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Abstract

Methylglyoxal (MGO) is an a-dicarbonyl compound present ubiquitously in the human body. MGO reacts with arginine
residues in proteins and forms adducts such as hydroimidazolone and argpyrimidine in vivo. Previously, we showed that
MGO-mediated modification of aA-crystallin increased its chaperone function. We identified MGO-modified arginine
residues in aA-crystallin and found that replacing such arginine residues with alanine residues mimicked the effects of MGO
on the chaperone function. Arginine 12 (R12) is a conserved amino acid residue in Hsp27 as well as aA- and aB-crystallin.
When treated with MGO at or near physiological concentrations (2–10 mM), R12 was modified to hydroimidazolone in all
three small heat shock proteins. In this study, we determined the effect of arginine substitution with alanine at position 12
(R12A to mimic MGO modification) on the structure and chaperone function of these proteins. Among the three proteins,
the R12A mutation improved the chaperone function of only aA-crystallin. This enhancement in the chaperone function
was accompanied by subtle changes in the tertiary structure, which increased the thermodynamic stability of aA-crystallin.
This mutation induced the exposure of additional client protein binding sites on aA-crystallin. Altogether, our data suggest
that MGO-modification of the conserved R12 in aA-crystallin to hydroimidazolone may play an important role in reducing
protein aggregation in the lens during aging and cataract formation.
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Introduction

Small heat shock proteins are a family of stress proteins. a-

Crystallin and Hsp27 are the major small heat shock proteins in

humans. These proteins are beneficial in preventing cellular

damage for various diseases [1,2,3].

a-Crystallin is a major protein of vertebrate eye lenses, although

its presence in other organs such as the brain, heart, kidney, spleen

and thymus has also been recognized [4,5]. a-Crystallin consists of

two highly homologous subunits, aA- and aB-crystallin, and each

subunit has a molecular weight of ,20 kDa [4]. In the lens aA-

crystallin and aB-crystallin subunits combine in a 3:1 ratio to form

an ,40 mer a-crystallin oligomer [6]. The aB-crystallin gene has a

heat shock promoter element and is induced by various stress

conditions [4,5,7]. aB-Crystallin has been implicated in a number

of neurological disorders, such as Alzheimer’s disease and

Parkinson’s disease [1,8]. Both aA-crystallin and aB-crystallin

can confer cellular thermo-resistance [9]. Both proteins can act as

molecular chaperones, and this chaperoning ability is believed to

play a crucial role in maintaining the transparency of the eye lens

[10]. As a molecular chaperone, a-crystallin not only prevents the

aggregation of unfolded proteins, but it also helps in the refolding

of denatured client proteins [11,12]. Because protein turnover is

virtually absent in the lens, many post-translational modifications

accumulate in lens proteins during aging. Several studies have

shown that these post-translational modifications decrease the

chaperone function of a-crystallin, which might be one reason for

lens aging and age-related cataract formation [13,14,15,16,17].

A large number of advanced glycation end products (AGEs) can

be found in the aged human lens [18], which suggests that

glycation is a major mechanism for post-translational modification

in the aging lens. Glycation is the non-enzymatic reaction that

adds carbohydrates, especially glucose, to proteins. First, glucose

and other sugars react with the amino groups of proteins to form

an unstable Schiff’s base that slowly undergoes rearrangement to

form a relatively stable Amadori product. Through a series of

parallel and sequential reactions (often termed the Maillard

reaction), these Amadori products form many AGEs, some of

which are fluorescent and colored [19,20].

The lens contains relatively high levels of methylglyoxal (MGO).

The reported levels are 1–2 mM [21]. MGO is an a-dicarbonyl

compound that reacts with lysine, arginine and histidine residues
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in proteins [22,23] to form AGEs, such as hydroimidazolone [24],

argpyrimidine [25] and methylglyoxal lysine dimer (MOLD)

[26,27] (Fig. 1). In addition to our own previous findings, others

have reported that the aged and cataractous human lenses contain

more of these MGO-derived AGEs than the normal lens

[25,27,28,29]. Because MGO reacts rapidly with proteins and

the lens proteins have long half-lives, it is reasonable to assume

that cumulative modification by MGO over many decades of life

could be quantitatively significant in the lens proteins.

In general, it is believed that AGE formation is a cause for lens

protein aging and cataract formation. However, we and others

have observed that MGO-AGE formation in aA-crystallin makes

it a better chaperone [30,31]. AGE formation from MGO occurs

predominantly in arginine residues of proteins. Examples of

arginine-derived AGEs caused by MGO glycation are argpyr-

imidine and hydroimidazolone [18]. As a result of these

modifications, arginine residues lose their positive charge and

become neutral. In a previous study, we demonstrated that the loss

of the positive charge was the cause for an increase in the

chaperone function of aA-crystallin. In that study, we replaced

discrete MGO-modifiable arginine residues with a neutral amino

acid, alanine, and showed an improvement in the chaperone

function of the mutant proteins [32]. In addition, the chemical

conversion of lysine residues to homoarginine residues followed by

a reaction with MGO also led to an enhancement in the

chaperone function of aA-crystallin [33].

Unlike a-crystallin, Hsp27 is ubiquitously expressed throughout

the human body. We have shown that Hsp27 is particularly

vulnerable to MGO modification in kidney mesangial cells [34].

Others have shown a similar vulnerability of Hsp27 in other cell

types [35,36]. Furthermore, we showed that the chaperone and

anti-apoptotic functions of Hsp27 were improved after its

modification by MGO [37]. Thus, Hsp27 appears to be a prime

target for MGO modification, and consequently, its function could

be altered in cells.

Altogether, it is clear now that MGO modification of the small

heat shock proteins results in an improvement in their key

functions. Whether the improvement in the chaperone function of

small heat shock proteins occurs via modification of a conserved

arginine residue and whether physiological levels of MGO could

improve the chaperone function through a hydroimidazolone

modification is not known. In this study, we modified human

Hsp27 and aA- and aB-crystallin with 2–10 mM MGO and

identified hydroimidazolone AGEs using mass spectrometry.

Interestingly, the only conserved arginine residue that was

modified to hydroimidazolone by MGO was R12 in all three

proteins. To determine if the hydroimidazolone modification of

this arginine residue is responsible for the improvement of the

Figure 1. MGO reacts with proteins to form AGEs, like, hydroimidazolone, argpyrimidine and MOLD in tissue proteins.
doi:10.1371/journal.pone.0030257.g001
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chaperone function, we replaced R12 with alanine (to mimic the

hydroimidazolone modification) and explored the effect of this

mutation on the structure and chaperone function of Hsp27 and

aA- and aB-crystallin.

Results and Discussion

MGO is derived mostly from triose phosphate intermediates of

glycolysis by non-enzymatic mechanisms in vivo [38]. It is a major

precursor of AGEs in tissue proteins [39]. In previous studies, we

have shown that MGO modifications of small heat shock proteins,

such as aA-crystallin and Hsp27, enhanced their chaperone

function [30,37]. In this study, our primary goal was to determine

whether a similar increase in the chaperone function occurred

with physiological levels of MGO and to determine whether a

modification of the conserved R12 (Fig. 2A) to hydroimidazolone

contributed to the increased chaperone function.

We first determined the ‘‘first hit’’ arginine residues for

modification to hydroimidazolone. To accomplish this, we

modified the proteins with 2, 5 and 10 mM of MGO. With

2 mM MGO, we found that 6, 6 and 8 arginine residues were

modified to hydroimidazolone in aA- and aB-crystallin and

Hsp27, respectively (Table 1). With 10 mM of MGO, this

modification reached 10, 8 and 10 arginine residues in the three

respective proteins. R12 was the only common residues among the

three proteins converted to hydroimidazolone with 2 mM MGO,

which suggested that in small heat shock proteins, R12 is the most

susceptible for modification to hydroimidazolone by MGO.

Notably, a previous study detected a modification of R12 in

human lens aA-crystallin that had a molecular weight identical to

hydroimidazolone [40].

The modification of arginine residues to hydroimidazolone

converts the positive charge on arginine to a neutral charge.

Previously, we reported that the substitution of MGO-modifiable

arginine residues with neutral alanine residues enhanced the

chaperone function of aA-crystallin, similarly to MGO-modifica-

tion [32]. Because R12 is the most susceptible arginine for MGO

modification, we sought to determine if the chaperone function

would be improved if it was replaced with alanine. To accomplish

this, we cloned and expressed the wild-type (Wt) proteins and the

Hsp27R12A, aA-crystallinR12A (aAR12A) and aB-crystallinR12A

(aBR12A) mutant proteins in E. coli BL21(DE3). We then purified

the proteins by sequential chromatographic methods (gel filtration

and ion-exchange chromatography), as previously described [41].

SDS-PAGE analysis showed a single protein band with the correct

molecular weight for all proteins (Fig. 2B).

The chaperone function for the small heat shock proteins was

evaluated using three different client proteins. The aAR12A mutant

showed a 61%, 15% and 10% increase in the chaperone function

compared to the Wt protein with CS, c-crystallin and LDH,

respectively, as client proteins (Fig. 3). Although, aBR12A showed

better protection against thermal aggregation of CS than its Wt

variant (,70% better protective ability), it showed a slight

reduction in the chaperone function against the other two client

proteins tested (Fig. 3B & C). The R12A mutation had no effect on

the chaperone function of Hsp27 (Fig. 3A–C). Previously, Oya-Ito

et al. [37] showed that MGO modification made Hsp27 a better

chaperone. The findings in this study that theR12A mutation did

Figure 2. Sequence alignment and SDS-PAGE of recombinant human Hsp27, aA- and aB-crystallin. (A) Amino-acid sequence alignment
between these three small heat shock proteins was performed using the MULTIPLE SEQUENCE ALIGNMENT program (T-Coffee). (B) SDS-PAGE of
purified proteins. M = Molecular weight markers.
doi:10.1371/journal.pone.0030257.g002
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not improve the chaperone function of Hsp27 suggest that in

addition to hydroimidazolone modification, argpyrimidine mod-

ification may be necessary for the improvement of the chaperone

function inHsp27.

To understand the molecular basis behind the enhancement in

the chaperone function of aAR12A, we determined the structural

changes in the protein. Numerous studies have suggested a strong

correlation between the chaperone function and the surface

hydrophobicity of small heat shock proteins [42,43,44,45,46,47],

but others have failed to find such a correlation [48,49]. The

surface hydrophobicity of aAR12A and aBR12A (determined by

TNS binding) were nearly identical to that of their Wt protein

counterparts. Hsp27R12A had a decreased (,65%) surface

hydrophobicity compared to its Wt counterpart (Fig. 4). These

results suggested a lack of correlation between surface hydropho-

bicity and the chaperone function in the three small heat shock

proteins, which is similar to previous reports [48,49].

To assess whether the binding sites of these heat shock proteins

for client proteins were altered by the R12A mutation, we

performed an equilibrium binding study using c-crystallin as the

client protein. We incubated the three heat shock proteins

(12.5 mM each) for 1 hr at 60uC with various concentrations of

c-crystallin (2–18 mM). The unbound (S) and bound c-crystallin

were determined by filtration, as described in Methods and Materials

section. We determined the dissociation constant (Kd) using the

Scatchard equation:

~vv=S~n=Kd{1=Kd :~vv,

where ~vv is the number of moles of the substrate bound per mole of

chaperone, and n is the number of binding site and Kd is the

dissociation constant. The stoichiometry of n and Kd obtained

from the Scatchard plot (Fig. 5) is 3.61 per subunit of aA-crystallin

and 8.44 mM, respectively (Table 2). We noted that the number of

binding sites (n) per subunit of aAR12A increased from 3.61 in Wt

to 4.68, and the association constant increased from 0.118 mM21

(Kd = 8.44 mM) in Wt to 0.124 mM21 (Kd = 8.07 mM) in aAR12A.

The n and Kd values decreased ,25% and ,13%, respectively, in

aBR12A. In contrast, Hsp27R12A showed no changes in either of

these parameters when compared to its Wt counterpart (Table. 2).

From these data, we concluded that the substitution of alanine for

the conserved arginine residue at position 12 of aA-crystallin

Table 1. Identification of HI modification with the treatment of MGO detected by LC-MS/MS.

Protein Peptide Mass (obs.) Mass (cal.)
Modified Arg
residues

Concentration of
MGO (mM)

2 5 10

aA-crystallin RTLGPFYPSR 1246.6462 1246.6458 R12 X X X

QSLFRTVLDSGISEVR 1859.9809 1859.9741 R54 X

TVLDSGISEVRSDRDK 1829.9117 1829.9119 R65 X X X

SDRDKFVIFLDVK 1634.8756 1634.8668 R68 X X X

HNERQDDHGYISR 1679.7469 1679.7400 R103 X X

QDDHGYISREFHR 1712.7664 1712.7655 R113 X

RYRLPSNVDQSALSCSLSADGMLTFCGPK 3283.5509 3283.5424 R117 X

YRLPSNVDQSALSCSLSADGMLTFCGPK 3143.4382 3143.4362 R119 X X X

IQTGLDATHAERAIPVSR 1988.0434 1988.0439 R157 X X X

AIPVSREEKPTSAPSS 1708.8624 1708.8631 R163 X X X

aB-crystallin RPFFPFHSPSR 1427.7094 1427.7099 R12 X X X

APSWFDTGLSEMRLEK 1935.9078 1935.9036 R69 X X X

LEKDRFSVNLDVK 1615.8580 1615.8569 R74 X X X

HEERQDEHGFISR 1692.7621 1692.7604 R107 X X X

HEERQDEHGFISREFHR 2262.0316 2262.0314 R116 X X

YRIPADVDPLTITSSLSSDGVLTVNGPR 2996.5399 2996.5455 R123 X X

KQVSGPERTIPITR 1634.9041 1634.9104 R157 X X X

TIPITREEKPAVTAAPK 1875.0456 1875.0465 R163 X X X

Hsp27 RVPFSLLR 1040.6157 1040.6131 R5 X X X

VPFSLLRGPSWDPFR 1826.9545 1826.9468 R12 X X X

GPSWDPFRDWYPHSR 1955.8783 1955.8703 R20 X X X

DWYPHSRLFDQAFGLPR 2158.0497 2158.0385 R27 X X X

ALSRQLSSGVSEIR 1555.8312 1555.8318 R79 X X X

QLSSGVSEIRHTADR 1708.8496 1708.8492 R89 X X X

QLSSGVSEIRHTADRWR 2051.0302 2051.0297 R94 X X

WRVSLDVNHFAPDELTVK 2179.1149 2179.1062 R96 X X X

TKDGVVEITGKHEERQDEHGYISR 2836.3729 2836.3740 R127 X

QDEHGYISRCFTR 1721.7586 1721.7580 R136 X X X

doi:10.1371/journal.pone.0030257.t001
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increased its affinity for denatured client proteins, whereas the

same substitution in aB-crystallin lowered its interaction with the

denatured substrate protein. Our results also demonstrated that

TNS binding sites are different than the client protein binding sites

in all three proteins. We speculate that a structural alteration in

aAR12A exposed additional client protein binding sites, and thus,

aAR12A bound more client proteins and exhibited better

chaperone function than its Wt counterpart.

We used tryptophan (W) fluorescence along with near- and far-

UV CD techniques to determine if there were any changes in the

tertiary and secondary structures of the Wt proteins compared to

the mutant proteins. The intrinsic fluorescence spectra indicated

some differences between Wt and mutant proteins (Fig. 6). The

fluorescence intensity of aAR12A, aBR12A and Hsp27R12A

increased ,27%, 8% and 10%, respectively, compared to the

corresponding Wt proteins. Moreover, the lmax of the tryptophan

fluorescence spectra of the wild-type proteins did not alter due to

the mutation. The changes in fluorescence intensity may reflect

changes in the microenvironment of W9 (in aA- and aB-crystallin)

and W16 (in Hsp27), which are located close to the mutation sites.

The near-UV CD spectra of these three proteins (both wild type

and mutant) agreed with our intrinsic fluorescence data (data not

shown). However, these changes in tryptophan fluorescence

(perturbation in tertiary structure) did not correlate with the

changes in the chaperone function. While some studies showed a

direct relationship between an increase in tryptophan fluorescence

with improved chaperone function, others did not find such a

relationship [33,50,51,52]. Therefore, it is unclear whether

changes in the microenvironment of tryptophan are determinants

of changes in the chaperone function of a-crystallin.

Quantitative analysis of the far-UV CD data using the

CONTINLL program showed that Hsp27 and aA- and aB-

Figure 3. Effect of R12A mutation on the chaperone function of Hsp27, aA- and aB-crystallin. The chaperone function of these three
small heat shock proteins (wild type and mutants)was assessed using three client proteins, as described in Materials and Methods. (A) Citrate synthase
(CS); (B) c-crystallin and (C) Lactate dehydrogenase (LDH).
doi:10.1371/journal.pone.0030257.g003
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crystallin are major b-sheet proteins (Table 3). The data showed

no significant perturbation in the secondary structure in the three

proteins as a result of the R12A mutation. Based on these data, we

concluded that the contribution of R12 for the secondary structure

in the three small heat shock proteins was minimal.

Multi-angle light scattering experiments determine the polydis-

persity and the absolute molar mass of proteins. We used this

technique to determine whether the subtle changes in tertiary

structure altered the quaternary structure (i.e., the oligomeric

assembly) of these three small heat shock proteins. From the data

in Table 4, it is evident that a perturbation in the tertiary structure

had little effect on the molecular mass of the mutant proteins. The

hydrodynamic radius (Rh) was slightly increased only with aAR12A

(Table 4). Kundu et al. [53] previously reported that the deletion of

the first 20 amino acid residues in aA-crystallin had no effect in its

oligomeric size, which is analogous to the findings in this study.

The relationship between oligomeric size and chaperone function

of small heat shock proteins is still unclear. Some studies have

Figure 4. Effect of R12A mutation on the surface hydropho-
bicity of Hsp27 and a-crystallin. The surface hydrophobicity of wild
type and mutant proteins was estimated using a hydrophobic probe,
TNS. Protein concentration was 0.1 mg/ml and TNS concentration was
100 mM. The fluorescence spectrum of TNS bound to different samples
at 25uC was recorded from 350–520 nm. The excitation wavelength was
320 nm.
doi:10.1371/journal.pone.0030257.g004

Figure 5. Binding constant of wild type and R12A mutants of
Hsp27, aA- and aB-crystallin for c-crystallin. Binding parameters
for the interaction between c-crystallin and different small heat shock
proteins at 60uC were estimated from Scatchard plot.
doi:10.1371/journal.pone.0030257.g005

Table 2. Determination of the number of binding sites (n)
and dissociation constant (Kd) values for the interaction of
human Hsp27 and aA-and aB-crystallin and their R12A
mutants with c-crystallin at 60uC.

System studied n Kd (mM)

aAWt+c-crystallin 3.6160.07 8.4460.42

aAR12A+c-crystallin 4.6860.09 8.0760.28

aBWt+c-crystallin 2.3460.11 2.8460.12

aBR12A+c-crystallin 1.6860.07 3.2460.17

Hsp27Wt+c-crystallin 2.9060.08 5.9160.23

Hsp27R12A+c-crystallin 2.8760.13 5.7960.35

doi:10.1371/journal.pone.0030257.t002

Figure 6. Intrinsic tryptophan fluorescence spectra of wild type
and mutant (R12A) Hsp27, aA- and aB-crystallin. Tryptophan
fluorescence spectra of different samples (0.1 mg/ml protein) were
recorded from 310–400 nm at 25uC. The excitation wavelength was
295 nm. Data were collected at 0.5 nm wavelength resolution.
doi:10.1371/journal.pone.0030257.g006
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shown that higher oligomeric assembly diminishes the chaperone

function of these proteins [52,54], whereas others have demon-

strated contrary results [55,56]. Our results failed to find a

correlation between oligomeric size and chaperone function of

these three small heat shock proteins.

Several studies have revealed that other factors, such as

oligomerization and structural perturbation, may also be required

for the proper execution of the chaperone function of a-crystallin

[15,52,53,54,57,58]. To quantify the perturbation in the structural

stability caused by the R12A mutation, we compared the

thermodynamic stability of the Wt and mutant Hsp27 and aA-

and aB-crystallin proteins. We measured the equilibrium unfold-

ing caused by urea by following tryptophan fluorescence of the

proteins at various urea concentrations. Tryptophan fluorescence

intensities were recorded at 337 and 350 nm, respectively, at

various concentrations of urea. The data were then plotted as the

ratio of intensities at 337 and 350 nm as a function of the urea

concentration (Fig. 7). A crude estimate of the transition midpoint

(C1/2) from the sigmoidal analysis of the denaturation profiles

revealed that the C1/2 value increased from 2.34 M of urea for Wt

aA-crystallin to 2.72 M of urea for the R12A mutant (Fig. 7 and

Table 5). This increase in the C1/2 value clearly indicated that the

substitution of R12 by alanine increased the thermodynamic

stability of aA-crystallin. The C1/2 value did not change in aBR12A

and Hsp27R12A compared to the respective Wt proteins (Table 5).

These results clearly indicated that the R12 residue had a marginal

influence on the structural stability of aB-crystallin and Hsp27. To

quantify the stability against chemical denaturation, all of the

profiles were analyzed using a global three-state fitting procedure,

according to the following equation:

F
F0zF1: exp {DG0

1zm1: urea½ �
� �

=RTzF?: exp {DG0
2zm2 urea½ �

� �
=RT

1zexp {DG0
1zm1: urea½ �

� �
=RTzexp {DG0

2zm2: urea½ �
� �

=RT

where F0, F1 and F‘ are the signal intensities for the 100% native,

the 100% intermediate and the 100% unfolded forms, respectively.

DG1
0 refers to the standard free energy change between the native

and the intermediate form, and DG2
0 refers to the standard free

energy change between the intermediate and the unfolded form.

DG0, being the sum of DG1
0 and DG2

0, refers to the standard free

energy change of unfolding (between the native and the unfolded

form) at a urea concentration of zero. The fitted parameters are

listed in Table 5. The standard free energy change of aA-crystallin

unfolding at 25uC is 20.90 kJ/mol. This value of DG0 is comparable

to that we and others have previously reported [42,59]. The

DG0value for aAR12A increased to 25.54 kJ/mol, indicating an

enhancement in thermodynamic stability by ,4.5 kJ/mol. Howev-

er, the R12A substitution had no effect on the structural stability of

the other two small heat shock proteins (Table 5). In several previous

studies, investigators found that increased chaperone function of a-

crystallin was often associated with the greater structural stability of

this protein [42,58]. Therefore, we can also conclude that structural

perturbation of aA-crystallin due to the R12A mutation is a cause

for the enhancement of its chaperone function.

In summary, our study showed that the molecular basis behind

MGO-induced enhancement in the chaperone function of small heat

shock proteins is different. Although mild MGO modification

changes the conserved arginine residue (R12) in all three small heat

shock proteins, this modification is likely beneficial only for aA-

crystallin. Because aA-crystallin is predominantly found in the eye

lens, MGO-induced enhancement in the chaperone function of this

protein may be important in maintaining the transparency of the lens.

Table 3. Percent levels of secondary structure in the wild-
type and R12A mutants of human Hsp27 and aA- and aB-
crystallin using CONTINLL software.

Protein a-helix b-sheet b-Turn Random

aAWt 3.97 30.77 24.83 39.33

aAR12A 3.30 33.27 23.73 38.80

aBWt 3.87 36.73 22.73 35.87

aBR12A 1.83 30.17 25.23 42.13

Hsp27Wt 3.07 39.63 20.97 35.33

Hsp27R12A 3.57 34.60 23.43 38.87

doi:10.1371/journal.pone.0030257.t003

Table 4. The molar mass and the hydrodynamic radius of the
wild-type and R12A mutants of a-crystallin and Hsp27.

Proteins Molar Mass (g/mol) Hydrodynamic radius (nm)

aAWt (4.78760.003) e+5 6.9460.18

aAR12A (5.49160.005) e+5 7.6560.21

aBWt (4.80460.005) e+5 6.5960.17

aBR12A (4.31660.003) e+5 6.5260.17

Hsp27Wt (6.08560.004) e+5 7.7160.22

Hsp27R12A (5.01060.006) e+5 7.6060.26

doi:10.1371/journal.pone.0030257.t004

Figure 7. Thermodynamic stability of wild type and mutant
(R12A) aA-crystallin. Equilibrium urea denaturation profile for
0.1 mg/ml wild type and mutant proteins at 25uC. The profile is
normalized to a scale of 0 to 1. Symbols represent the experimental
data points and the solid lines represent the best fit according to the
three state model.
doi:10.1371/journal.pone.0030257.g007
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Materials and Methods

Citrate synthase (CS), lactate dehydrogenase (LDH), dithiothre-

itol (DTT), lysozyme and bovine insulin were obtained from

Sigma-Aldrich Chemical Co., LLC (St. Louis, MO, USA). CS was

dialyzed in 40 mM HEPES buffer, pH 7.4, for 24 hr before use.

2-(p-toluidino) naphthalene-6-sulfonate (TNS) was obtained from

Molecular Probes (Invitrogen, Carlsbad, CA, USA). Bovine c-

crystallin were purified from lenses, as previously described [60].

All other chemicals were of analytical grade.

Modification of proteins by MGO
Small heat shock proteins (1.0 mg/ml Hsp27 and aA- and aB-

crystallin) were incubated with either 2, 5 or 10 mM MGO (in

100 mM sodium phosphate buffer, pH 7.4) for 3 days at 37uC.

The incubated samples were subjected to SDS-PAGE (12% gel)

under reducing conditions.

Identification of hydroimidazolone by mass spectroscopy
Gel pieces containing aA-crystallin, aB-crystallin and Hsp27 cut

from the SDS-PAGE were first destained with 50% acetonitrile in

100 mM ammonium bicarbonate, and then 100% acetonitrile.

Then, the proteins were reduced by 20 mM DTT at room

temperature for 60 min, followed by the alkylation of the proteins

using 50 mM iodoacetamide for 30 min in the dark. The reaction

reagents were removed, and the gel pieces were washed with

100 mM ammonium bicarbonate and dehydrated in acetonitrile.

Sequencing grade modified trypsin (Promega, Madison, WI) in

50 mM ammonium bicarbonate was added to the dried gel pieces

and incubated at 37uC overnight. Proteolytic peptides extracted

from the gel with 50% acetonitrile in 5% formic acid were then

dried and dissolved in 0.1% formic acid. Liquid chromatography-

tandem mass spectrometric analysis of the resulting peptides was

performed on a LTQ Orbitrap Velos (Thermo Fisher Scientific,

Waltham, MA) equipped with nanoACQUITY UPLC (Waters,

Milford, MA) system. The spectra were acquired by data

dependent methods consisting of a full scan and MS/MS on the

ten most abundant precursor ions at the normalized collision

energy of 35%. The data that were obtained were submitted to

Mascot Daemon (Matrix Science, Boston, MA) for identification

of the hydroimidazolone modification on arginine residues. The

modification sites were then verified by manual interpretation of

the MS/MS spectra.

Cloning and purification of proteins
The previously described constructs for Wt aA- and aB-

crystallin were used as templates [32,58]. Hsp27 cDNA from

Thermo Scientific Open Biosystems, Huntsville, AL was used as a

template. Wild-type heat shock proteinsaA-, aB-crystallin and

Hsp27 were amplified by PCR using the following primers.

aA FP: 5-GGCCATATGGACGTGACCATCCAGCAC

aARP: 3-CCCAAGCTTGGACGAGGGAGCCGAGGTG

aB FP: 5-GGCCATATGGACATCGCCATCCACCAC

aB RP: 3-CCCAAGCTTTTTCTTGGGGGCTGCGGTGAC

Hsp27 FP: 5- GGCCATATGACCGAGCGCCGCGTCC-

CCTTCTCG

Hsp27 RP: 3- CCCAAGCTTTTACTTGGCGGCAGTCT-

CATCGGATTT

The amplified PCR product was cloned into the pET23a vector

using NdeI and HindIII restriction sites. The R12A mutants were

generated by site-directed mutagenesis using the respective Wt

cDNA as the template. The following primers were used.

aAR12AFP:5-TGGTTCAAGGCCACCCTGGGG

aAR12ARP:3-CCCCAGGGTGGCCTTGAACAA

aBR12AFP:5-TGGATCCGCGCCCCCTTCTTT

aBR12ARP:3-AAAGAAGGGGGCGCGGATCCA

Hsp27R12A FP:5-TCGCTCCTGCGGGGCCCCAGC

Hsp27R12A RP:3-GCTGGGGCCCCGCAGGAGCGA

The resulting PCR product was digested with DpnI and then

transformed into E.coli DH5alpha cells. Plasmids from the

resulting colonies were sequenced to confirm the presence of the

mutation. The recombinant proteins were overexpressed in E.coli

BL21(DE3) by induction with 250 mM IPTG when the OD600 nm

of the culture in LB broth reached ,0.6. The bacterial pellet

obtained after centrifugation at 10,000 g was suspended in 50 mM

Tris, pH 8.0 containing 50 mM NaCl, 2 mM EDTA and 10 ml/

ml of a protease inhibitor cocktail (Sigma). Lysozyme was added at

0.3 mg/ml to the cell suspension and incubated for 10 min at

37uC, followed by sonication on ice at 40 duty cycles at 30%

amplitude. Benzonase nuclease (1.0 ml) was then added to the

resulting cell lysate and incubated at 37uC in a shaker for 20 min,

which was followed by the addition of sodium deoxycholate at

1.0 mg/ml and a subsequent incubation for 10 min at 37uC. DTT

was then added to the lysate at a 5 mM concentration and

incubated for 10 min at 37uC. The cell lysate was then centrifuged

at 20,000 g for 30 min at 4uC. DNA in the lysate was precipitated

by adding 0.2% polyethyleneimine followed by centrifugation at

20,000 g for 15 min. Ammonium sulfate was added to the lysate to

reach 70% saturation, and the suspension was then left at 4uC
overnight and then centrifuged at 20,000 g for 5 min. The

resulting pellet was suspended in 50 mM sodium phosphate buffer

(pH 7.4), which contained 150 mM NaCl and 5 mM DTT, and

was then centrifuged at 20,000 g for 5 min. The supernatant was

filtered with a 0.45 mm filter and applied onto a Superdex-200

prep grade (GE Healthcare, WI) gel filtration column that was pre-

equilibrated with 50 mM sodium phosphate buffer pH 7.4.

Fractions of 2.0 ml were collected and their OD280 nm was

recorded. The peak fractions were pooled and dialyzed overnight

at 4uCin 20 mM Tris, pH 8.0 that contained 0.1 mM EDTA. The

dialyzed sample was applied onto a Q-Sepharose (GE Healthcare,

WI) anion exchange column equilibrated with 20 mM Tris,

pH 8.0 with 0.1 mM EDTA. The bound protein was eluted with a

0–1 M NaCl gradient. The protein peak fractions were pooled and

dialyzed in PBS containing 0.1 mM EDTA and stored in aliquots

at 280uC.

Determination of molecular mass by multi-angle light
scattering

The molar mass and the hydrodynamic radius of wild-type and

R12A mutants of a-crystallin and Hsp27 were estimated by multi-

angle light scattering measurements as previously described

[32,58]. The molar mass (Mw) and the hydrodynamic radius

Table 5. The C1/2 and the DG0 values of the wild-type and
R12A mutants of a-crystallin and Hsp27 at 25uC.

Proteins C1/2 (M) DG0 (kJ/mole)

aAWt 2.34 20.9060.62

aAR12A 2.72 25.5460.66

aBWt 2.41 22.4460.21

aBR12A 2.43 22.3460.78

Hsp27Wt 2.38 21.3760.44

Hsp27R12A 2.36 21.3860.56

doi:10.1371/journal.pone.0030257.t005
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(Rh) of Wt and mutant proteins were determined using ASTRA

(5.3.4) software developed by Wyatt Technology Corp.

Determination of secondary and tertiary structure by CD
spectroscopy

The far-UV CD spectra were measured at 25uC using a Jasco

815 spectropolarimeter (Jasco, Inc., Japan). The spectra were

collected from 250 to 200 nm using a cylindrical quartz cell of

2 mm path length. Proteins (0.2 mg/ml) were dissolved in 10 mM

phosphate buffer (pH 7.2). The resultant spectra after five scans

were analyzed for secondary structure by the curve-fitting program

CONTINLL [61].

The near-UV CD spectra were measured at 25uC using the

same spectropolarimeter as stated above. The spectra were

measured with a 0.5 mg/ml protein solution in 50 mM

phosphate buffer (pH 7.2). The reported spectra were the average

of 5 scans.

Tryptophan fluorescence measurements
The intrinsic tryptophan fluorescence spectra of proteins

(0.1 mg/ml) in 50 mM phosphate buffer (pH 7.2) at 25uC were

recorded using a Fluoromax-4P spectrofluorometer (Horiba

Jobin Mayer, USA). The excitation wavelength was set to

295 nm, and the emission spectra were recorded between 310

and 400 nm. Data were collected at a 0.5 nm wavelength

resolution.

Estimation of Surface hydrophobicity
The surface hydrophobicity of the different protein solutions

(0.1 mg/ml of the wild-type and R12A mutants) was measured

using a hydrophobic probe, TNS (emission: 350–520 nm,

excitation: 320 nm), as previously described [33]. The concentra-

tion of TNS that was used was 100 mM.

Chaperone assays
The chaperone assays were carried out as previously described

[62]. The ratios (w/w) of aA-crystallin to CS, c-crystallin and

LDH were 1:10, 1:12 and 1:28, respectively. The ratios (w/w) of

aB-crystallin to CS, c-crystallin and LDH were 1:4, 1:15 and 1:28,

respectively. The ratios (w/w) of Hsp27 to CS, c-crystallin and

LDH were 1:10, 1:37 and 1:28, respectively.

Equilibrium binding study
The chaperone-substrate binding study was performed by a

membrane filtration method that we recently described [58].

Briefly, wild-type or mutant Hsp27 and aA- and aB-crystallin

(12.5 mM) were incubated at 60uC for 1 hr with 2–18 mM c-

crystallin in 50 mM phosphate buffer containing 100 mM NaCl

(pH 7.2). After equilibration, the incubation mixture was spun

through a Microcon centrifugal device (4,000 g) fitted with a 100-

kDa cut off membrane filter to separate the unbound substrate.

The number of binding sites (n) and dissociation constant (Kd)

were determined by a similar procedure [33,42,58].

Determination of structural stability of proteins
The structural stability of Wt and mutant proteins was

determined by equilibrium chemical denaturation experiment.

Wt and mutant proteins (0.05 mg/ml in 50 mM phosphate buffer,

pH 7.5) were incubated separately with various urea concentra-

tions (0–7 M) for 18 hrs at 25uC. Tryptophan fluorescence spectra

of all samples were taken in the 300–400 nm region using 295 nm

as the excitation wavelength. The equilibrium unfolding profile

was fitted according to a three state model [42,53,58].
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