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Abstract

On the basis of numerous fluid simulation experiences, researchers have discovered that

many common operations can be abstracted to form a general fluid simulation framework.

These operations include the discretization of equations and variables, the computation of

the coefficients, the assembly of the linear or nonlinear systems, the solving of the systems,

etc. Furthermore, all of the operations can be attributed to the operations “in the field”, which

is an abstract concept derived from the equations and variables. Thus, fluid simulations can

be performed under a field-based general framework. Moreover, in response to the urgent

need for large-scale fluid simulations, parallelism is integrated into the framework. Due to

the convenience of the field operations, parallelization of the framework can be realized on

both the OpenMP and MPI levels. In other words, because of the newly defined “fields”, a

series of operations in fluid simulations can be simplified and unified. However, very few

studies have noted this advantage, and therefore, this work attempts to fill the void. With the

help of a field-based general framework, it is anticipated that the parallel codes of fluid simu-

lations can be generated easily and quickly. As an application of the general framework, a

parallel 3D simulator for matrix acidization called Masor is developed. The simulation results

are regarded as physically reasonable by many studies, which verifies the correctness and

effectiveness of the general framework. In addition, it is noteworthy that the parallel perfor-

mance of Masor is decided by a solver.

1. Introduction

Computational fluid dynamics (CFD) [1, 2] focuses on the numerical simulation of fluids

using computer technology. The general procedure undertaken for this kind of simulation is

to first discretize the mathematical model with numerical schemes. After this step, if there are

some implicit schemes used, a series of linear systems are formed. Although some works may

generate nonlinear systems and use Newton’s method to solve them, this work will not con-

sider these types of conditions. Because linear systems are sparse, the second step is to compute
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the nonzero entries of the coefficient matrix and the right-hand-side vector of the linear sys-

tem. Once the linear systems are prepared, the third step is to solve them with appropriate

solvers such as LAPACK [3], UMFPACK [4], MUMPS [5] and HYPRE [6] for the variable val-

ues at the next time step. Of course, if some variable values at the next time step can be calcu-

lated with fully explicit schemes, no corresponding linear systems for the variables exist, and

they must be obtained directly from the explicit expressions. The three steps loop until the

desired simulation results are achieved. Thus, the simulation procedure, in reality, involves

constructing the linear systems and then solving them, which is a procedure that applies to

most applications of computational fluid dynamics. With this philosophy, a general framework

to simulate fluid dynamics is suggested in this work. Here, “general” means that the framework

is not designed for any specific applications of fluid dynamics. Instead, the code of any specific

application is easily and quickly generated by the framework. In addition, practical fluid simu-

lations often come from large-scale projects, such as reservoir simulations ([7–9]), atmosphere

simulations [10, 11] and environmental simulations [12, 13], which necessitates the application

of parallel computing technology to accelerate the simulations. In parallelization, one key issue

is determining ways to perform domain decompositions and then determining how to assem-

ble the information on different processors. In addition, leveraging the threads in a processor

to achieve high speeds is the other key issue. In this work, the general framework is parallelized

on both levels of threads (OpenMP) and processors (MPI).

From the discussion above, it is surmised that the main operations in this framework

include the discretization of the equations and variables, the computation of the coefficients,

the assembly of the linear systems, the solving of the systems, etc., and it is assumed that all the

operations are done on the fields. Thus, the general framework is in reality the union of all the

operations on the field elements, i.e., it is a field-based general framework. A field is a subset of

a grid. Some grid elements can be selected to form a field, and these grid elements are also

called field elements. For example, if there is a 3D regular grid, the x-direction faces, the y-

direction faces, the z-direction faces and the center of all the grid cells are the grid elements.

All the x-direction faces can form a field, and each of the x-direction faces is a field element.

Here, the x-direction face is defined as the cell face that is perpendicular to the x-axis of the

coordinate, and the y-direction and z-direction faces have similar definitions. All the discre-

tized variables (DVs) imposed on a field are called the variable fields, and all the algebraic

equations (AEs) imposed on a field are called the equation fields.

Before looking into the details of this work, it is necessary to give a brief review of the state-

of-art CFD simulators. Generally, most of the simulators can be run in parallel. However, in a

variation of this framework, which can be parallelized with both OpenMP and MPI, some sim-

ulators can be parallelized only with either OpenMP or MPI. The simulators parallelized only

with OpenMP include HUNS3D [14, 15], ARC3D [16], OVERFLOW [17, 18], FIRE PARA-

DOX [19, 20], etc., and they can be applied in the fields of viscous flow simulations, aerophy-

sics simulations, the design of airfoils and the management of forest fires. This level of

parallelization is easy to achieve, and the load of the threads is light [21]. However, its parallel

performance when dealing with large-scale simulations is not adequate [22]. Thus, simulators

parallelized with MPI are more popular in those conditions. The simulators parallelized only

with MPI include ReFESCO [23], elsA [24, 25], TFLO [26], CALC-MP [27], OpenFOAM [28,

29], etc., and they can be used to simulate multiphase viscous flows, the flow behavior in com-

plicated geometries, turbomachinery flows, fluid flows, heat transfers and structural analyses.

With the progress of parallelization technology, OpenMP and MPI hybrid simulators have

emerged, such as TAU [30], Telemac [31], NetKar [32] and COMSOL [33, 34]. These simula-

tors are trustworthy tools to simulate external flows, environmental flood flows, turbulent

flows past a circular cylinder and heat transfers. By hybrid parallelization, both of the
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advantages of OpenMP and MPI can be leveraged, and the parallel performance is further

enhanced. Although the concept of the field operation appears in OpenFOAM, it is applied

only in the discretization operation. This work further applies the field concept in the opera-

tions of coefficient computing and the assembly of the linear system, which covers more of the

simulation procedure. The domain decomposition in OpenFOAM is achieved with the help of

MPI, which is more or less the same as the hybrid simulators including the general framework

in this paper. However, only some code snippets, such as the loops, are parallelized by

OpenMP in the former hybrid simulators, which limits the application of OpenMP and

reduces the parallel efficiency. In contrast, the general framework in this work applies

OpenMP in the entire coefficient computing routine, which greatly improves the parallel effi-

ciency on the thread level.

This work is organized as follows: Section 1 is an introduction to the general ideas of the

framework. Section 2 and Section 3 introduce the discretization library and the coefficient

library of this framework, respectively. Section 4 will detail how to construct the linear system,

and Section 5 will give the parallelization strategy. Section 6 presents the construction of

Masor, which is a matrix acidization simulator developed based on the general framework.

The conclusion of this work is in Section 7.

2. The discretization library

According to different application conditions, different mathematical models are proposed to

simulate the fluids. However, all the models are derived from the same physical laws, i.e., the

mass conservation law, the momentum conservation law, the energy conservation law, etc. As

a result, the mass conservation equation, the momentum conservation equation, the energy

conservation equation, etc., are formed. For this reason, these equations are composed of simi-

lar terms, with each of them representing various physical meanings, although they may have

different expressions in different models. For example, almost all the mass conservation equa-

tions have the divergence term, which describes the mass diffusion in space. The few differ-

ences among the mass conservation equations of different models may only lie in the

coefficient of the divergence term and the constant term. Moreover, even in the model itself,

the divergence term may exist in different equations, for instance, they may exist in the mass

conservation equation and the momentum conservation equation. Thus, for any model, the

discretization of the equations can be deemed the discretization of the terms. As a result, there

exist common discretization patterns that can describe the discretization of most of the equa-

tions. This motivates us to develop the discretization library, which is composed of all the com-

mon discretization patterns for the equations.

In addition to the fact that the equations need to be discretized, the variables also need to be

discretized. In other words, discretization can be classified into two categories, discretization

of the equations and discretization of the variables. When the finite difference method is used

for discretization, the entire simulation domain is divided into a regular grid, and the discre-

tized equations and variables are imposed either at the center of the cell or on the face of the

cell. For example, variables such as pressure, concentration and temperature are often imposed

at the center of the cell, and velocity is often imposed on the face of the cell. The upwind

scheme and harmonic method can be used to derive the variable values on the face of the cell if

they are imposed at the center of the cell. Although there are other discretization schemes,

such as finite element methods, and the discretization can be done in a triangular mesh, these

schemes will not be discussed in this work.

With this philosophy, discretization can be deemed an operation on the equation and the

variable, irrespective of their physical meanings. The equations can be discretized at the center
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or on the face of the cell, and the variables can also be discretized in that way, so there are vari-

ous discretization types. The discretization type can be represented by the letters x, y, z and p,

which represent discretization on the x-direction face, the y-direction face, the z-direction face

and at the center of the cell, respectively. Moreover, when the discretization type of an equa-

tion is given, the discretized positions of all the variables of the equation can then be decided.

For example, if the equation below is discretized at the center of a cell, which has the discretiza-

tion type p, then:

@p
@t
þr � u ¼ 0; ð1Þ

The variable p is discretized at the center of the cell, and the variable u is discretized on all the

faces of the cell. The discretized positions of a variable in an equation constitute its discretiza-

tion configuration. For a variable, its variable discretization configuration in an equation may

be the same as its variable discretization configuration in a term. For example, the variable dis-

cretization configuration of u in Equation (1) is the same as that in the divergence term. Thus,

the name of the variable discretization configuration can be represented by the abbreviations

of the name of the term. For example, div, gra, lap and der are the abbreviations of the terms

divergence, gradient, Laplace and derivative, respectively, which can be used to represent the

corresponding variable discretization configuration of an equation. Different combinations of

the discretization type and discretization configuration form different discretization patterns

of which the discretization library is composed. In other words, a discretization pattern can be

defined by a triple term, as in:

<equation discretization type, variable discretization type, variable discretization

configuration>.

In the code of the discretization library, the subroutines recognize the discretization pat-

terns, and the naming rule of the subroutines can be determined in a rational pattern. For

example, in the subroutine name “dctz_pxdiv”, “dctz” stands for the meaning of discretization,

and “pxdiv” is the triple to represent the discretization pattern. Thus, the subroutine name

“dctz_pxdiv” means that the equation is discretized at the center of the cell, and the variable is

discretized on the x-direction face of the cell. The variable discretization configuration in the

equation is the same as that in the divergence term. All the other subroutines obey the same

naming rule.

To clarify the use of the discretization library, the discretization of the momentum conser-

vation equation in the matrix acidization simulation can be taken as an example. The equation

is shown as below:

rf
@

@t
u
�

� �

þ rf
u
�
� r

u
�
¼ � rp �

m

K
uþr � mr

u
�
�
rf F
ffiffiffiffi
K
p jujuþ rf g: ð2Þ

Since the physical meanings of the variables are not important to the discretization of the equa-

tion, they will not be given here. The unknown variables of the equation are the scalar p and

the vector u, and all the other variables are supposed to be known and become the coefficients

of the equation. In fact, the equation can be discretized in the x-, y-, and z-directions. When

the equation is discretized in the x-direction, a discretized equation can be imposed on an x-

direction face f. In this condition, p is discretized at the center of the two cells with f being

their common face, which can be shown by Fig 1. Thus, the subroutine “dctz_xpgra” is used to

discretize p in the equation. u is discretized on the x-direction face, which makes u degenerate

into its x-direction component ux in the discretized equation. In the first term and the fourth

term, ux is imposed on the face f. In the second term, there are two u, where the left u can be
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deemed known and the right u can be deemed unknown. Thus, ux is imposed on the face f and

either adjacent face of f in the x-direction if the upwind scheme is used. The fifth term is in

reality a Laplace term, and therefore, ux is imposed on the face f and all its adjacent faces in all

three directions, in which there are seven faces in total. The sixth term also has two u, and only

the right u is unknown. Thus, ux is imposed on the face f. From the discussion, it is learned

that the variable discretization configuration of ux in the equation should be the same as that

in the Laplace term, which is shown in Fig 2. Thus, the subroutine “dctz_xxlap” is used to dis-

cretize ux in the equation. With the same idea, the subroutine “dctz_yylap” can be used to dis-

cretize uy in the equation, and the subroutine “dctz_zzlap” can be used to discretize uz in the

equation, in which uy and uz stand for the y-direction and z-direction components of u,

respectively. More details of the discretization library can be seen in Section 6.

3. The coefficient library

The equations in the mathematical model are often partial differential equations (PDEs). After

discretization, these PDEs become AEs. Some AEs can be collected and arranged in a certain

order to form a linear system. When the unknown variables of the linear system are defined,

the coefficients of the unknown variables are the nonzero entries of the coefficient matrix, and

the terms without unknown variables form the right-hand-side vector. Thus, the next step is to

compute the coefficients and the right-hand-side vector.

Traditionally, the expressions of the coefficients and right-hand-side vector have to be

given by hand before obtaining their values. However, this method wastes time when deriving

the expressions and is error prone. Thus, a more straightforward method is proposed to avoid

these issues. It is noted that an AE in a linear system is in reality a linear AE in this work,

whose general expression can be written as:

ai1x1 þ ai2x2 þ ai3x3 þ � � � þ ainxn � bi ¼ 0; i ¼ 1; 2; . . . ; n; ð3Þ

if there are n variables in the linear system. In Eq (3), x stands for the variable, a stands for the

coefficient of x and b stands for the right-hand-side vector. With the traditional idea, a and b
are known, and x can be calculated from a and b. However, in the opposite way, if x is known,

a and b can also be calculated from x. More concretely, if all the x are set to be zero, the left-

Fig 1. Discretization of the variable p in Eq (2). There are two cells in the x-direction. Suppose Eq (2) is discretized

on the face f, and then the variable p is discretized at the center of the two cells, which is represented by the two solid

points.

https://doi.org/10.1371/journal.pone.0261134.g001
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hand side of (3) equals with −bi; if xj is set to be one, and all the other x are set to be zero, the

left-hand side of (3) equals with aij−bi. Since bi has been known, aij can also be known. In this

way, the coefficients and right-hand-side vector can be calculated directly from Eq (3) without

the step of deriving their expressions.

If it is deemed an iteration that sets xj as one and the other x as zero, j = 1,2,. . .,n, and setting

all the x as zero is also an iteration, a total of n+1 iterations are needed to obtain the values of

all the coefficients and the right-hand-side vector, with the method above. However, the num-

ber of iterations can be reduced further by the improvement below. For the convenience of the

following discussion, b is put to the right-hand side of (3), and there is:

ai1x1 þ ai2x2 þ ai3x3 þ � � � þ ainxn ¼ bi; i ¼ 1; 2; . . . ; n: ð4Þ

For xj, not all the AEs contain it. Those AEs that contain xj can be called the neighborhood of

xj. It is observed that if the neighborhoods of two x overlap, the two x cannot be set as one

simultaneously to achieve their corresponding coefficients in the overlapped equation, since in

that condition, the left-hand side of Eq (4) equals the sum of their coefficients. For example, if

both x1 and x2 are set as one in one of their overlapped equations, the left-hand side of the

Fig 2. Discretization of the variable ux in Eq (2). Suppose Eq (2) is discretized on the x-direction face f, and then the

variable ux is discretized on the face f and the six faces adjacent to f.

https://doi.org/10.1371/journal.pone.0261134.g002
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overlapped equation in the form of Eq (4) equals, ai1+ai2, from which ai1 and ai2 cannot be cal-

culated, respectively. In other words, for all x that do not have overlapping neighborhoods,

they can be set as one simultaneously to achieve a group of coefficients. In this way, the total

number of iterations to achieve all the coefficients and the right-hand-side vector is reduced to

the number of groups of x that do not have overlapping neighborhoods.

In fact, there are many ways to divide all the x into such groups. However, the way that pro-

duces the minimal number of groups is the most interesting, since in that way all the coeffi-

cients and right-hand-side vector can be achieved with the minimal number of iterations. For

example, it is supposed that a kind of variable is discretized with the pattern “xxlap”. For the

DV imposed on the x-direction face f, its neighborhood is composed of seven equations that

are imposed on the face f and six adjacent x-direction faces of f. In that condition, the two DVs

separated by the other two DVs can be put in a group g111. Then, shifting every DV in this

group for one position in the x-direction generates another group g211 of this kind. Further-

more, shifting every DV in g211 for one position in the x-direction generates another group

g311. In the same way, it is easy to see that g411 is the same as g111; therefore, no further shifting

is needed. This kind of shifting can also be done in the y-direction and z-direction, respec-

tively, which generates twenty-seven groups in total. Fig 3 gives a two-dimensional sketch of

this kind of shifting. It is easy to see that the other ways to divide all the DVs will give a larger

Fig 3. A two-dimensional sketch of the shifting. All the variables are discretized in the x-direction, which is

represented by arrows. All the DVs are allocated to nine groups, which are represented by gij, i,j = 1,2,3. For each

group, the arrows allocated to it are in bold. g21 is derived by shifting g11 by one position in the positive x-direction (the

right direction), and g12 is derived by shifting g11 by one position in the positive y-direction (the up direction). In each

group, any pair of adjacent bold arrows has the other two arrows that are not in this group between them.

https://doi.org/10.1371/journal.pone.0261134.g003
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number of groups. Thus, only twenty-seven iterations are enough to achieve all the coefficients

and right-hand-side vectors, which is a great improvement. From the discussion above, a more

general conclusion is that the minimal number of groups of a variable depends on the discreti-

zation pattern of the variable. The subroutine “genExpField” is used to generate all such

groups. In addition to the fact that the number of iterations can be greatly reduced, the

improvement method above has the other advantage, which makes the task to achieve the coef-

ficients and right-hand-side vector to be done in parallel. Every DV in a group can be allocated

a thread to achieve all its relative coefficients, which is done in parallel on the level of threads

and can be done by OpenMP [35, 36].

In the code, all the subroutines to compute the coefficients, the right-hand-side vector and

the subroutine “genExpField” comprise the coefficient library. It is observed that in Eq (3), if

all x are the solutions of the equation, the left-hand side of Eq (3) equals its right-hand side,

whose difference is zero. However, if x is not the solution of the equation, there is a difference

between the left-hand side and right-hand side of the equation, which is termed the residual of

the equation. The coefficient computing method above is in fact a procedure to compute the

residuals of the equation under different x. Thus, the naming rule of the subroutine in the coef-

ficient library can be set as “Resi_equation name_variable name”. Here, “Resi” is the abbrevia-

tion of “residual”. For example, the subroutine “Resi_xmom_vx” can be used to compute the

coefficients of the x-direction velocity variables in the x-direction momentum conservation

equation of (2).

Since different mathematical models have different PDEs, there are no common subrou-

tines that can be used to compute the coefficients of all the models. Thus, the coefficient library

is open, which means that numerous coefficient computing routines have to be developed by

the programmer according to different PDEs. However, the coefficient library will stipulate a

unified specification for all routines.

4. The linear system library

A linear system can be constructed from one or more PDEs. For example, after discretization,

the concentration equation in the DBF model ([37–42]):

@ð�Cf Þ

@t
þr � uCf

� �
¼ r � �De � rCf

� �
� kcav Cf � Cs

� �
; ð5Þ

which is a PDE, forms a linear system, by which the acid concentration can be achieved. How-

ever, another linear system in the DBF model, which is the velocity-pressure linear system, is

constructed from two PDEs, the momentum conservation equation and the mass conservation

equation. All the PDEs may have different discretization positions, either at the center of the

cells or on the faces of the cells. Thus, in the linear system, it is stipulated that the AEs imposed

on the x-direction faces are put into it first, and then the AEs imposed on the y-direction faces,

z-direction faces and at the center of the cells are put into it one after another. The DVs are put

into the unknown vector in the same order. If more than one PDE is discretized on the x-

direction faces, for example, the order should be that the AEs discretized from the first PDE

are put into the linear system first, followed by those from the second PDE, and so on. This

rule is the same for the condition of the DVs. Fig 4 shows the linear system Ax = b, where A
stands for the coefficient matrix, x stands for the unknown vector and b stands for the right-

hand-side vector.

The row number of an AE in the linear system is called its index. The row number of a DV

in the unknown vector of the linear system is called its index, or the column number of a DV

in the coefficient matrix is called its index. All the x-direction faces in the regular grid form the
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x-direction field, and in the same way, the y-direction field and the z-direction field can be

formed. All the center of the cells form the center field. Every element of the field has its own

coordinates in the field. Since all the AEs and DVs are imposed on the field elements, their

indices can be derived from the indices of the field elements. For example, if a regular grid has

4, 8, and 16 cells in the x-, y- and z-directions, respectively, the index of the field element with

coordinates (2,3,5) in the center field should be:

ð4þ 1Þ � 8� 16þ 4� ð8þ 1Þ � 16þ 4� 8� ð16þ 1Þ þ 4� 8� ð5 � 1Þ

þ 4� ð3 � 1Þ þ 2 ¼ 1898: ð6Þ

Here, it is stipulated that all the coordinate entries are natural numbers and that the elements

of a field are counted in the order of the x-, y-, and z-directions, which means that the element

with the coordinate (1,1,1) is counted first, followed by the element with the coordinate

(2,1,1), (3,1,1), and so on. The first three terms of (6) represent the element amounts of the x-,

y-, and z-direction fields, respectively. Thus, the AE or DV imposed on this element has an

index of 1898 if no more than one PDE or variable is imposed on the element of the center

field. The index computing is finished by the subroutine “coordiToGlobalInd”, which will be

discussed in more detail later. In fact, the row number of the nonzero entry of the coefficient

matrix is the equation index, and the column number is the DV index. Thus, when the two

kinds of indices are achieved, the positions of the nonzero entries in the coefficient matrix can

be obtained. Since the values of all the nonzero entries of the coefficient matrix and the right-

hand-side vector have been known with the help of the coefficient library, the construction of

the linear system is completed. The routine “setMatValue” is designed to carry out all these

steps.

In the code, the coefficient matrix is stored in many arrays. All the coefficients of a variable

in a PDE should be stored in one array. For example, all the coefficients of the variable p in Eq

(2) should be stored in one array, and all the coefficients of the variables ux, uy and uz in Eq (2)

should be stored in the other three arrays. If Eq (1) is combined with Eq (2) to form a linear

system, another four arrays are needed to store the coefficients of the variables p, ux, uy and uz
in Eq (1). In addition, some auxiliary arrays are introduced to accelerate the position location

of the coefficients in the array. An example is given as following. If the array “AxxValues” is

used to store the coefficients of ux in Eq (2), the arrays “AxxRows”, “AxxCols”, “AxxBase” and

Fig 4. The linear system Ax = b, where A stands for the coefficient matrix, x stands for the unknown vector, and b
stands for the right-hand-side vector.

https://doi.org/10.1371/journal.pone.0261134.g004
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“AxxNum” are the auxiliary arrays. The first two auxiliary arrays are used to store the row

numbers and the column numbers of the coefficients. In that case, AxxRows[i] and AxxCols[i]

represent the row number and the column number of AxxValues[i], respectively. Here, “i” is

the index of the array entry. It is easy to see that the size of “AxxValues”, “AxxRows” and “Axx-

Cols” equals the number of coefficients of ux. The coefficients of the AE with a smaller index

should be put into “AxxValues” before those of the AE with a larger index. Meanwhile, the

coefficient of the DV with a smaller index should be put into “AxxValues” before that of the

DV with a larger index. In this way, a coefficient can be located in “AxxValues” if its row num-

ber and column number are known. The search begins with the head of the array “AxxRows”

and stops when it meets the first entry that equals the row number of the searched coefficient.

If the index of the entry is “i”, the search then goes to the subarray (from AxxCols[i] to the tail

of “AxxCols”) to search for the column number. If the index of the searched column number

is “j”, AxxValues[j] is the searched coefficient. The search in “AxxCols” can be finished with a

time complexity of O(1). However, the search in “AxxRows” begins with the array head, which

leads to the time complexity of O(n). To reduce the time complexity of the search in “Axx-

Rows” to O(1), the arrays “AxxBase” and “AxxNum” are introduced. In the two arrays, the

index of the entry represents the index of the AE, and therefore, the size of the two arrays

equals the number of AEs. AxxBase[i] records the initial position of the coefficients of ux of the

i-th AE in “AxxValues”, and AxxNum[i] records the number of coefficients of ux of the i-th

AE. With the help of the two arrays, the search in “AxxRows”, “AxxCols” and “AxxValues” can

begin with the index AxxBase[i] for the i-th AE and stop at the index AxxBase[i]+AxxNum[i].

As a result, the search for a coefficient in “AxxValues” can be finished in a time complexity of

O(1).

The arrays can be shown in Fig 5. When discretizing Eq (2) in the x-direction, the first AE

of Eq (2) is located on the x-direction face with coordinates (1,1,1), and it has four coefficients

of ux. Thus, if the index of the AE is one, the first four entries of “AxxRows” have values of

one, the first four entries of “AxxCols” store the column numbers of the coefficients and the

first four entries of “AxxValues” store the four coefficients. Since the coefficients of ux of the

first AE are stored from AxxValues[1] to AxxValues[4], there are AxxBase[1] = 1 and Axx-

Num[1] = 4. In the same way, the second AE is located on the x-direction face with coordi-

nates (2,1,1), and it has five coefficients of ux. Thus, AxxBase[2] = 5, and AxxNum[2] = 5.

5. Parallelization

The configuration of the real domain may be irregular. However, it can be decomposed into

many smaller cuboids that are then discretized by regular grids. The cuboids are also called

subdomains. In the same way, the entire field is also decomposed into many smaller fields that

are called local fields. The two boundaries of the subdomain in the x-direction are called its left

and right boundary, respectively, and the x-direction coordinate of the left boundary should

be smaller than that of the right boundary. In the same way, the two boundaries of the subdo-

main in the y-direction are called its down and up boundaries, respectively, and the two

boundaries of the subdomain in the z-direction are called its front and back boundaries,

respectively. Fig 6 shows a two-dimensional sketch of a domain that is surrounded by thick

and solid lines. It is easy to see that the domain is irregular. However, it can be divided into

four regular subdomains. The three thin and solid lines inside the domain are the interfaces of

the four subdomains. The thin and dashed lines represent the regular grids of the subdomains.

The operations relative to one subdomain should be finished only by one processor, while

one processor should process the operations of only one subdomain. As mentioned above,

AEs and DVs are imposed either at the center of the cells or on the faces of the cells. Thus, the
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Fig 5. The five arrays help store the coefficients of ux in Eq (2).

https://doi.org/10.1371/journal.pone.0261134.g005

Fig 6. A two-dimensional irregular domain is divided into four regular subdomains. The interfaces of the four

subdomains are represented by the three thin and solid lines with three different colors. The blue line is allocated to

Processor 1, the yellow line is allocated to Processor 2, and the green line is allocated to Processor 3.

https://doi.org/10.1371/journal.pone.0261134.g006
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operations relative to a subdomain include the coefficient computation of the AEs and putting

the coefficients into the linear system. The operations of the AEs imposed at the center of the

cells are automatically finished by the processor allocated to the subdomain. However, to dis-

cuss the operations of the AEs imposed on the faces of the cells, the arrangement of the proces-

sors has to be given. Generally, all processors form a regular grid. If the processors are counted

in the order of the x-, y- and z-directions, the index of a processor can be obtained with the

same method mentioned above. Some faces of the cells are the interfaces between two subdo-

mains, and therefore, it is stipulated that the AEs imposed on the interfaces are allocated to the

processor with a smaller index. The AEs imposed on the other faces are automatically pro-

cessed by the processors allocated to their subdomains. With this philosophy, the four subdo-

mains in Fig 6 are allocated to four processors, and the arrangement of the four processors can

also be seen in the figure. The three interface lines are in different colors, which means that the

blue line is allocated to Processor 1, the yellow line is allocated to Processor 2 and the green

line is allocated to Processor 3. The numbers “1”, “2” and “3” are called the IDs of the proces-

sors. It is noted that the size of the subdomains is more or less the same, which guarantees the

load balance of the processors. The domain decomposition strategy on the level of processors

can be implemented by MPI [43, 44]. As mentioned above, the coefficient computing in Sec-

tion 3 is parallelized on the level of threads and can be implemented by OpenMP; therefore,

the parallelization of the general framework can be implemented by both OpenMP and MPI.

When computing the coefficients of an AE in the boundary region of a subdomain, some of

its DVs may be imposed on the field elements belonging to the neighboring subdomains.

Under this condition, the field of this subdomain has to be expanded for these DVs to include

the relative field elements of the neighboring subdomains. For the various kinds of DVs, the

configurations of the expanded fields are different, which is determined by the discretization

patterns. For example, for the discretization pattern “xxlap”, its AEs are imposed on the x-

direction field of the subdomain, except for the x-direction faces on the right boundary. Fig 7

shows the positions of the AEs on the subdomain of Processor 1 in Fig 6, which are sur-

rounded by the four circles. Given this, the DVs of the discretization pattern should be

imposed on all the elements of the x-direction field of this subdomain and on all the elements

Fig 7. For the discretization pattern “xxlap”, the positions of the AEs on the subdomain of Processor 1 are

surrounded by the four circles.

https://doi.org/10.1371/journal.pone.0261134.g007
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of the x-direction field that are adjacent to this subdomain, except those adjacent to the right

boundary of this subdomain. Here, the elements of the x-direction field that are adjacent to

this subdomain are defined as the elements; when they are shifted for one position in any of

the three directions, they will become the elements of the x-direction field of this subdomain.

Fig 8 shows the positions of the DVs of the AEs on the subdomain of Processor 1 in Fig 6,

which are surrounded by the six circles.

To compute the coefficients of the DVs imposed on the field elements of the neighboring

subdomains, some values of the boundary areas of the neighboring subdomains have to be

transferred to this subdomain; in the other direction, some values of the boundary area of this

subdomain should also be transferred to its neighboring subdomains. These transmissions

constitute the communication cost of the processors, which is also the reason that the linear

speedup of the parallel code deteriorates with the increase in the number of processors.

In addition, Section 4 gives the indices of the AEs and DVs. The index in a subdomain is

called the local index, and the index in the entire domain is called the global index. It is easy to

know that the indices computed from Section 4 are local indices. However, in the parallel

code, the indices in a linear system should be global indices. Thus, before constructing the lin-

ear system, the local indices have to be changed to global indices. If the indices of the proces-

sors begin with zero, it is stipulated that the AEs processed by Processor 0 are arranged in the

linear system first, followed by those processed by Processor 1, Processor 2 and so on. As a

result, the global index of an AE or DV in a subdomain can be achieved by adding the number

of local indices of all the former processors to its local index.

This way to construct the linear system can be easily used by many popular solvers. These

solvers provide the interfaces and routines to fill the nonzero entries of the coefficient matrix

and right-hand-side vector as long as the locations of the nonzero entries are given. The loca-

tion of a nonzero entry of the coefficient matrix is in reality an ordered pair<row number,

column number>. Fortunately, the row number is the AE index, and the column number is

the index of the DV. Both of them have been given by the construction method.

Fig 8. For the discretization pattern “xxlap”, the positions of the DVs of the AEs on the subdomain of Processor 1

are surrounded by six circles.

https://doi.org/10.1371/journal.pone.0261134.g008
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6. Matrix acidization simulator

6.1 The mathematical model

A matrix acidization simulator (Masor) based on the general framework suggested above is

developed. Masor simulates a reservoir application in which an acid flow is injected into the

matrix to produce an oil production channel. Thus, numerical simulation is a topic of compu-

tational fluid dynamics. When matrix acidization is simulated under a constant temperature,

the energy conservation law is not considered. Thus, based on the mass conservation law and

the momentum conservation law, a mathematical model of matrix acidization can be derived,

which is the DBF model. In this model, the mass conservation equation is shown as:

@�

@t
þr � u ¼ 0: ð7Þ

Eq (2) is the momentum conservation equation, and Eq (5) is the concentration equation. In

particular, the momentum conservation equations in the x-direction, the y-direction and the

z-direction are called the x-momentum equation, the y-momentum equation and the z-

momentum equation, respectively. The meanings of all the variables in these equations are

shown in Table 1. Although there are the other equations in this model, they will not be given

in this section, since the purpose here is to give an example of the application of the general

framework instead of an investigation of the model. The decoupled scheme [45] is used to

solve the model. In this scheme, some changes have to be made to the mass conservation equa-

tion and the momentum conservation equation. After that, the mass conservation equation is

expressed as:
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which is an elliptic PDE of the unknown variable pn+1. Here, the superscripts represent the

time steps. The momentum conservation equation is shown as:
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in which un+1 is the unknown variable. It is noted that uD is an intermediate variable, which

Table 1. The meanings of the notations.

Notation Meaning Notation Meaning

p pressure t time

μ fluid viscosity g gravity vector

K permeability value Cf cup-mixing concentration of the acid

u velocity vector De effective dispersion tensor

ϕ porosity kc local mass-transfer coefficient

ρf mass density of the fluid av interfacial surface area per unit volume

F Forchheimer coefficient Cs concentration of the acid at the fluid-solid interface

https://doi.org/10.1371/journal.pone.0261134.t001
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can be expressed as:

unþ1
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p junj
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ð� rpnþ1 þ rf gÞ: ð10Þ

6.2 The structure of the code

The configuration of the matrix domain to be acidized could be complicated. However, by

using the domain decomposition strategy in Section 5, a complicated domain can be divided

into a series of subdomains of cuboids, and each of them is allocated to each processor. With

the finite difference method on the regular grid, the discretization library is used by each pro-

cessor to discretize all the equations and variables on its field elements. After that, the coeffi-

cient library is used to compute the coefficients of all the AEs. Then, the linear system library

is applied, and three linear systems are formed, one is the pressure linear system for solving

the pressure, which is composed of the AEs discretized from Eq (8); one is the velocity linear

system for solving the velocity, which is composed of the AEs discretized from Eq (9); and the

other is the concentration linear system for solving the concentration, which is composed of

the AEs discretized from Eq (5).

The parallel code of the decoupled scheme of matrix acidization is written in FORTRAN

90, OpenMP and MPI, and there are nine modules in this code. The libraries in the general

framework are also implemented in FORTRAN 90. Thus, the modules can directly call the

subroutines of the general framework to finish the simulation. The nine modules are shown in

Fig 9. The user can set the experimental parameters in the module “Infile”. The module

“Model” stipulates the variables and parameters that must be set by the users before running

the code. The module “GlobalData” defines a series of global data that will be used by the entire

code. The module “Driver” defines the flow chart of the code and therefore controls its

Fig 9. The nine modules in the code of the decoupled scheme of matrix acidization. The arrow represents the

calling relationship between two modules, i.e., the module at the tail of the arrow will call the module at the head of the

arrow.

https://doi.org/10.1371/journal.pone.0261134.g009
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running. After the experimental parameters are set in the module “Infile”, “Infile” will call the

modules “Model” and “Driver” to begin the running of the code. In the running, the module

“Driver” will call the modules “Model”, “GlobalData”, “Resi”, “ConstructMat” and “ExportRe-

sults” to finish various tasks. Among them, the module “Resi” is designed to compute the coef-

ficients of the AEs, and therefore, it will call many subroutines in the coefficient library. The

module “ConstructMat” is used to discretize the PDEs and construct the linear system. Thus,

it will call the subroutines in the discretization library and the linear system library. The mod-

ule “ExportResults” is responsible for outputting the interesting results in either of the two for-

mats, MATLAB and Tecplot, which are implemented by calling the two modules

“Export2MATLAB” and “Export2Tecplot”, respectively. It is emphasized that except for the

module “Infile”, all the other modules need to call the two modules “Model” and “GlobalData”

to finish their tasks.

6.3 The module “Driver”

Since the modules “Driver”, “Resi” and “ConstructMat” have a close relationship with the

libraries of the general framework, their details will be discussed in the following sections. The

study of the other modules will not be given.

In the module “Driver”, there is a subroutine also called “driver”, in which a series of calls

are defined. Its pseudocode is given in Fig 10. From the figure, it can be seen that the main task

of the subroutine “driver” is to control the running of the code. First, initialization is per-

formed to initialize a series of variables and parameters, such as the initial pressure and the ini-

tial porosity in the matrix. Moreover, it is observed that the nonzero entry of the linear system

may be composed of many terms. The values of some of the terms will not change with time,

and therefore, they are called static terms. On the other hand, if the values of the terms change

with time, they are called dynamic terms. For example, on the acid injection boundary of the

matrix, the injection velocity is prescribed, and therefore Eq (9) deteriorates to:

u ¼ uB; ð11Þ

in which uB is the prescribed injection velocity. In this condition, uB will not change with time,

and therefore, it is a static term. Due to the static characteristics of the terms, it is not necessary

to update their values at each iteration. Instead, their values should be calculated one time

before the time iterations, which is implemented by the calling of the subroutine “genStatic-

Para”. It is noted that there are no static terms in the entries of the pressure linear system and

the concentration linear system. Then, the time iterations begin. The values of some variables

can be obtained directly from the explicit formulae, which is done by the calling of the subrou-

tines “compute�”. Here, “�” is a wildcard and represents the name of the variable. After that, it

comes to the processing of the three linear systems. With the decoupled scheme, the pressure

at time step n+1, i.e., pn+1, should be computed from the pressure linear system first, and then

with pn+1; the intermediate variable unþ1
D can be obtained from Eq (10), which is then used to

compute the velocity at time step n+1, i.e., un+1. With pn+1 and un+1, the concentration linear

system can be used to compute the concentration at the time step n+1, i.e., Cnþ1
f . Thus, in the

subroutine “driver”, the pressure linear system is processed first, followed by the processing of

the velocity linear system and the concentration linear system. The subroutine “genDynPara”

helps to compute the values of the dynamic terms, and the subroutine “solve” helps to solve

the linear system. Afterward, the results at each iteration are output by the subroutine “output-

Data”. Finally, the subroutine “finalize” is called to perform some operations to finish the run-

ning of the program, such as freeing the memory of the variables. It is noted that the input

variable of the subroutines “genStaticPara” and “genDynPara” is “fi_kind”, and the input

PLOS ONE A Field-based general framework to simulate fluids in parallel

PLOS ONE | https://doi.org/10.1371/journal.pone.0261134 February 3, 2022 16 / 25

https://doi.org/10.1371/journal.pone.0261134


Fig 10. The pseudocode of the subroutine “driver” in the module “Driver”.

https://doi.org/10.1371/journal.pone.0261134.g010
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variable of the subroutine “solve” is “mat_kind”, which represents a kind of coefficient matrix.

More details of the two input variables will be given later. Since the other subroutines of the

module “Driver” have little relationship with the general framework, they are not discussed.

6.4 The module “Resi”

The module “Resi” is used to compute the coefficients of the AEs, and therefore, it needs to

call the subroutines in the coefficient library. It is known that these coefficients can be derived

from computing the residuals of the AEs. To see how to do that, the subroutine “Resi_x-

mom_vx” is taken as an example. Fig 11 is the head part of the code of the subroutine. The

name of the subroutine hints that it will compute the coefficients of the AEs derived from the

x-momentum equation of Eq (9). The unknown variable of the x-momentum equation is the

x-direction velocity. Thus, the input variable “velx” represents the field of the x-direction

velocity, which is a three-dimensional array. The input variable “resi” is also a three-dimen-

sional array, which is used to store the residuals of the AEs. Considering that the configuration

of the x-direction velocity field may be irregular, some entries of “velx” may not be in the x-

direction velocity field. For example, in Fig 8, “velx” is a 6 × 5 array on Processor 1. However,

the entries at the upper left corner and the upper right corner are not in the x-direction veloc-

ity field. The input variable “resi” is also a three-dimensional array, which is used to store the

residuals of the AEs. If the AEs are imposed on Processor 1 of Fig 8, “resi” is a 4 × 4 array.

As mentioned above, the field of the x-direction velocity can be divided into 27 groups. The

x-direction velocities in the same group can be set as one simultaneously to achieve a group of

coefficients. Thus, the subroutine “Resi_xmom_vx” will be called 27 times to obtain all the

coefficients. For each time, the input variable “velx” is set to represent one group, i.e., the

entries of “velx” that represent the x-direction velocities in this group are set as one, and the

other entries are set as zero. Then, after computation, the entries of “resi” that represent the

AEs containing the x-direction velocities in this group are the corresponding residuals, which

can be sent to the discretization library to fill them in the coefficient matrix of the velocity lin-

ear system. Moreover, the subroutine “Resi_xmom_vx” will be called one more time to obtain

the right-hand-side vector of the velocity linear system. At this time, all the entries of “velx” are

set as zero. The other subroutines in the module “Resi” will not be introduced here.

6.5 The module “ConstructMat”

In the module “ConstructMat”, the subroutines “dctz_xxlap”, “dctz_yylap” and “dctz_zzlap”

in the discretization library are called to discretize u in the x-momentum equation, the y-

momentum equation and the z-momentum equation, respectively. Moreover, the subroutine

Fig 11. The head part of the code of the subroutine “Resi_xmom_vx”.

https://doi.org/10.1371/journal.pone.0261134.g011
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“dctz_pplap7” is used to discretize p in the pressure equation, and the subroutine

“dctz_pplap19” is used to discretize Cf in the concentration equation. From the name of the

two subroutines, it can be infered that both the variable discretization configuration of p in the

pressure equation and that of Cf in the concentration equation are the same as in the Laplace

term. However, due to the difference in the discretization schemes of the Laplace term in the

two equations, the variable discretization configurations of p and Cf are slightly different and

are distinguished by the two numbers “7” and “19” in the name of the two subroutines. From

Eq (8), it can be seen that when the pressure equation is discretized at the center of a cell, the

pressure p can be discretized at the center of the six cells adjacent to the cell and at the center

of the cell itself, which is the reason that there is the number “7” in the subroutine name

“dctz_pplap7”. However, when the concentration equation is discretized at the center of a cell,

due to the existence of the tensor De in the Laplace term of Eq (5), the concentration Cf should

be discretized at the center of more than seven cells. In a grid of 3 × 3 × 3 cells, if the concentra-

tion equation is discretized at the center of the grid, the concentration Cf should be discretized

at the center of all the cells of the grid, except the eight cells at the corners of the grid. Thus, the

number “19” appears in the name of the subroutine “dctz_pplap19”.

In the linear system library, two subroutines, “coordiToGlobalInd” and “setMatValue”, are

called by all the subroutines “dctz_�”, to finish the discretization procedure. “�” is a wildcard.

The task of the subroutine “coordiToGlobalInd” is to convert the coordinate of a field element

in a local field to its index in the global linear system. The head part of the code of the subrou-

tine “coordiToGlobalInd” is given in Fig 12. From the figure, it can be seen that there are six

input variables in the parameter list. Among them, “pid” is the processor ID, which indicates

the local field on which the field element lies. “local_i”, “local_j” and “local_k” form the coordi-

nates of the field element in the local field, and “global_ind” is the index of the field element in

the global linear system. The input variable “ind_kind” is a three-digit integer. The first digit

represents the field element type. There are four kinds of field elements, the x-direction face,

the y-direction face, the z-direction face and the center of a cell, which are represented by the

digits “1”, “2”, “3” and “4”, respectively. The last two digits represent the type of coefficient

matrix. “11” stands for the coefficient matrix of the velocity linear system, “12” stands for the

coefficient matrix of the pressure linear system, and “13” stands for the coefficient matrix of

the concentration linear system. Then, according to “pid”, “ind_kind” and the coordinate, the

“global_ind” of a field element can be computed with the methods in Section 4 and Section 5.

From the discussions in Section 4, it is understood that if a DV is imposed on this field ele-

ment, the index of the DV in the global linear system is the index of this field element; if an AE

Fig 12. The head part of the code of the subroutine “coordiToGlobalInd”.

https://doi.org/10.1371/journal.pone.0261134.g012
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is imposed on this field element, the index of the AE in the global linear system is also the

index of this field element. Furthermore, the index of an AE is the row number of the AE in

the coefficient matrix, and the index of a DV is the column number of the DV in the coefficient

matrix. Thus, by the two indices, the position of a nonzero entry of the coefficient matrix, i.e.,

the position of a residual, can be located. Then, the subroutine “setMatValue” is used to fill the

residual in its position of the linear system. The head part of the code of the subroutine “set-

MatValue” is shown in Fig 13. There are six input variables in the parameter list. The input

variable “col” represents the column number of the position, the input variable “row” repre-

sents the row number of the position and the input variable “value” represents the residual

value. The input variable “fi_kind” is a three-digital integer. It stands for the kind of field,

which decides the array in which the residual lies. The first digit represents the type of field ele-

ment, which is the same as that in “ind_kind” above. The last two digits represent the type of

equation, “51” stands for the static part of the x-momentum equation, “52” stands for the

dynamic part of the x-momentum equation, “53” stands for the static part of the y-momentum

equation, “54” stands for the dynamic part of the y-momentum equation, “55” stands for the

static part of the z-momentum equation, “56” stands for the dynamic part of the z-momentum

equation, “57” stands for the mass conservation equation and “58” stands for the concentration

equation. Finally, “eq_i”, “eq_j”, and “eq_k” are the equation coordinates in the local equation

field, which are used to locate the position of the residual in the array.

Now, we will study some details of the subroutine “dctz_xxlap”. When the subroutine is

called, it is stipulated that the coefficients and the right-hand-side values of the AEs are already

computed by the coefficient library. Thus, the discretization procedure is to put the coefficients

and the right-hand-side values of the AEs into the corresponding arrays in the linear system

Fig 13. The head part of the code of the subroutine “setMatValue”.

https://doi.org/10.1371/journal.pone.0261134.g013
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library, for example, the arrays in Fig 5. The head part of this subroutine code can be given in

Fig 14. From the figure, it can be seen that there are four input variables in the parameter list.

The input variable “field” has the same meaning as “velx” in the subroutine “Resi_xmom_vx”,

and the input variable “resi” has the same meaning as that in the subroutine “Resi_xmom_vx”.

When an entry of the array “field” is set to one, the residuals of the AEs that contain the entry

are sent to the coefficient storage arrays in the linear system library. However, to locate the

positions of the residuals in the arrays, the information of the field element and the coefficient

matrix should be known. Thus, the input variables “ind_kind” and “fi_kind” are needed,

which have the same meaning as before. In particular, ind_kind = 111, and fi_kind = 151 or

152 in this condition.

6.6 The evaluation of Masor

Different from the former code-developing pattern in which the entire code should be written

from the beginning, the general framework has already implemented most functions of the

code, and therefore Masor can be implemented easily and quickly with the general framework.

Masor has been applied in many cases of matrix acidization simulations. In the following dis-

cussion, those cases using Masor are retold for the purpose of evaluation. One evaluation is to

verify the correctness and effectiveness of Masor, and the other evaluation is to show the good

parallel performance of Masor. Since the success of Masor has been demonstrated in those

works, the corresponding numerical experiments will not be repeated in this work. It is

emphasized that in those works, Masor is just a tool to investigate the reasonability of the

mathematical model and the effectiveness of the numerical algorithms, and Masor itself, and

the general framework behind Masor, have never been the point of interest.

In Section 5.3 of [42], the authors used Masor to perform simulations and compared the

numerical results of Masor with the work [45]. In that case, a matrix of 0.04 m × 0.04 m × 0.1

m, and a grid of 36 × 36 × 90 cells are used to discretize the matrix domain. An acid flow is

injected into the matrix from the 0.04 m × 0.04 m face to produce an oil production channel,

and the output is at the other 0.04 m × 0.04 m face. Except for the two faces, the other faces of

the matrix are closed. The acid injection velocity is increased from 1.04 × 10−7 m/s to

1.04 × 10−4 m/s, and an acid-efficiency curve can be drawn from the simulation results. From

the results, it is concluded that the two acid-efficiency curves of works [42, 45] match each

other well. In addition, both works indicate that the optimal injection velocity is 1.04 × 10−6

Fig 14. The head part of the code of the subroutine “dctz_xxlap”.

https://doi.org/10.1371/journal.pone.0261134.g014
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m/s. Moreover, five different dissolution patterns in the work [45] can be reproduced by

Masor in [42]. Thus, the correctness and effectiveness of Masor’s method are proven by [42].

It is acknowledged that the other works ([37–42, 46]) have also done many verification works,

and we will not repeat them here.

In addition, Section 7 of [42] evaluates the parallel performance of Masor. There, the

numerical experiment in the last paragraph is carried out with different numbers of proces-

sors, 9, 18, 36, 72 and 144. The percentage of solver time over run time is more than 98%, and

therefore, it is the parallel performance of the solver that determines the parallel performance

of Masor. In [42], the authors used the solver MUMPS. When the number of processors is

increased from 9 to 36, the speedup is more or less linear. However, when the number of pro-

cessors is increased further, a limited speedup can be achieved. This phenomenon can also be

observed in other applications of MUMPS [47].

7. Conclusion

In this work, a field-based general framework to simulate fluids in parallel is suggested. Based

on the experience from the fluid simulations, it is seen that all kinds of operations in the simu-

lations can be attributed to the operations in the fields. With this philosophy, different fluid

simulations can be deemed to follow the same kind of pattern, which necessitates building a

general framework for all types of fluid simulations, i.e., the field-based general framework. As

a result, most of the common operations in different simulations can be finished by the code

of the framework, and the development of new simulators can be done easily and quickly.

The idea of a field-based general framework is summarized as follows—Due to the conser-

vation laws, there are many common terms among the equations of fluid simulations, such as

the divergence term and the Laplace term, so that the variables in the equations have common

discretization patterns that are recognized by the discretization library. It is emphasized that

the discretization patterns are established with the prerequisite that the equations and the vari-

ables are discretized on the field elements, i.e., the discretization patterns are field-based. After

discretization, the PDEs become the AEs, and the variables become the DVs. Before assem-

bling the AEs into a linear system, the coefficients of the AEs should be known. It is observed

that the coefficient of a DV in an AE is in reality the residual of the AE, which is done by set-

ting the DV as one and the other DVs in the AE as zero. This coefficient computing method is

implemented by the coefficient library. Considering that all the AEs and DVs are imposed on

the field elements, the coefficient library is also field-based. Then, the linear system library is

applied to compute the indices of the residuals and are filled into the linear system. It is noted

that the indices of the residuals are also the indices of the field elements, and therefore, the lin-

ear system library is field-based. There is no parallelization library to parallelize the field-based

general framework. Instead, the parallel philosophy is integrated into the three libraries men-

tioned above. In parallelization, domain decomposition is performed to decompose the irregu-

lar domain into many regular subdomains, and then each subdomain is allocated to each

processor. The size of the subdomains should be more or less the same to guarantee a load bal-

ance among the processors. With the domain decomposition strategy, the equation fields and

the variable fields in the entire domain are decomposed into many local fields on the proces-

sors. Moreover, methods to convert the local index of the field element to its global index is

another task in parallelization.

With the field-based general framework, the code of the decoupled scheme for the matrix

acidization simulation, i.e., Masor, can be developed quickly. Matrix acidization is an opera-

tion in reservoirs, in which acid flow is injected into the matrix to produce an oil production

channel. Thus, it is an application of computational fluid dynamics, and its code can be
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developed by the framework. From the simulation results, it is seen that Masor gives reason-

able outputs, which is a demonstration of the correctness and effectiveness of the framework.

It is emphasized that the field-based general framework introduced in this work is based on

regular grids, finite difference methods and linear systems. However, the philosophy of this

framework can also be applied to irregular grids, finite element methods, finite volume meth-

ods, nonlinear systems, etc., and therefore the boundary of this framework can be further

expanded. Additional new subroutines should be added into the libraries to cope with those

conditions, which is work left for the future.
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