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Abstract: Owing to the limitations of traditional systemic drug delivery in the treatment of bone
diseases with side effects on normal cells, the selection of materials with high affinities for bones,
as targeting ligands to modify drug carriers, has become an important research topic. Tetracyclines
(TCs) have an adsorption effect on hydroxyapatite (HAp). Thus, they can be used as bone-targeting
ligands and combined with drug carriers. In this study, density functional theory is used to analyze
the interaction mechanism of TC, oxytetracycline (OTC), chlortetracycline, and HAp. We calculate
the electrostatic potential (ESP) and molecular orbitals to predict the possible binding sites of TCs on
the HAp surface. The adsorption energy is used to compare the affinities of the three TCs to HAp. An
independent gradient model analysis is performed to study the weak interaction between TCs and
HAp. The coordination bond between TCs and the HAp surface is evaluated by conducting a charge
density difference analysis. The results show that OTC has the highest affinity to HAp because the
introduction of hydroxyl groups change the adsorption configuration of OTC. Thus, OTC adsorbed
on HAp in a broken-line shape exposes more binding sites. This study provides a theoretical basis for
TCs as bone-targeting ligands in treating bone diseases and in improving the safety of treatment by
selecting different bone-targeting ligands.

Keywords: bone targeting; tetracycline; hydroxyapatite; drug delivery; density functional theory

1. Introduction

Osteoporosis, bone metastases, and other bone-related diseases are major health
problems [1,2]. They are often treated using traditional systemic drug delivery methods,
such as oral and intravenous injections. However, these methods have disadvantages such
as a low local drug concentration and poor absorption of the drug by bone tissue [3,4]. In
addition, the drug may be excreted before reaching the delivery target; thus, a large dose
of the drug increases medical costs and causes potential systemic side effects [5]. A more
ideal method for the treatment of bone diseases is to concentrate therapeutic drugs in the
bone tissue to maximize the local therapeutic effect of the drugs [5,6]. Bone-targeting can
be employed to accomplish this type of local administration. Bone-targeting [7] selects
materials with high affinities to bones as targeting ligands to modify drug carriers for
delivering drugs to their destinations. The drug can be delivered to the expected target,
thus reducing not only the side effects on normal cells but also the dosage and frequency of
medication [8,9]. Therefore, bone-specific drug delivery systems for local drug delivery
have gained considerable research interest [10–13].

Hydroxyapatite (HAp) is the main inorganic mineral component of bones [8,14,15].
The molecular formula of HAp is Ca10(PO4)6(OH)2, which consists of very small hexagonal
crystalline proteins, usually no more than 200 Å in size. An HAp cell consists of a hexagonal
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crystal structure with lattice parameters a = 0.951 nm, C = 0.684 nm, and space group
P63/m [16]. Bystrov et al. described the results of interactions between HAp nanostructures
and a variety of substances, including carbon nanotubes (CNTs), citrate, and living cell-
osteoblasts, using first-principles methods and quantum chemical calculations including
DFT [17]. Owing to bone diseases, HAp can be exposed to the blood [18], making it a
potential target for the delivery of diagnostic agents to the bone [19]. As a new type of drug
delivery system, nanodrug delivery systems have garnered significant research interest
for bone therapy [20]. Nanoparticles (NPs) enable drugs to be released in a controlled
and sustainable manner [21,22]. In addition, the surface of an NP can be coupled with a
targeting ligand to target the intended bone tissue. Tetracyclines (TCs) are bone-specific
targeting ligands [19].

TCs are a class of typical broad-spectrum antibiotics [23]. TC, oxytetracycline (OTC),
and chlortetracycline (CTC) are commonly used in medicine [24]. They exhibit various
advantages including a high oral bioavailability, low price, and accessibility [13,25–28]. TCs
have a high affinity to HAp. Fluorescent labeling shows that the surface of a mineralized
dead bone absorbs TCs. It is speculated that TC is combined with HAp in the bone [29].
In addition, TC, OTC, and CTC can adsorb HAp [30–33]. Therefore, TCs are promising
targeting ligands.

TC-based bone-targeted drug delivery systems have been studied. Neale et al. com-
bined TCs and estradiol to synthesize bone-targeted estrogen to treat osteoporosis and to
improve the safety of osteoporosis treatment [13]. Wang et al. used the esterification reac-
tion of poly(lactic-co-glycolic acid) (PLGA) and TCs to develop NPs carrying simvastatin
(SIM) to target bone tissue to treat osteoporosis [11]. Xie et al. studied TC-polyethylene
glycol-PLGA micelles loaded with atorvastatin to target osteoporosis [10]. A subsequent
study on the SIM carrier showed that bone density, bone strength, and bone mineral content
were improved [12].

TCs have a low affinity to bone sites, characterized by a low bone turnover [34].
Numerous functional groups exist on the surface of TCs and are unstable during chemical
modifications [35], limiting the development of TCs as a drug delivery system for bone-
targeting ligands. Although the effective adsorption capacity of TCs on HAp has been
extensively studied in experiments [29–33,36,37], understanding of the specific interaction
mechanism between HAp and TCs is limited. The adsorption process of TCs (TC, OTC,
and CTC) with different properties on HAp must be further studied.

In this study, density functional theory (DFT) is used to analyze the interaction mech-
anism of three TCs (TC, OTC, and CTC) and HAp. The electrostatic potential (ESP),
molecular orbital, and adsorption energy of the three types of TCs and HAp are calculated.
An independent gradient model (IGM) is created and charge density difference analyses
are conducted to study the adsorption between TCs and HAp.

2. Theoretical Methods
2.1. Model Development

The structures of the three TCs (TC, OTC, and CTC) contain the naphthacene skeleton,
as shown in Scheme 1. The (001) crystal plane of HAp was selected, and 2 × 2 × 1 supercells
were used as the adsorption surfaces of the TCs. A 40 Å vacuum plate was constructed to
avoid interactions between adjacent cells.

2.2. DFT Calculation

CP2K was used for the geometric structure optimization [38], which was performed
using the Broyden–Fletcher–Goldfarb–Shanno algorithm. The Perdew–Burke–Ernzerhof
functional [39] was used for the DFT calculations. We used a plane-wave cutoff of 500 Ry
and the MOLOPT pseudopotential basis set, which was a completely generalized contrac-
tion basis set. We added DFT-D3 (BJ) dispersion correction to more accurately describe
weak interactions [40].
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Scheme 1. Chemical structures of TC, OTC, and CTC.

3. Results and Discussion
3.1. ESP

The ESP is a real space function that is most closely related to the electrostatic
effect [41,42], which can be used to analyze various electrostatic-dominated weak interac-
tions. When molecules interact with each other, the positive and negative ESPs attract each
other. The distribution of the molecular ESP can be analyzed to predict and explain the
mode and mechanism of interaction between molecules.

The ESP of HAp is shown in Figure 1. A positive ESP is gathered near the Ca atoms
in HAp; thus, the Ca atoms are electrophilic. During adsorption, Ca atoms easily interact
with atoms with negative ESPs in TCs. Most of the negative ESPs are concentrated near
the phosphate groups in HAp. During the adsorption process, the atoms or groups with
positive ESPs in the TCs interact with the phosphate groups in HAp.
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Figure 1. ESP of HAp. The blue area represents a positive ESP exhibiting electrophilic properties,
whereas the red area represents a negative ESP exhibiting nucleophilic properties.
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The ESP of the TC molecules is shown in Figure 2A. All hydrogen atoms have a
positive ESP. The hydrogen atoms on the A ring are represented in darker blue, indicating
that they have a high positive ESP. This is an active site; thus, it may easily form a hydrogen
bond with the phosphate group in HAp during the adsorption process. The surface of the
oxygen atoms on the TC has a high negative ESP; thus, it can form a coordination bond
with the Ca atoms in HAp.
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Figure 2. ESPs of (A) TC, (B) OTC, and (C) CTC molecules (two-side view). The blue area represents
a positive ESP exhibiting electrophilic properties, whereas the red area represents a negative ESP
exhibiting nucleophilic properties.

The ESP distribution of the OTC is similar to that of the TC (Figure 2B). The hydrogen
atom in the hydroxyl group is unique to the OTC and has a higher positive ESP.

For CTC molecules, all hydrogen atoms have a high positive ESP. The hydrogen in
the hydroxyl group on the D ring has the highest positive ESP (Figure 2C). This may
be because the Cl atom, with a high electron-withdrawing ability, is directly connected
to the conjugated structure of TCs. Thus, the distribution of π electrons in the CTC is
significantly changed.

3.2. Molecular Orbital

Figures 3 and 4 show the highest-occupied molecular orbitals (HOMOs) and the
lowest-unoccupied molecular orbitals (LUMOs) of HAp and TCs. For HAp, the HOMO is
mainly distributed in the phosphate group, whereas the LUMO is mainly distributed on
the Ca atom. Similar to the ESP analysis, the Ca atom in HAp is electrophilic (Lewis base),
whereas the phosphoric acid group is nucleophilic (Lewis acid).

For the molecular orbitals, the HOMOs of TC and OTC are mainly distributed near
the A, B, and C rings, whereas the LUMO is mainly distributed near the D ring. In contrast,
for CTC, the HOMO is mainly distributed near the D ring, whereas the LUMO is mainly
distributed near the A, B, and C rings.
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3.3. Adsorption Energy and Geometry

We compared the adsorption energies of the TCs and HAp. The adsorption energy
represents the strength of the interaction between the TCs and the surface of HAp.

Eads =
(
ETCs + EHAp

)
− ETCs+HAp (1)

where ETCs+HAp is the energy of the composite structure after structural optimization,
EHAp is the energy of HAp, and ETCs is the TC energy.

The adsorption energies are positive; hence, the adsorption between TCs and HAp
is thermodynamically favored (Table 1). Moreover, the adsorption energy of OTC is the
largest, indicating that OTC has the highest affinity to HAp.

Table 1. Adsorption energy between TC, OTC, CTC, and HAp surfaces (Units: eV).

Models ETCs+HAp ETCs EHAp Eads

TC-HAp −141,794.223 −7763.023 −134,026.542 4.658
OTC-HAp −142,227.494 −8194.920 −134,026.542 6.032
CTC-HAp −142,182.725 −8151.344 −134,026.542 4.839
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The stable adsorption structure of TCs on the HAp surface after geometric optimiza-
tion is shown in Figure 5. The adsorption configurations of the three TCs on the HAp
surface are significantly different. TC, OTC, and CTC are adsorbed on HAp in an arch
shape, a broken-line shape, and a twisted shape, respectively. These adsorption con-
figurations are the same as those of the TCs adsorbed on graphene [43]. The adsorbed
configuration may result in a difference in the contact area between them and the HAp
surface. This leads to a difference in the adsorption energy. The order of the size of the
contact area is OTC-HAp > CTC-HAp > TC-HAp, whereas the order of adsorption energy
is OTC-HAp > CTC-HAp > TC-HAp. OTC is adsorbed on HAp in a broken-line shape,
possibly because the hydroxyl group introduced on the B ring of OTC changes the hydrogen
bond in the OTC molecule, which, in turn, changes the OTC adsorption configuration,
exposing more HAp. The binding site increases the adsorption capacity.
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3.4. IGM Analysis

The IGM method can visualize weak-interaction areas and their characteristics. The
calculation depends only on the atomic coordinates; two fragments can be defined as
desired [44]. Utilizing the Multiwfn software program [45], we calculated the IGM between
the two fragments of TCs and HAp. The calculation results are shown in Figure 6 via Visual
Molecular Dynamics (VMD) drawings [46].
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Figure 6. IGM between the two fragments of TCs and HAp.

For TC, the hydrogen atoms on the A ring, in the hydroxyl group on the D ring, and in
the amino group produce hydrogen bonds with the oxygen atoms in the phosphate group
of HAp. There is a strong van der Waals force between the conjugated structure of the
dimethylamino group and the A ring in TC and the HAp surface.

For OTC, the hydroxyl groups on the A, B, and D rings form strong hydrogen bonds
with the phosphate groups on the surface of HAp. The nitrogen atoms in the amino groups
on OTC also form strong hydrogen bonds with the hydroxyl groups in HAp. Similarly, the
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dimethylamino group in OTC can form a weak hydrogen bond with the phosphate group
on the surface of HAp.

The interaction between CTC and HAp is weak. Only the hydroxyl group on the A
ring forms a hydrogen bond with HAp, whereas the methyl group on the B ring exerts a
van der Waals force on HAp. The π electrons in CTC do not interact with the HAp surface,
possibly because the electronegative Cl atoms directly connected to the conjugate structure
reduce the π electron density.

3.5. Analysis of the Charge Density Difference

The formation of coordination bonds leads to violent electron transfer between the
two fragments, and this can be clearly observed by performing a charge density difference
analysis. The difference in the charge density can be calculated as

∆ρ = ρHAp+TCs − ρHAp − ρTCs, (2)

where ρHAp+TCs represents the charge density of the adsorption complex of HAp and the
TCs structure, ρHAp represents the charge density of HAp, and ρTCs represents the charge
density of TCs.

Figure 7 shows the difference in the charge density. The yellow area depicts electron
depletion, whereas the cyan area presents electron accumulation. There is a large electron
transfer between the oxygen atom in the hydroxyl group on the B ring of TC and the Ca
atom on the surface of HAp, thereby forming a coordination bond. Coordination bonds
exist between the oxygen atoms in the hydroxyl groups on the B and D rings of OTC
and the Ca atoms on the surface of HAp. The carbonyl oxygen on the B ring also forms
coordination bonds with the Ca atoms. The two hydroxyl oxygen atoms on the C ring of
CTC form a strong coordination bond with the same Ca atom on the surface of HAp.
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4. Conclusions

In this study, we analyzed the adsorption mechanisms of three TCs and HAp. The
conclusions of this study can be summarized as follows.

1. The order of affinity of the three TCs on the surface of HAp was OTC-HAp >
CTC-HAp > TC-HAp.

2. In terms of the adsorption configurations of TC-PCL, TC, OTC, and CTC were ad-
sorbed on HAp in an arch shape, a broken-line shape, and a twisted shape, respectively.

3. Both OTC and CTC formed more hydrogen bonds and coordination bonds with HAp.
TC exhibited van der Waals interactions and hydrogen bonds but formed only weak
coordination bonds.
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