution of adipocytes

from iWAT pad of CD-wheat and CD-teff mice quantified by ImageJ. F: Number of adipocyte. n = 3. �p< 0.05, �� p< 0.01. n.s. = not significant.

https://doi.org/10.1371/journal.pone.0201661.g006
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Dietary fiber has been reported to attenuate weight gain, and enhance insulin sensitivity

and GLP-1 secretion [47]. Given that teff is consumed as a whole grain, its richness in resistant

starches and fiber could elicit similar effects, such as reduced glucose absorption [48], which is

shown by better glucose tolerance during weight matching conditions by CR (Fig 7C). In our

study, we also found that the active GLP-1 concentration was higher in the CD-teff group

compared with the CD-wheat group, but not in the HFDs (S1 Fig). This may also be explained

by the cecal SCFAs levels (Fig 5).

The strengths of this study are two-fold. First, to the best of knowledge, this is the first

report of the beneficial effects of teff on glucose metabolism and body weight in vivo. Second,

this study found a mechanism underlying this phenomenon via adipose inflammation and / or

beige adipocyte formation. However, there are some limitations to the study. First, the differ-

ences in ingredients between teff and wheat are not solely related to dietary fiber. Although

wheat and teff are almost isocaloric (Table 1), higher fat and protein contents may influence its

effects. A previous report has shown that the levels of iron, calcium, and copper are higher in

teff [49]. In our study, teff contained about 10 times higher iron and calcium compared with

wheat (Table 1). The plasma iron and calcium concentrations were similar in this study (S2A

and S2B Fig) probably because these nutrients are tightly regulated independently of dietary

intake. Second, teff has several subtypes. We chose ivory teff for this study because it is one of

the most common types in the markets. Differences in type may result in variation in the

effects on glucose metabolism. Third, teff is regularly consumed as injera. The cooking process

of injera involves several steps, including fermentation. Therefore, any generalizations must be

made with caution. Fourth, beige adipocyte markers changed heterogeneously. Increased Ucp-

1 expression in CD-teff mice may not be induced through β3-adrenergic pathway which is a

major modulator of cold induced beige adipocyte formation.

Fig 7. Body weight matching by calorie restriction and glucose tolerance. A: Experimental design. B: Body weight. C:

Intraperitoneal glucose tolerance test (IPGTT) at week 6 (2 g/kg). D: Oral glucose tolerance test (OGTT) at week 6 (2 g/kg). E:

Insulin concentration during OGTT. F: mRNA levels of thermogenic and beige adipocyte marker genes in the inguinal

adipose tissue from mice fed for 6 weeks with CD-wheat or CD-teff. All mRNA expression data were normalized to 36B4. C:

Immunofluorescence staining with DAPI (blue), and with antibodies for F4/80 (red), and TNFα (green) in adipose tissue

(scale bar, 100 μm). n = 3–4. �p< 0.05, ��. n.s. = not significant.

https://doi.org/10.1371/journal.pone.0201661.g007

Fig 8. A proposed model of the effects of teff diet on glucose metabolism. Illustrated is a model of how teff improves

glucose tolerance by increasing beige adipocyte formation and inhibiting adipose inflammation through increasing

SCFAs concentrations.

https://doi.org/10.1371/journal.pone.0201661.g008
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In conclusion, teff improved glucose tolerance through beige adipocytes formation accom-

panied with improved adipose inflammation potentially by short chain fatty acids derived

from dietary fiber. Further experiments are necessary to elucidate the mechanisms including

microbiota and usefulness in clinical situations.

Supporting information

S1 Fig. Active GLP-1 concentration in mice fed with CD-wheat, CD = teff, HFD-wheat,

and HFD-teff for 14 weeks. Sample were collected under deep anesthesia after 15 hours of

fasting. �p < 0.05, n = 4–5 in each groups.

(TIF)

S2 Fig. Plasma concentration of Ca. IP and Fe in mice fed with CD-wheat, CD-teff, HFD-

wheat, and HFD-teff for 9 weeks. Sample were collected under deep anesthesia after 15 hours

of fasting or fed state. �p< 0.05, n = 4 in each groups.

(TIF)

S3 Fig. A: mRNA levels of thermogenic and beige adipocyte marker genes in the inguinal

adipose tissue from mice fed for 14 weeks with HFD-what or HFD-teff. All mRNA expres-

sion data were normalized to 36B4.

(TIF)
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