
Frontiers in Oncology | www.frontiersin.org

Edited by:
Chunjie Jiang,

University of Pennsylvania,
United States

Reviewed by:
Yang Xie,

Brigham and Women’s Hospital and
Harvard Medical School, United States

Weiru Liu,
University of Pennsylvania,

United States
Yi Zhang,

Dana-Farber Cancer Institute,
United States

*Correspondence:
Xuejun Li

lxjneuro@csu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Molecular and Cellular Oncology,
a section of the journal
Frontiers in Oncology

Received: 23 September 2021
Accepted: 15 November 2021
Published: 08 December 2021

Citation:
Xiong Z, Liu H, He C and Li X

(2021) Hypoxia Contributes to Poor
Prognosis in Primary IDH-wt GBM

by Inducing Tumor Cells MES-
Like Transformation Trend and
Inhibiting Immune Cells Activity.

Front. Oncol. 11:782043.
doi: 10.3389/fonc.2021.782043

ORIGINAL RESEARCH
published: 08 December 2021

doi: 10.3389/fonc.2021.782043
Hypoxia Contributes to Poor
Prognosis in Primary IDH-wt GBM
by Inducing Tumor Cells MES-Like
Transformation Trend and Inhibiting
Immune Cells Activity
Zujian Xiong1,2,3†, Hongwei Liu1,3†, Chenqi He1,3 and Xuejun Li1,3*

1 Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China, 2 Xiangya School of Medicine,
Central South University, Changsha, China, 3 Hunan International Scientific and Technological Cooperation Base of Brain
Tumor Research, Xiangya Hospital, Central South University, Changsha, China

Aims: To reveal the influence of hypoxia on tumor cells and immune cells in primary IDH-
wt glioblastoma patients.

Methods: Single-cell RNA-seq data and bulk RNA-seq data were acquired from the
Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases,
respectively. Hypoxia status and subtypes of tumor cells were identified based on single-
sample Gene Set Enrichment Analysis (ssGSEA). Regulon network analysis of different
subtypes under different conditions was conducted by SCENIC. Within tumor
microenvironment, biological process activity analysis and cell–cell communication
network were conducted to uncover the inner links between each cell subtype under
different hypoxia status.

Results: Different types of tumor cell in GBM possessed different hypoxia status, and
MES-like subtype was under a more severe hypoxia condition than other subtypes.
Hypoxia also induced MES-like signature gene expression within each tumor cell, which
could stimulate tumor cell proliferation and invasion by regulating cell–cell communication.
Additionally, hypoxia inhibited immune cell activity in the tumor microenvironment by
inducing macrophage phenotype polarization and upregulating immune-inhibited cell–cell
interaction within immune cells. Interactions between tumor cells and immune cells under
hypoxia status also promoted tumor progression.

Conclusions: Hypoxia was a poor prognostic marker for primary IDH-wt GBM patients.
Meanwhile, it could induce tumor cells’ MES-like transformation trend and inhibit
antitumor function of immune cells.
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INTRODUCTION

Glioblastoma (GBM) is the most fatal tumor in the central
nervous system (CNS) with the median overall survival of 12–
15 months. A previous study has divided GBM into four
subtypes, namely, mesenchymal (ME), classical (CL), proneural
(PN), and neural (NE), based on bulk RNA-seq data (1) and later
retain three subtypes including ME, CL, and PN (2). Among
these subtypes, ME and CL are associated with poor prognosis
compared with others (3). To evaluate the intratumoral
heterogeneity, a recent study identified four cellular subtypes
in GBM based on single-cell data, which are a bit different from
the former Verhaak’s classification (4). It distinguishes GBM
cells into various states named neural-progenitor-like (NPC-
like), oligodendrocyte-progenitor-like (OPC-like), astrocyte-like
(AC-like), and mesenchymal-like (MES-like) based on cell meta
modules, which can coexist within the same tumor sample
because of intratumoral heterogeneity. Among all tumor cell
subtypes, MES-like subtype is linked to hypoxia, indicating the
inner association between MES-like subtype and hypoxia.

Hypoxia, a microenvironment feature in solid tumor, is
associated with many cancer “hallmarks,” involving impaired
immune response, metabolic reprogramming, stimulation of
tumor angiogenesis, and promotion of tumor invasion (5). It
has been shown to be a factor of chemotherapy and radiation
resistance in GBM (6), which is also linked to a proneural–
mesenchymal transformation (PMT) in the transcriptome (7).
Moreover, hypoxia is a strong inducer of PMT in GBM by
upregulating specific transcription factors (TFs) like hypoxia-
inducible factor 1-alpha (HIF1a) (8). In the process of PMT,
MES-related gene signatures are associated with therapeutic
resistance, while PN-related signatures are associated with
therapeutic sensitivity (7). Several lines of evidence suggest that
PMT occurs in glioma stem cells under hypoxia status (9), then
promotes tumor invasion, angiogenesis, and therapeutic resistance.

Collectively, the vast majority of studies focusing on hypoxia
effect are based on bulk RNA-seq datasets. Due to intratumoral
heterogeneity, tumor purity, and single-cell sequencing
development, hypoxia evaluation through bulk data is unable
to reveal specific hypoxia status of each cell type, which, however,
can be complemented by single-cell analysis. To study the
influence of hypoxia on single cells, including tumor and non-
tumor cel ls , especial ly immune cel ls in the tumor
microenvironment, we performed the study on single-cell
RNA-seq datasets derived from primary IDH-wild type (IDH-
wt) GBM patients. This work provided an opportunity to
investigate the influence of hypoxia on single cells and uncover
new possible mechanisms for hypoxia as a poor prognostic marker.
MATERIALS AND METHODS

Datasets and Data Processing
A total of 7,930 cells from primary IDH-wt GBM patients’
single-cell RNA-seq data according to Smart-seq2 protocol
(GSE131928) were downloaded from the GEO database
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(https://www.ncbi.nlm.nih.gov/geo) (4). We additionally
downloaded 4,825 cells from oligodendroglioma patients’ and
6,341 cells from IDH-mutant astrocytoma patients’ single-cell
RNA-seq data according to Smart-seq2 protocol (GSE70630,
GSE89567) to test the efficiency of the biological process activity
(BPA) transformation analysis (10–12). Six GBM primary cell
lines RNA-seq data (three samples in normoxia and three
samples in hypoxia) were downloaded from GSE108013 (13).
One hundred forty-five samples of Illumina HiSeq RNA-seq data
of primary IDH-wild-type GBM and corresponding phenotype
data were downloaded from the TCGA database (https://tcga-
data.nci.nih.gov/) via Xena Browser developed by University of
California Santa Cruz (UCSC). The QC process, normalization,
and cell-type identification of single-cell RNA-seq data were
performed as described in published studies (4, 10, 11), which
used the same criteria. RNA-Seq data of TCGA and GSE108013
were normalized by transcripts per kilobase million (TPM)
method for further analysis. A computational pipeline for
analyzing effect of hypoxia in this study is exhibited in Figure 1.

Subtypes and Glioma Stem-Like Cells
(GSCs) Identification
Subtypes of GBM cells and glioma stem-like cells (GSCs) were
identified by ssgsea.GBM.classification R package (2). First, we
generated numerous virtual samples by randomly selecting
expression values of the gene as virtual samples’ corresponding
gene expression from datasets. Then, the ssGSEA scores of each
category were calculated, respectively. We set 5,000 virtual
random samples and correlated these samples with the real
sample. At the same time, we counted the number of matches
with random samples under each subtype. We defined the
subtype as the one that had the fewest matches to the random
sample. If there were more than one subtypes sharing the min
matches in one sample, we defined the sample as MIX. Besides,
we defined the cells with no random sample match as
mesenchymal GSCs (mGSCs) or proneural GSCs (pGSCs).
FIGURE 1 | Schematic representation of the analysis pipeline in this study.
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The four GBM subtypes (MES-like, AC-like, OPC-like, and
APC-like) signatures were acquired from previous research (4).
Additionally, mGSCs and pGSCs signatures were obtained from
Wang’s study (14). Meanwhile, macrophage-subtype marker
genes were obtained from the CellMarker database (15).

Hypoxia Score Calculation and Hypoxia
Status Identification
According to the hypoxia 15-gene signature evaluated by
published papers (16–20) in pan-cancer analysis, we used
GSVA algorithm (21) to calculate the hypoxia score in TCGA
bulk samples and single-cell samples, respectively. Unsupervised
hierarchical clustering method was employed to classify hypoxia
status of bulk samples based on 15 hypoxic gene expression
profiles, same as the process in previous research (16). The top
three clusters were designed as hypoxia, intermediate, and
normoxia groups in TCGA GBM cohorts. Due to the dropout
rate and sparse matrix of the single-cell data, we used quarter
quantile to identify the hypoxia status of cells. The cells
possessing the upper quarter hypoxia score were labeled as
hypoxia status, and the cells with the lower quarter hypoxia
score were identified as normoxia status; the other cells were
defined as intermediate status.

MES-Like Score Calculation and
Deconvolution Analysis
We used the same method as calculating hypoxia score to acquire
the MES-like score of each GBM tumor cell based on MES-like
signatures. The deconvolution of TCGA GBM samples were
conducted by CIBERSORTx, in which we got the target cell
proportion within the bulk samples (22).

Tumor Purity Calculation in Bulk Samples
and Purity–Hypoxia Correlation
We adopted five tumor purity scores in the analysis, namely, the
consensus purity estimation (CPE) score, ESTIMATE score,
ABSOLUTE score, LUMP score, and IHC score. ESTIMATE
was based on specific gene expression profiles consisting of 141
immune genes and 141 stromal genes (23); ABSOLUTE used
somatic copy-number data (24); LUMP (leukocytes
unmethylation for purity) averaged 44 non-methylated
immune-specific CpG sites; and IHC was estimated by image
analysis of hematoxylin and eosin stain slides produced by the
Nationwide Children’s Hospital Biospecimen Core Resource
(25). For CPE, it was the median purity level derived from the
four methods mentioned above after normalization as previously
described (25). We used Pearson correlation to calculate the
coefficient of purity score and hypoxia score among different
calculation methods.

Pseudo-Time Lineage Trajectory
Lineage trajectory was constructed by monocle R package (26).
Briefly, we selected variant features identified by Seurat v3 as an
input gene set. Then, the monocle used a machine learning
method to order single cell into a trajectory in a two-
dimension space.
Frontiers in Oncology | www.frontiersin.org 3
Biological Process Activity Analysis and
GSEA Enrichment
Biological process activity (BPA) analysis was based on gene list
in msigdb database to evaluate each pathway’s activity in single
cells (12). We used KEGG database, GO database, and msigdb
immune-related C7 database to calculate pathways activity in
cells, in which the parameters were set as advised (12, 27). To
evaluate the efficiency of the method, we adopted another two
single-cell datasets of glioma as formerly mentioned to test it and
visualized BPA result by TSNE. Gene set enrichment analysis
(GSEA) was performed by clusterProfiler R package based on
gene list from msigdb (28).

Identification of Differentially Expressed
Genes (DEGs) and Pathways
Differentially expressed genes (DEGs) and differentially
expressed pathways between the hypoxia and normoxia groups
were identified by limma R package. All parameters were set
as default.

Transcription Factor Regulation and Cell
Communication Network Identification
We used epigenetic landscape in silico deletion analysis (LISA),
based on DEGs, to identify main transcription factors in hypoxia
group (29). To analyze transcription factor regulons further,
we adopted SCENIC R package (30) with default parameters.
For visualization, we mapped the regulon activity (AUC) scores in
heatmap plot. Additionally, intratumoral cell–cell communication
network based on potential receptor–ligand interaction
was inferred by CellPhoneDB from single-cell transcriptomic
data (31).

Survival and Statistics Analysis
R packages survival and survminer were used for overall survival
analysis. Univariate cox and multivariate cox regression analysis
methods were conducted to identify independent prognostic
features. In addition, single- and two-factor Kaplan–Meier
curves were shown to compare the prognostic results between
different groups. All statistical analyses were performed using R
software, version 3.6.2 (The R Foundation for Statistical
Computing, http://www.rproject.org/). Continuous variables
that conform to normal distribution between groups were
compared by the Student’s t-test with post-hoc pairwise
Bonferroni tests. Variables that do not conform to the normal
distribution were compared by the Wilcoxon rank-sum test with
post-hoc pairwise Bonferroni tests.
RESULTS

Hypoxia Contributes to Poor Prognosis in
Primary IDH-wt GBM Bulk Samples
We divided 145 primary IDH-wt GBM patients from TCGA
database into three hypoxia status: hypoxia (n = 78),
intermediate state (n = 17), and normoxia (n = 50) based on
15-gene hypoxic signature, which performed the best in
December 2021 | Volume 11 | Article 782043
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evaluating tumor hypoxic condition reported by former study
(Supplementary Figure S1A) (16). To investigate the effect of
hypoxia, we took hypoxia and normoxia groups into further
analysis, and we observed that hypoxia was associated with worse
prognosis (Figure 2A). Additionally, we conducted univariate
Cox regression on hypoxia status and found that it was a risk
factor [hazard ratio (HR) = 1.63; 95%CI = 1.09–2.42, p = 0.016].

Identify Hypoxia Status in Primary IDH-wt
GBM Single Cells
To thoroughly evaluate hypoxia effects on primary IDH-wt
GBM, we calculated hypoxia score on six subtypes of tumor
cells in GBM (MES-like, AC-like, OPC-like, NPC-like, mGSC,
and pGSC). We first identified four subtypes of GBM cells (MES-
like, AC-like, OPC-like, and NPC-like) and then classified all
Frontiers in Oncology | www.frontiersin.org 4
tumor cells into another two GSC subtypes. Interestingly,
mGSCs were derived from MES- and AC-like subtypes, while
pGSCs were derived mainly from OPC- and NPC-like cells
(Supplementary Figure S1B). Afterwards, we divided each of
them into three hypoxia status as previous depicted (Figure 2B).
These 15 hypoxia marker genes were upregulated in hypoxia
groups comparing to intermediate and normoxia groups;
meanwhile, we performed LISA analysis based on differentially
upregulated genes in the hypoxia group [logFC > 1 and false
discovery rate (FDR) < 0.05], discovering that both transcription
factors HIF1A and HIF2A (EPAS1) were upregulated in the
hypoxia group (Supplementary Table S1). We then compared
hypoxia score among cell subtypes to distinguish overall hypoxic
condition of each subtype (Figure 2C). Apart from GSCs, MES-
like subtype was the most hypoxic one, followed by AC-, OPC-,
A

B

D

E FC

FIGURE 2 | The effect of hypoxia on tumor cells and prognosis. (A) Kaplan–Meier curve of different hypoxia status of primary IDH wild-type GBM in TCGA
database. (B) The expression of 15 hypoxia-related genes in GBM tumor cells. (C) The distribution of hypoxia score within each tumor cell type. (D) Intercellular
communications within each tumor subtype. (E) Distribution of MES-like cell proportion within TCGA primary IDH-wt GBM samples between hypoxia and normoxia
group. (F) Two-factor Kaplan–Meier curve of TCGA primary IDH-wt GBM. The two factors were MES-like cell proportion and hypoxia status of each sample. The
character ***, **** means p < 0.001 and p < 0.0001, respectively.
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then NPC-like subtype. To uncover the relationship between
hypoxia status and these four tumor cell subtypes, we analyzed
the autocrine signaling under different hypoxia status and found
that MES-like subtype with hypoxia sent out more epidermal
growth factor receptor (EGFR), vascular endothelial growth
factor receptor (VEGFR), and fibroblast growth factor receptor
(FGFR) signal to itself, indicating that it was more proliferative
and invasive than others (Figure 2D). Moreover, we conducted
deconvolution analysis on TCGA samples to calculate each
subtype proportion by CIBERSORTx and found that hypoxia
groups in bulk dataset had more MES-like cells (Figure 2E).
Consistent with hypoxia, MES-like cell proportion was identified
as a risk factor by univariate Cox regression (HR = 1.48, 95%CI =
1.01–2.18, p = 0.046) and possessed synergistic effect with
hypoxic condition on poor prognosis (Figure 2F). In order to
explore potential role of the hypoxia and MES-like cell
proportion for patients’ prognosis in detail, we included
gender, age, O6-methylguanine DNA methyltransferase
(MGMT) promoter methylation status, and purity to perform
multivariate Cox analysis, which suggested that hypoxia was an
independent risk factor (Table 1). However, we did not find
obvious associations between tumor purity and hypoxia, which
indicated that hypoxia was attributed to multiple cell types in the
tumor microenvironment (Supplementary Figure S1C).

Hypoxia Changes Immune-Related
Metabolism and Induced MES-Like
Signature Expression in GBM Tumor Cells
We performed BPA analysis on primary IDH-wt GBM tumor
cells based on KEGG, Msigdb C7, and GO databases. BPA based
on single-cell RNA sequencing (scRNA-seq) scRNA-seq data,
which could decrease the impact of dropout events and batch
effects to provide a robust description on cellular states, had
already been tested well in the additional two single-cell datasets
(Supplementary Figure S1D) (12). We observed that hypoxia- and
HIF1A-related pathways in KEGG database were upregulated in the
hypoxia group (Figure 3A and Supplementary Table S2). In
addition, there were more immune-related gene sets obviously
upregulated in the hypoxia group than in the normoxia group
such as interferon (IFN)-, interleukin-15 (IL15)-, and signal
transducer and activator of transcription (STAT)-associated
signatures, which showed a higher immune activity, whether pro-
or anti-tumor, within hypoxia GBMmicroenvironment (Figure 3B
and Supplementary Table S4). However, few GO pathways were
Frontiers in Oncology | www.frontiersin.org 5
obviously changed between hypoxia and normoxia groups
(Supplementary Table S2). We then used SCENIC to distinguish
regulons between hypoxia and normoxia groups. As a result, ATF3,
JUNB, and MYC regulons were highly expressed in the hypoxia
group (Supplementary Figure S2A). For more details about
hypoxia and cell subtypes, we conducted SCENIC again on both
cell subtypes and hypoxia status and found that MES-like subtype
shared more common regulons with AC-like subtype revealing that
these two subtypes were from the same progenitor that
differentiated to different directions due to microenvironment
(Supplementary Figure S2B) (32), while NPC-like subtype
shared more common regulons with OPC-like subtype
(Figure 3C). Within the MES- or AC-like cells, ATF3, a key
inhibitory of transcriptional regulator in the inflammatory
response, was higher in the hypoxia group. Since autophagy,
which could be induced by hypoxia, was a significant catabolic
mechanism for GBM tumor cells to survive and resist antitumoral
therapy (33), we tested autophagy pathways’ activity between
hypoxia and normoxia groups by GSEA. The results showed that
these pathways were enriched in the hypoxia group, especially at
MES-like subtype, with statistical significance comparing to other
subtypes (Figures 3D, E).

Meanwhile, we also discovered that CD44, an MES marker
gene, was higher in the hypoxia group (Supplementary Figure
S2C). This was consistent with the former analysis that MES-like
cell proportion was higher in the hypoxia group in bulk tissue
(Figure 2E). We then calculated MES-like score among subtypes
of tumor cells based on two identified MES-like signatures (4)
and found that with the exacerbation of hypoxia, the MES1- and
MES2-like score all increased within each subtype (Figure 4A).
To verify that hypoxia could induce MES-like signatures
expressed in GBM tumor cells, we analyzed another GBM
RNA-seq dataset from primary cultured cell lines of primary
IDH-wt GBM patients (13). These cells were cultured under
hypoxia condition (n = 3, 3% O2) or normoxia condition (n = 3,
21% O2) for 48 h, respectively. Consistently, two MES-like score
of cell lines under hypoxia were higher than normoxia
(Figure 4B). Because of the limited sample size, we did not
observe p-values with statistical significance. However, the
possibility of type I error between these two groups was 10%.
Considering the limitation of sample size, the error rates were
considered acceptable.

Hypoxia Weaken Antitumor Activity of
Immune Cells in GBM Microenvironment
The immune microenvironment of primary IDH-wt GBM
mainly consisted of tumor-associated macrophages (TAMs)
(34). We selected TAMs identified as hypoxia or normoxia for
further analysis (Supplementary Figure S2D). The TAMs under
hypoxia status highly expressed M2markers, CD163 and CD206,
while TAMs in normoxia upregulated M1 marker, IRF5 (35, 36)
(Figure 4C). Meanwhile, TAMs were more active in normoxia
compare to those in hypoxia (Supplementary Figures S2E, F),
and CCL-related cell–cell interactions were higher in normoxia
status between TAMs and tumor cells (Figure 4E). We then
tested autocrine signaling within TAMs under different hypoxia
TABLE 1 | Statistic of prognostic related factors in TCGA cohort.

Variables Multivariate Cox regression analysis

HR (CI95) p-value

Gender 1.399 (0.851–2.299) 0.186
Age 1.028 (1.006–1.049) 0.011
Hypoxia 1.943 (1.164–3.242) 0.011
MES-like 0.955 (0.543–1.681) 0.873
MGMT status 0.613 (0.360–1.041) 0.070
Purity 0.127 (0.028–0.569) 0.007
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status and observed that CD44-related communication, which
could induce macrophage M1 to M2 polarization (37), was more
frequent and stronger in hypoxia (Figure 4D). Furthermore, we
investigated T cells with hypoxia and normoxia status as well but
found no obvious change in expression of inhibitory immune
checkpoint genes (Supplementary Figure S3A). However, the
TIGIT-related communication was a little stronger within
hypoxia T cells (Figure 4D), while tumor necrosis factor
(TNF)- and FASLG-related communications were stronger in
normoxia between T cells and tumor cells (Figure 4F and
Supplementary Figure S3B). Otherwise, tumor cells in hypoxia
could inhibit TAMs activation via HLA-G/LILRB interactions
(Supplementary Figure S3C), assist TAMs polarization via
CD44-related communication (Figure 4E and Supplementary
Figure S3C), and inhibit T-cell activation via PDCD1 and TIGIT
(Figure 4F and Supplementary Figure S3B). Conversely, TAMs
could promote tumor cells proliferation and invasion via EGFR-,
FGFR2-, and CD44 (38)-related interaction in hypoxia (Figure 4E
and Supplementary Figure S3C).
Frontiers in Oncology | www.frontiersin.org 6
DISCUSSION

The classification of GBM subtypes according to bulk RNA-seq
and scRNA-seq possesses inner link as previously reported that
TCGA-CL and TCGA-ME subtypes in bulk correspond to
tumors enriched with AC- and MES-like cells, respectively,
while TCGA-PN subtype corresponds to the combination of
OPC- and NPC-like cells (4). TCGA GBM subtypes can also be
distinguished by the cell composition that TCGA-CL contain
high level of astrocytes, TCGA-ME are infiltrated highly by
immune cells, and TCGA-PN are characterized by the highest
level of oligodendrocytes and neurons (14). Nowadays, studies
on glioma stem cells identify them into two main types, namely,
mGSC and pGSC (14, 39). Similarly, the TCGA-ME and TCGA-
CL samples are enriched by mGSCs, and TCGA-PN contains
high level of pGSCs (14). In our study, we demonstrated that AC-
like cells shared more common features with MES-like cells,
while OPC-like cells were more similar to NPC-like cells in terms
of regulon network and cell–cell communication. Considering
A

B

D E

C

FIGURE 3 | The different pathway activities between hypoxia and normoxia groups. (A) Heatmap of KEGG metabolism pathway activity between hypoxia and
normoxia groups within tumor cells. (B) Heatmap of msigdb C7 immune signatures between hypoxia and normoxia groups within tumor cells. (C) Heatmap of
binarized regulon network activity of different tumor cell subtype under hypoxia or normoxia. (D) GSEA analysis plot of autophagy-related pathways in tumor cells
under hypoxia condition with p < 0.05. (E) GSEA analysis plot of autophagy-related pathways in MES-like tumor cells under hypoxia condition with p < 0.05.
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all the evidence, we hypothesize that these four GBM cell
subtypes come from two lineages derived from mGSC or
pGSC, respectively. One is the mesenchymal lineage including
mGSC, MES-like subtype, and AC-like subtype, and the
other is proneural lineage containing pGSC, OPC-like subtype,
and NPC-like subtype. Compared to proneural lineage, the
hypoxia degree of mesenchymal lineage was more severe.
Frontiers in Oncology | www.frontiersin.org 7
Such phenomenon is partially associated with metabolism
distinction that mGSC preferentially utilizes glycolysis, while
pGSC employs oxidative phosphorylation (39). However, the
metabolism of each cell subtype of GBM and the lineage
hypothesis need further study.

One mechanism of hypoxia inducing GSCs PMT is altering
DNA methylation pattern at promoter of mesenchymal-related
A B

D

E

F

C

FIGURE 4 | Cell–cell communication network in the tumor microenvironment. (A) The distribution of MES-like score in each tumor cell subtype under different
hypoxia status. (B) The distribution of MES-like score in primary cell lines of primary IDH-wt GBM cultured under different hypoxia conditions. Hypoxia group was
cultured under 3% O2 for 48 h, and normoxia group was cultured under 21% O2 for 48 h. (C) The expression of macrophage marker gene in hypoxia or normoxia
group. M1 marker, IRF5 and M2 markers, and CD163 and CD206 were selected. (D) Intercellular interaction within immune cells under different hypoxia conditions.
(E) Cell–cell communications between macrophages and tumor cells under different hypoxia conditions. (F) Cell–cell communications between T cells and tumor cells
under different hypoxia conditions. The character **, ***, **** means p < 0.01, p < 0.001 and p < 0.0001, respectively. ns, no significance.
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genes, regulators, or enhancers (7). Nevertheless, we did not find
any obvious methylation pattern of mesenchymal markers in
methylation data from TCGA (Supplementary Table S3). This
result can be influenced by tumor purity in that the methylation
data contain not only the tumor cells but also non-tumor cells
like immune cells and stromal cells. Unfortunately, single-cell
methylation analysis on GBM, which would be a meaningful
direction for studying hypoxia effect on single cells, does not
exist. Preliminary works about PMT of GBM are focused on
GSCs, but in our comprehensive analysis, non-GSCs cells of
GBM tumor could also upregulate MES-like signature genes
under hypoxia. Although hypoxic MES-like cells were more
malignant in inner tumor cell interaction such as invasiveness
mediated by CD44-related interaction (38), proliferation
induced by EGFR- and MIF-related interactions (40), and
angiogenesis activated by VEGF-related interaction, other
tumor cell subtypes under hypoxia performed more or less
similar manners (Figure 2D). This MES-like transformation
trend under hypoxia environment could partially explain the
role of hypoxia as the poor prognosis marker of GBM.

Hypoxia is a microenvironment feature that could influence
tumor cells and other non-tumor cells simultaneously. In our
results, hypoxia was identified as an independent risk factor for
prognosis of GBM patients. Although the result of multivariate
Cox regression analysis denied MES-like ratio as a risk factor, it
could be explained that hypoxia had inner contact with MES-like
ratio, thereby influencing MES-like ratio’s impact on prognosis.
In addition, we found that hypoxia could inhibit immune
activity. Since the immune microenvironment of primary GBM
mainly consisted of TAMs (34), we analyzed TAMs in the
datasets and found that TAMs exhibited M2 phenotype in
hypoxia status, while they exhibited upregulated M1 markers
when in normoxia status. The antitumor ability of macrophages
was weakened by hypoxia so that it could benefit tumor growth.
Not only cells’ autocrine signaling, like gene expression
regulation, hypoxia also influences intercellular interaction
between immune cells and tumor cells. In hypoxia status,
tumor cells inhibited immune cells’ antitumor ability by
interacting with inhibitory receptors in immune cells like
PDCD1, TIGIT, and LILRB or weakening the immune-
stimulation ligand–receptor interactions such as CCL, TNF,
and FASLG. Furthermore, TAMs also promoted tumor
progression under hypoxia by interacting with corresponding
receptors, such as EGFR- and FGFR2-promoting tumor cell
proliferation, CD44-promoting tumor invasiveness, and
VEGF-inducing angiogenesis to increase invasion ability of
tumor cells.

In summary, we explored in this study the effects of hypoxia
on single cells and on both tumor cells and immune cells from
primary IDH-wt GBM. Hypoxia was identified as a poor
prognostic marker for primary IDH-wt GBM patients by
analyzing bulk RNA-seq data. We also explored the potential
mechanism of hypoxia contributing to poor prognosis on
scRNA-seq data and found that hypoxia could induce tumor
cells’ MES-like transformation trend and inhibit immune
antitumor function such as inducing macrophage M1 to M2
polarization, thereby promoting tumor progression.
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