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Abstract

Background: microRNAs (miRNAs) regulate target genes at the post-transcriptional level and play important roles in cancer
pathogenesis and development. Variation amongst individuals is a significant confounding factor in miRNA (or other)
expression studies. The true character of biologically or clinically meaningful differential expression can be obscured by
inter-patient variation. In this study we aim to identify miRNAs with consistent differential expression in multiple tumor
types using a novel data analysis approach.

Methods: Using microarrays we profiled the expression of more than 700 miRNAs in 28 matched tumor/normal samples
from 8 different tumor types (breast, colon, liver, lung, lymphoma, ovary, prostate and testis). This set is unique in putting
emphasis on minimizing tissue type and patient related variability using normal and tumor samples from the same patient.
We develop scores for comparing miRNA expression in the above matched sample data based on a rigorous
characterization of the distribution of order statistics over a discrete state set, including exact p-values. Specifically, we
compute a Rank Consistency Score (RCoS) for every miRNA measured in our data. Our methods are also applicable in
various other contexts. We compare our methods, as applied to matched samples, to paired t-test and to the Wilcoxon
Signed Rank test.

Results: We identify consistent (across the cancer types measured) differentially expressed miRNAs. 41 miRNAs are under-
expressed in cancer compared to normal, at FDR (False Discovery Rate) of 0.05 and 17 are over-expressed at the same FDR
level. Differentially expressed miRNAs include known oncomiRs (e.g miR-96) as well as miRNAs that were not previously
universally associated with cancer. Specific examples include miR-133b and miR-486-5p, which are consistently down
regulated and mir-629* which is consistently up regulated in cancer, in the context of our cohort. Data is available in GEO.
Software is available at: http://bioinfo.cs.technion.ac.il/people/zohar/RCoS/
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Introduction

Gene expression profiling is commonly applied to identify

differences between classes of cell types, as manifested in differentially

expressed genes [1–4]. A typical dataset comprises tens of samples in

which the expression levels of thousands of genes are measured. In

classified expression data the set of samples is partitioned into

different subsets or classes based on prior knowledge, such as normal

samples vs. tumor samples or samples of different cancer types.

Similarly, it may be partitioned into different conditions, different

stages, or different therapy related categories. Most of the current

data analysis literature focuses on considering the entire dataset in the

process of identifying differentially expressed genes. Various types of

genomic variation are significant and often ignored confounding

factors in differential expression studies. For example, in Shyamsun-

dar et al. [5] the authors survey messenger RNA expression level

variation in normal human tissues, showing the potential confound-

ing effects of inter-tissue variation.

It would be valuable to identify statistically significant

differences in various samples that can be reliably attributed to

the specific biological state, such as cancer or disease, instead of

individual biological variations, as stated above. In many

situations, there is opportunity for serial collection of tissue or

blood from a patient, experimental animal or cell line [6,7].

However, many current analysis techniques do not exploit the

unique relationships within such data. In other cases, class or

patient variability can mask differential expression and needs to be

addressed. In this study we analyze matched samples to investigate

tumor vs. normal differential expression, which is consistent for

multiple tumor types, and describe suitable and robust statistical

methods that support this investigation.

Currently, hundreds of microRNAs (miRNAs) have been

identified in humans. These are short (usually about 22-nt)

noncoding regulatory RNA molecules and their sequences are

published in the Sanger miRBase [8]. miRNA expression profiling

has been recognized to provide valuable biological information
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with potential to complement or supersede mRNA profiling [9].

miRNAs regulate target genes at the post-transcriptional level and

play important roles in development as well as in cancer [9–11]

and in other human diseases, including heart disease [12–14],

schizophrenia [15] and psoriasis [16]. miRNAs are highly

differentially expressed in different tissue types [10]. Therefore,

to identify miRNA differential expression due to specific

conditions we need to minimize the confounding effect of the

above tissue dependent differential expression.

Our goal in this study is to identify miRNAs that are consistently

differentially expressed in multiple cancer types. To avoid tissue

type variability and to measure cancer related differential miRNA

activity in each type separately; we use a matched sample dataset

consisting of 32 microarray measurements representing 28

matched tumor and normal samples. We use microarrays

containing probes for 799 miRNAs to profile miRNA expression

in these samples.

Our motivation in seeking miRNAs with consistent differential

expression in multiple cancer types stems from the existing

knowledge that many biological processes are common to different

types of cancers. In particular, several genes are known to be

universally differentially expressed across multiple cancer types.

The most obvious example is p53. p53 was first discovered in 1979

and since then numerous studies indicated its involvement in

multiple cancer types. The importance of regulated activity of

intact p53 in preventing tumor formation is indicated by the

presence of mutations in the p53 pathway in nearly all cancers

[17,18]. Another example of a universal cancer related protein is

p16. This gene resides on chromosome 9 and was found to be

mutated or deleted in multiple cancer types [19–22]. These are

only two specific examples, amongst a large variety of cellular

processes that are universally associated with cancer.

Previous studies on the role of miRNAs in cancer include Lu

et al. [9] who performed a tumor vs. normal cross-tissue analysis

using bead-based flow cytometry technology in a non-paired

manner. This study showed that miRNAs are sufficient to

accurately classify cancer tissues according to their embryonic

lineage, giving global characteristics of miRNA expression in

cancer. Another study, by Volinia et al.[10], described microarray

measurement of 228 miRNAs in 540 samples (363 cancer and 177

normal) from 6 different tissue types. In addition to producing

miRNA signatures, the authors reported some miRNAs that are

consistently over or under expressed, but there was no detailed

statistical benchmarking for the consistency of miRNA differential

expression. The authors state that when clustering their data in an

unsupervised manner, the samples cluster based on the tissue

types, irrespective of the disease status, reflecting the high variation

of miRNAs when comparing tissue types. This reinforces our

assertion above, that points to miRNA inter-tissue-type basal

variation as a confounding factor when seeking to measure

miRNA cancer differential expression. Several other studies focus

on miRNAs in specific cancer types. For example, mir-15 and mir-

16 are frequently deleted and/or downregulated in B-cell chronic

lymphocytic leukemia [23], miR-143 and miR-145 show de-

creased expression in colorectal neoplasia [24], and miR-155 is

up-regulated in human B cell lymphomas [25].

To support our research goals we have developed statistical

methods that address characterizing distributions of random

variables that arise from comparing matched samples. In our case

we compute differential expression in every tumor type and then

statistically assess its prevalence in our dataset. Our methods are

based on discrete order statistics – the k-dimensional vector that

is obtained by drawing k independent numbers uniformly in

1…N and then sorting them resulting vector. While the

distribution of order statistics over continuous state spaces is

well characterized, this is not the case for discrete sample spaces

as repeats may then occur with positive probability. Computing

distributions related to discrete order statistics was addressed in

[26]. For our needs we define random variables over discrete

order statistics, fully characterize their distributions and then

apply the methods to the biological data to assess statistical

significance.

To summarize, the contribution of this paper consists of:

N Rigorous characterization of the distribution of order statistics

over a discrete state set as well as of related random variables.

This distribution is highly applicable in analyzing matched

data in a non parametric setup. We also compare our methods

to paired t-test and to the Wilcoxon Signed Rank test.

N A dataset with matched tumor normal samples representing a

repertoire of 8 tumor types. This set is unique in its emphasis

on minimizing the tissue type and patient related variability

through the use of normal and tumor samples from the same

patient.

N By applying the novel statistics described above to our

matched sample dataset we validate known oncomiRs and

describe several novel cancer-universal differentially expressed

miRNAs. It should be noted that this stated universality is only

substantiated, within the context of this study, for the 8 types

represented here.

Methods

The starting point for analyzing the results of a gene or miRNA

expression profiling study is the expression raw data matrix. When

describing the methods we use the word ‘‘gene’’ but ‘‘miRNA’’

can be used interchangeably. This matrix is typically the output of

several pre-processing steps such as normalization and filtering

performed on the raw measurement data.

Typically, data analysis of expression profiles starts with the

identification and the statistical assessment of genes that are

differentially expressed when comparing various classes represent-

ed in the cohort. Many current gene scoring methods consider all

expression values of a given gene. These are partitioned into two

or more populations according to the studied classification.

Differences between the resulting subsets of numbers are assessed

using various statistical methods. Gene scoring methods fall into

two broad categories – parametric methods, and non-parametric

(distribution free) methods. Parametric methods assume a certain

distribution for the expression values of every gene within each

given class (e.g. cancer or normal) and then score genes according

to how separate the class specific distributions are. Examples of

such methods are the standard t-test [27] and the Gaussian Error

score [28]. Distribution free scores, in contrast, are not based on

parametric assumptions. These include the Kolmogorov-Smirnov score

[29], and the Wilcoxon Rank-Sum test [30] as well as the Information

score [31] and Threshold-Number-of-Misclassifications (TNoM in short)

[31]. The latter nonparametric methods were applied to gene

expression and other genomic and genetic data in several studies,

as in [2,32–35].

This work is concerned with additional and potentially more

relevant information that can be inferred when the expression data

is coming from several patients and when all classes were

measured for each patient. For example, samples before and after

treatment for the same patient. Another example is tumor and

normal samples from the same tissue of each patient, a design

utilized in this work. The scores we develop take into account the

Cancer miRNA Rank Consistency
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degree to which a gene separates two classes in a large majority of

patients. The interpretation is that a gene is relevant to the

underlying biology if it is highly differentially expressed for most of

the patients. In addition, we attach a significance level (p-value) to

each relevance score level. The p-value is the probability to get this

level or better, at random, as described below in further detail.

Rigorous statistical analysis is instrumental in confidently identi-

fying genes that sharply separate sample classes and thus in

pointing at promising research directions. Partial variants of the

methods described in this paper were employed in [6] and in [36].

It is particularly important to work with matched statistics when

analyzing miRNA expression data, as basal level for these may be

highly variable, especially in distinct tissues [10].

In this section we describe the statistical methods in high

generality. Specific embodiments, in the context of consistent

tumor versus normal miRNA differential expression, are described

in the Results Section.

Rank Consistency Score (RCoS)
The Rank Consistency Score (RCoS) is a differential expression

score for 2 classes that takes patient matching into account.

We call the two classes Class A and Class B. We first compute

the differential expression between the two classes for every patient

(or subject or subset) k = 1…r and for every gene g. The differential

expression can be calculated using different methods and the

method chosen depends on the design of the study and on the

number of samples for each patient. Differential expression scores

include: fold change, Gaussian error score, t-test, TNoM and other

methods. Often the number of samples for each patient and class is

1, so simple fold change is used.

Next, we rank all the genes per patient according to their

differential expression between class A and class B. For every gene

g we compute its rank for the k-th patient: Rk(g) – this is a number

between 1 and N, where N is the total number of genes. The gene

gtop for patient k is the one most over-expressed in Class A relative

to Class B. It is ranked first and we set Rk gtop

� �
~1. The rank of

the gene most under-expressed in the Class A relative to the Class

B is N.

Our goal is to find genes with consistently high ranks (of

differential expression between class A and class B) across all

patients. For every gene g, we define the rank consistency score

S(g;r) as the normalized maximal rank of this gene among all

patients, i.e.

S g; rð Þ~max1ƒkƒrRk gð Þ=N:

In other words, the rank of gene g for all patients is no worse

than S(g;r)?N.

For greater flexibility in defining consistency we allow outliers,

and compute the rank consistency scores S(g;m) for m out of r

patients. In this case for each gene we order its ranks and then the

score S(g;m) corresponds to the normalized m-th smallest rank:

S g; mð Þ~The m{th smallest Rk gð Þ=N, where 1ƒkƒr:

We call the m out of r rank consistency score, S(g ;m), the m/r

RCoS. We will sometimes refer to the r/r RCoS simply as RCoS.

Figure 1 illustrates the definition of various m out of r rank

consistency scores. Pseudo-code for calculating the m/r RCoS is

available at Text S1.

The above analysis will identify genes that are over-expressed in

Class A compared to Class B. To find genes over-expressed in the

Class B we can perform the same analysis, reversing the ranked

list.

To evaluate the statistical significance of any observed value of

RCoS we estimate the probability of obtaining the value s, or

better, in random data drawn according to a null model. This

probability is the p-value corresponding to this level s, under the

prevailing null model. The p-values for RCoS and for its variants

considered in this paper are computed under the assumption of

independence of patients and of uniform distribution of ranks

among genes within each patient. These two assumptions define

the underlying null-model.

To compute the m/r RCoS p-value at s, we compute the

probability of a gene ranking in the top s fraction of the list, in at

least m patients. Let V be an r-dimensional random vector with

entries drawn independently and uniformly in 1,…,N. We are

interested in the probability of the m-th smallest entry in V being

smaller than sN. It is given by:

p{Val(s,m)~
Xr

k~m

r

k

� �
sk(1{s)(r{k)

Minimum Rank Consistency Score (minRCoS)
When working with larger sample sets the question of how

many outliers to allow (which m to choose) arises. A possible

principled solution is to calculate the m/r RCoS p-value for all

possible values of m and choose the value of m with the best p-

value. This p-value must of course be corrected for multiple

testing. In this section we define the minimal-rank-consistency

score, and show how to efficiently characterize its distribution,

enabling the calculation of p-values (with no further need for

multiple testing correction). We first describe the calculations and

then analyze its total time complexity.

Figure 1. Illustration of Rank Consistency Score. In each of the 5
patients/groups in this example, ranks of the genes change from 1 to
1000. Each column represents a ranked list for one group. The gene
chosen for the example has the worst among 5 groups rank of 200.
Therefore, its rank consistency is score 200/1000 = 0.2; its rank
consistency score in 3 out of 5 patients is 95/1000 = 0.095 as indicated
by the arrows.
doi:10.1371/journal.pone.0008003.g001

Cancer miRNA Rank Consistency

PLoS ONE | www.plosone.org 3 November 2009 | Volume 4 | Issue 11 | e8003



For any number N.0, we denote the set of ranks {1,..,N} by

[N]; Let [N]r represent the set of vectors of length r, where each

entry is from [N]. We use V to denote a random vector uniformly

distributed over [N]r.

Given a vector v[ N½ �r we denote the m-th smallest number in v

by v,m.. That is, vv1wƒvv2wƒ . . . ƒvvrw. Given an index

m[ r½ �, and a rank t[ N½ �, we denote by b(m,t) the probability that

V,m. will equal t or less. Note that b(m,t) is the p-value, at s = t/N,

of m-out-of-r rank consistency score defined previously, and can

be efficiently computed as shown in the previous section.

We define the minimal rank consistency score of a vector v, denoted

by mRCoS(v), by mRCoS vð Þ~minm~1,::,r b(m,vvmw)f g. In words,

mRCoS(v) is the best (minimal) rank consistency p-value, where m

varies from 1 to r. mRCoS(V) is therefore a random variable taking

values in [0,1]. We now compute the exact p-value associated with

mRCoS(V) at a given value, p:

pValmRCoS(p)

~ Pr (mRCoS(V )ƒp)

~ Pr (minm~1,...,rfb(m,Vvmw)gƒp)

~ Pr (Am [½r� : b(m,Vvmw)ƒp)

~1{ Pr (Vm [½r� : b(m,Vvmw)wp):

Given p[ 0,1½ �, and an index m~1,::,r, define tm pð Þ to be the

minimal rank t such that b m,tð Þwp. Note that since we can

efficiently compute b(m,t) for all m [ r½ � and t [ N½ �, we can

efficiently ‘‘invert’’ b(m,t) and compute tm(p). Note that

t1 pð Þƒt2 pð Þƒ . . . tr pð Þ. Using the above notation we have:

Pr (Vm [½r� : b(m,Vvmw)wp)~ Pr (Vm [½r� : Vvmw§tm(p)):

Given a constant ranks vector C, we say that a vector vM[N]r is C-

bounded if vvmw§Cm (for all m = 1,..,r). In words, all sorted entries

of v are larger (or equal to) the corresponding entries of C. For

example, the vector v = ,3,2. is bounded by C~ v1,3w, since

vv1w~2§1~C1,vv2w~3§3~C2.

The total number of vectors in [N]r that are C-bounded is

denoted by B(N,r,C).

For example, for N~3, r~2,

N½ �r~ 3½ �2~

v1,1w,v1,2w,v1,3w,v2,1w,v2,2w,v2,3w,v3,1w,v3,2w,v3,3wf g:

The set of vectors bounded by C~ v1,3w is

v1,3w,v2,3w,v3,3w,v3,1w,v3,2wf g, and therefore

B 3,2,v1,3wð Þ~5.

By the definition of B(N,r,C), since V is chosen uniformly at random,

we get Pr(Vm [ r½ � : Vvmw§tm pð Þ)~B N,r,t pð Þð Þ=Nr, where t(p)

denotes the vector vt1 pð Þ,t2 pð Þ, . . . ,tr pð Þw. Therefore, we have

reduced the problem of computing a p-value for the minimal-rank-

consistency score to the combinatorial problem of efficiently computing

how many vectors in [N]r are bounded by a given vector C~t pð Þ.

Computing B(N, r, C)
Given two integers, N, r, and a vector C, we want to compute

B(N,r,C), the number of C-bounded vectors in [N]r. For each vector

v we define two properties: t(v) and k(v).

N t(v) is the maximal entry of v. That is, t vð Þ~vvrw. Note that

t(v) can assume the values 1 through N.

N k(v) is the number of entries in v whose value is strictly smaller

than t(v). Note that k(v) can assume the values 0 through r21.

These two properties can be used to partition [N]r.

We denote the set of all C-bounded vectors for which t vð Þ~t
and k vð Þ~k by L C,t,kð Þ. Note that these sets are indeed disjoint,

and that their union covers all C-bounded vectors. By using

L(C,t,k) we can compute B(N,r,C), summing over all possible

values of t and k:

B(N,r,C)~
X

t~cr ,...,N

X
k~0,...,r{1

L(C,t,k)

As there are only N*r such sets this would yield an efficient

procedure to compute B(N,r,C). We use a dynamic programming

approach to compute all N*r values.

Let C(1..k) be the first k elements of C, that is

C 1::kð Þ~vC1,C2, . . . ,Ckw. We note that in a vector

v[L(C,t,k) the (r-k) largest ranks equal t. Therefore, to compute

jL(C,t,k)j we need only determine the positions within v of the k

smallest values, and their actual values, such that they are all

strictly smaller than t, and are C(1..k) bounded:

L(C,t,k)j j~
r

k

� �
B(t{1,k,C(1 . . . k))

We now use the following dynamic programming procedure to

compute the number of C-bounded vectors:

B(N,r,C)~

1 if r~0

P
t~cr ,...,N

P
k~0,...,r{1

r

k

� �
B(t{1,k,C(1 : k)) otherwise

8><
>:

This enables us to efficiently compute the minRCoS p-value:

pValmRCoS(p)~1{
B(N,r,t(p))

Nr

There are a total of N*r dynamic programming steps needed to

calculate B(N,r,C). In each step, calculating B(t,k,C) requires

summing over t*k values of B. In total the complexity of the

dynamic programming procedure to compute B(N,r,C) is therefore

O(N2*r2). To compute C~t pð Þ we need to perform a maximum

of r*N RCoS p-value calculations, each one taking O(r).

Therefore, the complexity of the minRCoS p-value calculation

for a given p is O(N2*r2).

Samples, Experimental Protocol and Data Pre-Processing
The data were collected from adjacent tumor-normal total

RNA samples purchased from Ambion/ABI (FirstChoiceH
Human Tumor/Normal Adjacent Tissue RNA). The matched

pairs of tumor and normal RNAs were from 14 different patients

and 8 different cancer types. Tissue samples were of various

embryonic lineages: One pair from breast, lymphoma, and

prostate; two pairs from liver, ovary, testes and lung; and 3 pairs

Cancer miRNA Rank Consistency
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from colon. Technical replicates were performed for the ovary and

testes samples, thus a total of 32 microarray data were used for this

study.

For each microarray measurement, 100ng total RNAs were

labeled with Cy3 using T4 RNA ligase per Agilent miRNA

Micorarray Systems Protocol v1.5. The labeled RNA samples

were hybridized onto Agilent miRNA microarray (Agilent Human

miRNA Microarray kit V2 - G4470B) for 21 hours at 55C. The

arrays contain probes for 723 human and 76 human viral miRNAs

from the Sanger database v.10.1. The arrays were then washed at

room temperature and scanned to produce the hybridization

signals (Agilent miRNA Micorarray Systems Protocol v1.5). The

arrays were scanned with extended dynamic range at 5 and 100%

PMT using the Agilent scanner (model G2565AA).

Agilent’s Feature Extraction software version 9.5.3.1 was used to

generate GeneView files [37]. These files contain the processed

signals for each of the 799 miRNAs on the array. For each miRNA,

expression values (gTotalGeneSignal) below the noise level

(gTotalGeneError) were replaced by the value of the corresponding

total gene error. All samples were then normalized to have the

same 75th percentile value. The raw and normalized data have

been deposited in NCBI’s Gene Expression Omnibus [38] and

are accessible through GEO Series accession number GSE-

14985 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc =

GSE14985). All data is MIAME compliant. The normalized data

are also available in Table S1.

Results

We applied rank consistency scoring methods to data collected

in a study of miRNA expression profiles in cancer related samples.

Data collected in this study consisted of paired samples of tumor

and normal origins. Each pair of samples was taken from different

parts of the same tissue in 14 different patients and 8 different

cancer types: breast, colon, liver, lung, lymphoma, ovary, prostate

and testis. The matched pairs of samples enable us to focus on

changes in miRNA expression levels that result from the cancer

process and to minimize the confounding effect of inter-individual

and inter-tissue variability.

The goal of the study was to identify miRNAs universally

differentially expressed in cancer using the statistical methods and

measurements described above.

We computed the tumor vs. normal differential expression of

each miRNA in the data in four different ways: TNoM [31], non

paired t-test, paired t-test and minRCoS. For the first three

methods, signals were log transformed and in cases where more

than one patient exists per cancer type the median was used. The

TNoM and unpaired t-test were computed for non-paired

comparison of all tumor samples to all normal samples. For the

paired t-test the cancer type matching was used.

For the different variants of RCoS (m/r RCoS and minRCoS),

fold change was calculated for each miRNA and patient by

dividing the tumor signal by the normal signal. In cancer types

where more than one patient exists (2 or 3 patients) the median of

the fold changes was used. This was done to preserve the patient

matching (within the same cancer type) in our data. For each

cancer type the miRNAs were then ranked according to these

values to generate the ranked lists needed as the input to all the

RCoS variants. The application of the general framework

described in the Methods section to our dataset therefore leads

to the following semantics:

N Class A and class B are tumor and normal.

N r = 8.

N If for a miRNA, denoted g, we have, for example, 6/8

RCoS(g) = 0.2 for over-expression in tumor vs. normal, then

this miRNA is ranked amongst the top 20% of miRNAs over-

expressed in tumor vs. normal, for at least 6 out of the 8

different tumor types. Obviously, similar interpretations hold

true for other values of m and s (6 and 0.2 respectively, in the

example above).

The complete set of results of our analysis, including all the

differential expression scores and the associated p-values, is

available as supplementary material (Table S2).

To apply the paired t-test on these data, fold change was

calculated for each miRNA and patient by dividing the tumor

signal by the normal signal. In cancer types where more than one

patient exists the median of the expression values was used in the

fold change calculation. The data was then log-transformed to

achieve the normality required by the paired t-test. We note that

even after the log-transformation, the hypothesis of normality of

this distribution is rejected by the Jarque-Bera test [39].

The observed and expected numbers of genes for all minRCoS

p-values and the levels at which FDR (False Discovery Rate) [40]

and Bonferroni of 0.05 are obtained are shown in Figure 2. Note

the specific overabundance of differentially expressed miRNAs, as

compared to random data expected numbers.

A heatmap of the most significant miRNAs identified by

minRCoS analysis is shown in Figure 3. The right panel contains

the top 30 miRNAs whose expression levels are consistently

increased in cancerous tissues; the left panel contains a list of the

top 30 miRNA whose expression levels are consistently decreased

in cancerous tissues. Specific conclusions and findings of the

analysis are described below, including miRNAs that were not

previously universally associated with cancer.

Differentially Expressed miRNAs Found by RCoS and Not
by Other Methods

Some of the miRNAs we observe as differentially expressed

were identified as significantly differentially expressed both by

matched and by non-matched analysis. For example, miR-96

which is discussed in detail below was found by all four methods

described above.

In contrast to miR-96, other miRNAs were detected by

minRCoS and not by other methods (both matched and non-

matched). An example of such a miRNA which is also not

reported in previous multi-type cancer datasets [9,10] is miR-

133b.

miR-133b receives 7/8 RCoS of 0.048 (p = 5*1029) and a

minRCoS p-value of 1028. A close inspection reveals that,

excluding the liver sample, miR-133b is under-expressed in all

tumor types, compared to the corresponding matched normal

tissue. Interestingly (see Figure 4), the miR-133b basal expression

values are highly tissue-type variable. Indeed TNoM and t-test do

not find a significant separation between the classes. This is an

example of the tissue-type variability of miRNA, as noted in the

Introduction. miR-133b is also not detectable by paired-test since

the paired t-test is greatly affected by the outlier, namely the liver

sample. miR-133b was recently found, using RT-PCR, to be

consistently down regulated in colorectal cancer by Bandres et al

[41]. The authors further show that known proto-oncogenes, like

YES1 and MAP3K3, are targeted by miR-133b. We note that

since human miR-133a and 133b are highly homologous, differing

by only one nucleotide, there could be some cross hybridization in

hybridization-based measurements. Cross hybridization in the

platform used in our study was shown to be very low by Wang

et al. [42], where the authors demonstrate the platform’s ability to
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Figure 2. Overabundance analysis of rank consistency. The top plot shows comparison of observed and expected counts of miRNAs for
minRCoS p-values. For each p-value (on the x axis), the expected number of miRNA that have this, or better, p-value based on the total number of
miRNA on the array, is shown in blue (similar to [54]). The red and green lines symbolize the number of observed miRNAs in our data with these
minRCoS p-values. The bottom panel shows a comparison of observed and expected counts of genes with minRCoS p-values of 0.003 or less (a
zoom-in on the top panel). Line A indicates the Bonferroni threshold of 0.05, line B indicates the FDR [40] threshold of 0.05 for the over-expressed
miRNAs (17 miRNAs) and line C indicates the FDR threshold of 0.05 for the under-expressed miRNAs (41 miRNAs).
doi:10.1371/journal.pone.0008003.g002
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distinguish between the highly homologous members of the let-7

family.

miR-143 is another example of a miRNA which would not have

been found by other methods. When ranking all measured

miRNAs using unpaired t-test it ranks as number 70, and when

using a paired t-test it ranks as number 59 with a p-value of 0.04.

However, when ranking the miRNAs using minRCoS it is ranked

as number 11 with a minRCoS p-value of 7*1026 (Figure 3, left

panel). miR-143 is known to be under-expressed in several

different cancer types as described in [43-45,24].

miRNAs Over-Expressed in Cancer Compared to Normal
The top ranking over-expressed miRNA in cancer based on

minRCoS ranking is miR-96. It is over-expressed in all 8 cancer

types and has a minRCoS p-value of 1028. miR-96 was found to

be consistently up regulated, validated by RT-PCR, in colorectal

cancer [41]. miR-182 and miR-183, which reside in the same

cluster with miR-96, on Chr7q32 are both over-expressed in our

cancer samples. This leads to the hypothesis that the entire cluster

is amplified in cancer. Indeed, Zhang et al [46] show that the locus

containing miR-182 is amplified in 28.9% of their ovarian cancer

samples. They also state that forced expression of mir-182 in

ovarian cancer cell line, significantly promoted tumor growth in

vivo, confirming the role of miR-182 as a putative oncogene.

The second top ranking cancer-universal over-expressed

miRNA based on minRCoS ranking is miR-629*. It is over-

expressed in all 8 cancer types and has a minRCoS p-value of

1027. Little is known about this miRNA, and it was not measured

by previous multi-type cancer datasets [9,10]. Mitchell et al [47]

compared miRNA serum levels between 12 mice with human

prostate cancer xenografts and 12 controls. They found that mir-

629* is greatly over-expressed in the xenograft mice plasma. They

therefore hypothesize that miR-629* is potentially secreted from

the xenograft cells.

Figure 3. A heatmap of the top ranked miRNAs according to minRCoS analysis. Columns represent cancer types and the rows represent
miRNAs. A green entry represents a miRNA with a very high rank i.e. one which is under-expressed in this specific tumor sample compared to the
matched normal sample. A red rectangle indicates a miRNA over-expressed in the tumor sample. The left panel shows the top 30 miRNAs universally
under-expressed in tumors ranked according to minRCoS analysis and the right panel shows the top 30 miRNAs universally over-expressed in tumors
ranked according to minRCoS analysis.
doi:10.1371/journal.pone.0008003.g003
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All six members of the mir-17-92 polycistron on chromosome

13 (miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1 and miR-

92a-1) are part of the top 30 over-expressed miRNAs. This

polycistron is a known oncogene in several cancer types

[10,48,49].Most members of the miR-17 family (which highly

overlaps this cluster) are also in this list.

miRNAs Under-Expressed in Cancer Compared to Normal
The top ranking under-expressed miRNA in cancer based on

minRCoS ranking is miR-486-5p. It is under-expressed in all 8

cancer types and has a minRCoS p-value of 1029. miR-486-5p (along

with miR-451 which is also under-expressed in our data) was recently

found to be down regulated in Glioblastoma stem cells (CD133+)

compared to non-stem (CD1332) cells [50]. CD133+ cells initiate

and propagate tumors unlike CD1332 cells [51]. miR-133b which is

the second top under-expressed miRNA is discussed above.

Applying Our Methods to a Literature Dataset
We also applied our methods to the Lu et al [9] dataset, as

follows. 84 samples from 7 different cancer types (colon, breast,

lung, prostate, kidney, bladder and uterus) were used from the Lu

et al dataset. These represent all solid tumor types that have at

least 2 tumor samples and 2 normal samples. The first 4 types were

also measured in our study. For each of the 7 cancer types all 217

miRNAs measured by Lu et al were ranked according to their

differential expression between tumor and normal samples, in a

given type, using unpaired t-test. We then looked for miRNAs

consistently over or under expressed across most tumor types using

minRCoS (r = 7). The list of all 217 miRNAs measured in the Lu

et al study and their p-values is provided in Table S3.

When searching for over-expressed miRNAs we find, for

example, consistent high ranks for miR-182 and miR-183(min-

RCoS p,1027, see Table S3). These miRNAs and their cluster

have been previously shown to be over-expressed in cancer and

are also detected as such for our dataset, as discussed previously. In

addition to detecting the over-expression of miR-182 and miR-183

in Lu’s data, we also found more highly concordant results such as

significant under-expression of miR-1, miR-195 and miR-99a in

both datasets, analyzed using the methods of this study (Table S3).

Discussion

Our unique dataset, designed to minimize tissue type con-

founding affects, combined with our novel approach to rank order

statistics in discrete random variables enabled us to produce novel

findings associating certain miRNAs to universal cancer related

processes. Most notably we demonstrate differential expression in

a majority of 8 tumor types for miRNAs which were previously

only indentified in the context of specific cancer types:

N miR-133b - previously shown to be down regulated in colon

cancer [41].

N miR-486-5p - previously shown to be differentially expressed

in Glioblastoma [50].

N miR-629* - previously shown to be secreted into the plasma of

xenograft bearing mice [47].

The findings of this paper address processes that are common

amongst various types of cancer. This is, in some sense, orthogonal

and complementary to other miRNA studies [52,53] that focused

on finding differences between different cancer types. miRNA

Figure 4. Log signal values of miR-133b. Blue diamonds represent tumor samples and magenta triangles represent normal samples. Note that
there is no single threshold that separates all normal samples from all tumor samples. It is also clear that in all but one type (liver) miR-133b is under-
expressed in the tumors. This is an example of a differentially expressed miRNA detected by RCoS and not by un-matched analysis nor by paired t-
test.
doi:10.1371/journal.pone.0008003.g004
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differential expression in multiple cancer types was addressed by

Lu et al [9] and Volinia et al [10] as described in the introduction.

The current study takes a more statistically refined and accurate

approach, providing rigorous statistics and enabling the identifi-

cation of differentially expressed miRNAs. The study design and

our statistical methods allow us to conclude that this differential

expression is a reflection of biological state, such as cancer, instead

of as reflection of biological identity, such as liver vs. lung.

Traditional approaches to matched-pairs analysis include:

N Paired t-Test: t-Test applied to the difference between matched

measurements.

N Wilcoxon Signed Rank Test: when the differences are not

normally distributed, a non parametric method such as a

Wilcoxon Signed Rank Test is applied to the differences.

N SAM- statistics implemented within SAM [34] for paired

analysis. SAM uses permutation testing to assess score

significance.

These approaches suffer from the following shortcomings. The

t-test is only applicable for normally or close to normally

distributed data. In expression data, specifically in miRNA

expression, this is often not the case. In addition, the paired t-

test requires ranking in each group be performed using fold-

change. When ranking genes in each group using a non-paired t-

test for example, the paired t-test is no longer applicable. Under

the Wilcoxon Signed Rank Test a gene that is always higher in the

tumor samples but very slightly so will score better than one that is

higher by a large margin in all patients but one and is just slightly

lower in that outlier. For example, when ranking all miRNAs in

our cohort as discussed in the results section the ranks of miR-

133b are ,10, 4, 6, 1, 16, 770, 26, 39. and the ranks of miR-582-

3p are ,345, 355, 368, 205, 356, 218, 357, 95.. Because of the

low rank of miR-133b in the liver sample, miR-582-3p will score

better when using the Wilcoxon Signed Rank Test. We attribute

more biological significance to the differential expression of miR-

133b since miR-582-3p has a close to median behavior in all

tumor types. The third method discussed, SAM, uses permutation

testing to assess score significance and therefore is less applicable

for cases with small numbers of patients such as the dataset used in

this study. Permutation testing also limits the p-values by the

number of permutations performed.

Combinatorial methods for analyzing matched expression data

are useful in discovering effects that are not necessarily evident

when working with statistical scores that don’t take the sample

matching into account. Generally, when a gene manifests a robust

fold change when comparing two clinically different sets of

samples, then the same will hold true when the analysis is

performed using the matched structure. The opposite is not true.

We identified several miRNAs that are clearly differentially

expressed as a result of tumor related processes. These miRNAs

could not be identified if one ignores the sample matching

information. Determining and statistically assessing the differential

expression by comparing expression levels in two different

conditions in the same patient serves to offset inter-patient

variation that exists in such data. Combinatorial methods have

an advantage over parametric methods especially in small sample

sets and in studies where we cannot impose model assumptions,

such as normality of the underlying distributions.

A good example for the utility of our method is seen when

applied to the data generated by Lu et al [9]. In this study the

research team profiled the miRNA expression in 334 samples and

established a pioneering dataset for the study of global miRNA

differential expression in cancer. One of the main conclusions of

Lu et al was that the overall expression level of miRNAs is down

regulated in tumors relative to the normal samples. Moreover, the

miRNAs that were specifically identified by the study as

differentially expressed in cancer were shown there to be down

regulated in cancer. This apparent absence of miRNAs that are

up-regulated in cancer has been challenged by later studies

[10,11]. Since our approach is based on ranks instead of on the

actual expression values of miRNAs in each cancer type, the

RCoS method also detects miRNAs that are up regulated in

cancer, such as miR-182 and miR-183, in Lu et al’s data. This

example illustrates how RCoS can offset possible biases frequently

encountered in the experimental data.

Our statistical methods are not limited to matched samples

scenarios, nor to miRNA and cancer. They are applicable to other

comparison contexts as well. To be applicable the input data

should contain ranking of all elements (such as genes or miRNAs)

for each group (such as a patient). This ranking reflects a quantity

of interest that was computed or measured in each group, such as

the extent of differential expression. The methods will find

elements with consistent high ranks across all (or most) of the

groups. Software for computing this is available at: http://bioinfo.

cs.technion.ac.il/people/zohar/RCoS/

The concordance of the findings of our study with the findings of

several other studies and the use of RCoS on the Lu et al data are

strongly supportive of the cancer-universal nature of the differential

expression of several known cancer-associated miRNAs, namely:

miR-133, miR-96 and miR-182. Importantly, this concordance

demonstrates the utility of our statistical methodology for analyzing

data from different platforms and multiple cancer types. Also, it

lends confidence in the miRNAs identified here as differentially

expressed in cancer. Thus, in addition to identifying the already

known cancer-associated miRNAs mentioned above, our method

has identified two novel cancer-associated miRNAs, namely miR-

486-5p and miR-629*. As we tested multiple tumor types, these

appear to be novel cancer-universal miRNAs.
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