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ABSTRACT Although culture-independent techniques have refuted lung sterility in
health, controversy about contamination during bronchoscope passage through the
upper respiratory tract (URT) has impeded research progress. We sought to establish
whether bronchoscopic sampling accurately reflects the lung microbiome in health
and to distinguish between two proposed routes of authentic microbial immigration,
(i) dispersion along contiguous respiratory mucosa and (ii) subclinical microaspira-
tion. During bronchoscopy of eight adult volunteers without lung disease, we per-
formed seven protected specimen brushings (PSB) and bilateral bronchoalveolar la-
vages (BALs) per subject. We amplified, sequenced, and analyzed the bacterial 16S
rRNA gene V4 regions by using the Illumina MiSeq platform. Rigorous attention was
paid to eliminate potential sources of error or contamination, including a random-
ized processing order and the inclusion and analysis of exhaustive procedural and
sequencing control specimens. Indices of mouth-lung immigration (mouth-lung
community similarity, bacterial burden, and community richness) were all signifi-
cantly greater in airway and alveolar specimens than in bronchoscope contamina-
tion control specimens, indicating minimal evidence of pharyngeal contamination.
Ecological indices of mouth-lung immigration peaked at or near the carina, as pre-
dicted for a primary immigration route of microaspiration. Bacterial burden, diversity,
and mouth-lung similarity were greater in BAL than PSB samples, reflecting differ-
ences in the sampled surface areas. (This study has been registered at ClinicalTrials-
.gov under registration no. NCT02392182.)

IMPORTANCE This study defines the bacterial topography of the healthy human re-
spiratory tract and provides ecological evidence that bacteria enter the lungs in
health primarily by microaspiration, with potential contribution in some subjects by
direct dispersal along contiguous mucosa. By demonstrating that contamination
contributes negligibly to microbial communities in bronchoscopically acquired speci-
mens, we validate the use of bronchoscopy to investigate the lung microbiome.

The longstanding dogma that “the normal lung is free from bacteria” (1) has been
overturned by the recent advent of culture-independent techniques of microbial

identification. Results of such studies showed that healthy human lungs contain diverse
bacterial communities (2–5). None of the �25 studies of healthy subjects that used
molecular techniques to characterize bacteria in bronchoscopically obtained lung
specimens has failed to detect bacteria (2–5). The bacterial load of bronchoscopically
acquired specimens is roughly 100-fold greater than that of procedural control speci-
mens (6–8). The viability of most of the bacteria recovered can be verified by using
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advanced cultivation techniques (9). In health, the lung microbial community compo-
sition determined by culture-independent techniques correlates with key features of
host inflammation (7, 10), and its variation at spatially distinct lung sites within
individuals is lower than intersubject community variation (2).

Culture-independent analyses of bronchoscopic specimens identify the oropharynx
as the primary source for the bacterial lung microbiome in health (2, 7, 9). Bacterial
communities detected in bronchoscopic specimens from healthy subjects more closely
resemble those of the oropharynx than those of any competing source community
(e.g., nasopharynx or inhaled air) (6, 9). Unlike in the gut, no novel bacteria have been
identified within the lungs, and with rare exceptions (notably, Tropheryma [5, 11]), there
is scant evidence of site-specific selective survival pressure or local reproduction during
health (9). Thus, provided one accepts the validity of bronchoscopic sampling, these
findings indicate that the healthy lung microbiome is determined largely by the
balance between immigration of the oropharyngeal microbiota and its elimination by
mucociliary clearance, coughing, and local host defenses (the adapted island model of
lung biogeography) (2, 12–14).

However, with few exceptions (2, 7, 15, 16), studies of healthy individuals have been
performed by using a single bronchoscopic specimen per subject and few have
systematically analyzed the bacterial topography of the healthy human respiratory
tract. Accordingly, there is uncertainty regarding the primary route of microbial immi-
gration to the lungs, a crucial and currently unsettled issue that could involve direct
dispersal of pharyngeal bacterial communities along the contiguous mucosa of the
upper respiratory tract (URT) and lower respiratory tract (LRT) (4, 13) or subclinical
aspiration of oropharyngeal contents (12, 13, 15, 17). Importantly, despite results
congruent with those from bronchoscopy in a study using surgical lung specimens (18,
19), continued concern over potential contamination during the obligatory passage of
the bronchoscope through the URT (15, 20) urges caution in interpreting results
obtained by this technique.

To address these issues, we designed an experiment that depended, in part, on the
use of protected specimen brushing (PSB), the gold-standard technique to avoid
pharyngeal contamination in culture-dependent bronchoscopy studies (21–23), and in
part on principles of microbial ecology that are well established to analyze the structure
of bacterial communities in multiple environments (24).

RESULTS

All of our study subjects (age range, 26 to 71 years) were HIV negative and without
respiratory disease (Table 1). We analyzed samples independently of smoking status,
which does not induce significant differences in the lung microbiome of otherwise
healthy individuals (5). We obtained 17,392 � 732 (mean � standard deviation)
sequence reads per specimen and did not exclude any specimens because of insuffi-
cient sequences.

We systematically sampled the LRT microbiota by PSB of the airways and bronchoal-
veolar lavage (BAL) (Fig. 1A and B). With the subject supine under conscious sedation,
the bronchoscope was advanced via the mouth through the vocal cords. A protected
specimen brush was then extended from the protective sheath into the empty airway
lumen without touching the airway wall; this specimen, designated the bronchoscope

TABLE 1 Characteristics of the eight subjects in this study

Characteristic Value

Mean age (yr) � SD 53 � 15
No. (%) of females 5 (63)
No. of smokers (never/former/current) 6/2/0
Mean predicted FEV1%a � SD 92 � 14
Mean predicted FVC%b � SD 90 � 17
aFEV%, forced expiratory volume, % predicted.
bFVC%, forced vital capacity, % predicted.
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contamination control (BCC), represented only the microbiota introduced via contam-
ination of the bronchoscope working channel during URT passage. We then performed
six serial PSBs of the airway wall between the proximal trachea and the orifice to the
right middle lobe (RML). Care was taken to sample the ventral surface of each airway
site to minimize the contribution by secretions entering the LRT during the procedure.
Finally, we performed BAL of the RML and lingula. The total bacterial DNA levels, as
measured by quantitative PCR (qPCR) of the 16S rRNA gene, across the sampling sites

FIG 1 Experimental design and conceptual models. Eight subjects without respiratory disease underwent serial sampling of the LRT by
bronchoscopy. (A) Sampling methods and locations. Numbers refer to the sampling order. (B) Schematic diagram of method: avoiding contact
with airway mucosa for BCC (left), brushing a discrete area of airway mucosa with PSBs (middle), and sampling airways distal to the wedged
bronchoscope by BAL (right). (C) Predicted bacterial topographic patterns for three possible routes of microbial immigration: bronchoscope
contamination (indices of mouth-lung immigration peak with the BCC and decrease with serial sampling), dispersion along the bronchial mucosa
(indices are low in BCC and high in proximal samples and decrease with distance from the pharyngeal source community), and microaspiration
(indices are also low in BCC, peak at the main carina, and decrease with subsequent bronchial distance in upright subjects).
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and procedural and sequencing controls are shown in Fig. S1 in the supplemental
material.

This experimental design permits predictions of mouth-lung immigration that can
be verified by the observed topographic pattern of LRT bacterial communities (Fig. 1C)
(12, 13). If bacteria were primarily introduced simply because of contamination of the
bronchoscope, ecological indices of mouth-lung immigration (mouth-lung community
similarity, total bacterial burden, and community richness [12]) would be high in the
BCC specimen but would then decay in subsequent airway samples because of dilution.
Conversely, if the primary immigration route were dispersion along the bronchial
mucosa, the signal in the BCC specimen would be minimal and there would be a
distinct proximal-to-distal signal gradient. Finally, subclinical microaspiration would
also show a minimal signal in the BCC specimen but the ecological signal of mouth-
lung immigration would be highest near the carina because of the gravity dependence
of the central airways in upright humans.

Taxa detected in procedural control specimens, oral rinse specimens, and PSB and
BAL specimens are presented in Fig. 2. The taxa detected in procedural control
specimens bore little resemblance to prominent taxa in oral, airway, and alveolar
specimens, though a single saline specimen from a single subject (no. 588) contained
a Prevotella sp. (OTU00002) that was prominent in oral rinse, PSB, and BAL specimens
across subjects. Oral rinse specimens were dominated by Prevotella (OTU00002), Veil-
lonella (OTU00004), and Streptococcus (OTU00003), consistent with previous studies.
Whereas these taxa were infrequently detected and in low abundance in BCC speci-
mens, they were common and abundant in both PSB and BAL specimens. Density
analysis (Fig. 2) showed that mouth-lung similarity was greatest across subjects at the
carina and proximal bronchus intermedius, consistent with the predicted topography
attributable to gravity-dependent microaspiration. Several subjects exhibited elevated
mouth-lung similarity at the proximal and mid-trachea sites, consistent with direct
dispersal along contiguous mucosa.

We then systematically compared indices of mouth-lung immigration at BCC, air-
way, and alveolar sites. We found that BCC specimens had minimal detectable signals
and that by every ecological index of mouth-lung immigration (mouth specimen
similarity, bacterial DNA, community richness), they were indistinguishable from the
communities detected in preprocedure bronchoscope rinse specimens and sequencing
reagent control specimens (P � 0.05 for all comparisons). Compared to airway PSB
specimens from the same subjects, BCC specimens had significantly less mouth-lung
community similarity (P � 0.0007) (Fig. 3A), bacterial DNA (P � 0.0001) (Fig. 3B), and
community richness (P � 0.0001) (Fig. 3C). Similarly, compared to paired BAL speci-
mens, BCC specimens had less mouth-lung community similarity (P � 0.0002) (Fig. 3A),
bacterial DNA (P � 0.0016) (Fig. 3B), and community richness (P � 0.0001) (Fig. 3C).
Because BAL samples were collected last, if bronchoscope contamination were a
significant factor, they would have had the lowest community richness and least
similarity to the mouth community, which was not the case.

Moreover, sequences detected in procedural and reagent control specimens were
significantly distinct from sequences detected in PSB and BAL specimens (P � 0.05 for
all comparisons). The three most abundant taxa detected in sequences from control
protected specimen brushes (brushes that were handled aseptically without use in
subjects and then processed in parallel with other specimens) were classified as
Ruminococcus sp. (OTU00062), Pseudomonas sp. (OTU00006), and Acinetobacter sp.
(OTU00066), comprising 29% � 11% (mean � the standard error of the mean [SEM]) of
all PSB control sequences. In contrast, these three operational taxonomic units (OTUs)
collectively made up only 2% � 1% of the sequences from airway wall specimens. The
three most abundant taxa detected in sequences from unused sterile saline were
classified as Pseudomonas sp. (OTU00006), Prevotella sp. (OTU00002), and Yersinia sp.
(OTU00044), comprising 27.51% � 8.33% of all such sequences. Collectively, these
three OTUs made up 19.60% � 3.04% of the sequences from oral rinse specimens and
14.78% � 2.84% of the sequences from BAL specimens. The overlap between saline
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and BAL specimens was attributable to a single specimen of sterile saline (no. 588) that
had a high abundance of a single OTU (Prevotella sp. OTU00002) (Fig. 2). Additionally,
when collective community structures were examined by using permutational multi-
variate analysis of variance (PERMANOVA; Adonis), BCC specimen communities were
again indistinguishable from communities of reagent control specimens (P � 0.05) but
differed significantly from the communities of paired airway PSB and BAL specimens
(P � 0.05 for both).

Thus, we conclude that contamination during URT passage has a minimal effect on
bronchoscopically acquired respiratory specimens. This finding is consistent with our
previous observation that BAL fluid communities are not appreciably altered by the

FIG 2 Bacterial taxa detected in airway, alveolar, and procedural control specimens. Taxa are listed in decreasing order of mean relative abundance in
oral specimens. Red squares represent higher relative abundance (see color key at bottom right). On the right are plots of the kernel density estimates
(bandwidth � 0.1) of Bray-Curtis similarity measurements comparing oral-to-specimen similarity (0, entirely different; 1, identical). The oral rinse plot reflects
intragroup Bray-Curtis similarity. Plot heights are scaled to the relative density maximum.
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passage of a bronchoscope through the nasopharynx versus the oropharynx, despite
the starkly dissimilar communities present at those URT sites (8, 13).

We next studied the bacterial topographic data to determine the relative contribu-
tions of mucosal dispersion and microaspiration to the microbial immigration to
healthy human lungs. None of the indices of mouth-lung immigration were greatest in
the proximal trachea (Fig. 3), as would be predicted for dispersion along contiguous
bronchial mucosa surfaces (Fig. 1C). Rather, indices of mouth-lung immigration in PSB
samples peaked between the proximal trachea and the carina and subsequently
decreased with greater distance along the airways. This ecological trend could be seen
most distinctly in mouth-lung similarity (Bray-Curtis distance) (Fig. 3A), which failed to

FIG 3 Bacterial topography of the healthy human LRT. Mouth-lung bacterial immigration along the LRT
was quantified by mouth-lung community similarity (Bray-Curtis similarity) (A), bacterial DNA (log10

number of 16S copies per reaction determined by real-time qPCR) (B), and community richness (number
of OTUs per 2,000 sequences) (C). Symbols are as in Fig. 1; Prox, proximal; BI, bronchus intermedius. By
all indices, BCCs (triangle) exhibited less evidence of mouth-lung immigration than airway wall PSB
specimens (squares) (P � 0.001, paired Student t test) or BAL specimens (circles) (P � 0.01, paired Student
t test). Indices of mouth-lung immigration in airway PSB samples are nonlinear, consistent with the
topographic pattern predicted in Fig. 1 for microaspiration in upright subjects. Data are mean values �
SEM (n � 8).
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fit the linear relationship predicted for dispersion along the bronchial mucosa (P � 0.05)
but did fit the parabolic (quadratic) relationship predicted for microaspiration (P �

0.0017), which resulted in less loss of information by the Akaike information criterion
(AIC; linear [23.279] versus quadratic [14.847] models). While some subjects exhibited
evidence of bacterial immigration at the proximal and mid-trachea sites (see the
bimodal density plots for these sites in Fig. 2), the strongest and most uniform evidence
of mouth-lung immigration was found at the carina and bronchus intermedius (see the
unimodal distribution in Fig. 2). Taken together, the bacterial topography data from PSB
samples were most consistent with microaspiration being the primary immigration
route (Fig. 1C), though concurrent immigration from mucosal dispersion (Fig. 1B)
cannot be excluded and likely contributes in some healthy subjects.

Comparison of the communities detected by the two sampling modalities shows
that BAL specimens exhibited greater signals of mouth-lung immigration than did
distal PSB specimens, independent of the measurement used (P � 0.05 for all three
measurements) (Fig. 3). We interpret these results to reflect differences in the surface
areas sampled; whereas PSB samples approximately 1 cm2 of the airway mucosa, BAL
fluid of a wedged subsegment samples approximately 1/40 of the total surface area of
the lungs (25) or approximately 17,500 cm2. Hence, even though the mucosal density
of the lung microbiota decreased with distance from the central airways, the larger
surface area sampled by BAL permits the detection of a greater bacterial signal, with
minimal influence from bronchoscopic contamination. The bacterial burdens we de-
tected via PSB and BAL were comparable to values reported in prior studies (4, 6).

Bacterial community membership detected in airway communities mirrored the
pattern identified in indices of mouth-lung immigration (Fig. 4). The relative abun-
dances along the LRT of the two most abundant bacterial community members
detected in oral specimens, Prevotella sp. (OTU002) (Fig. 4A) and Veillonella sp.
(OTU004) (Fig. 4B), each peaked at the carina and proximal bronchus intermedius, with
significantly smaller fractions at both more proximal and more distal airway sites (P �

0.01). The topographic distribution of these community members’ relative abundance
was also most consistent with the predicted pattern of microaspiration (Fig. 1C).

DISCUSSION

Results of this systematic ecological survey of the healthy human LRT demonstrate
three major points. First, when performed by an experienced bronchoscopist, with care
to avoid gravity-dependent proximal tracheobronchial surfaces, contamination during
URT passage has a minimal effect on bronchoscopically acquired respiratory specimens.
Second, when combined with similar care to minimize errors in subsequent laboratory
and bioinformatic analyses (especially through the extensive use of environmental
controls), bronchoscopic sampling and next-generation sequencing can reliably define
the membership of LRT bacterial communities. Third, our data favor microaspiration as
the primary source of bacterial immigration to human lungs in health, although we
cannot exclude a contribution from contiguous mucosal dispersion. These findings, and
especially these methodological considerations, provide crucial reference information
to define how bacteria contribute to infectious and noninfectious lung diseases, which
collectively cause ~15% of worldwide deaths.

Verifying that bronchoscopic sampling can be used reliably to study the human lung
microbiome has several important implications. Although an invasive procedure, out-
patient investigative bronchoscopy under moderate conscious sedation can be per-
formed safely not only on healthy volunteers but also on those with established lung
diseases (26, 27). Investigative bronchoscopy is increasingly being incorporated into
multicenter observational trials to link microbiome analyses to intermediate biomarkers
of disease activity and progression (28–30). The current results should dispel concerns
that the substantial investment of these undertakings is misguided. Bronchoscopy is
also well suited to the careful topographical analysis needed to define how the
composition of lung bacterial communities responds to the markedly disparate gradi-
ents of temperature, oxygen tension, and other variables along the human LRT.
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Because lung bacterial communities show pronounced anatomic heterogeneity in
advanced chronic obstructive pulmonary disease (31) and likely will in other chronic
pulmonary diseases, this consideration will take on special significance in the attempt
to define how interactions between hosts and microbes contribute to the pathogenesis
of different airway diseases. Additionally, our results provide support for the comple-
mentary capacities of PSB and BAL to sample the conducting airways and distal lungs,
respectively, another important distinction in chronic lung diseases. Further, being able
to rely on bronchoscopic sampling as a standard is an essential first step toward testing
the validity of less invasive techniques, such as analysis of sputum or exhaled breath
condensate, which pose even larger issues of potential contamination when paired
with highly sensitive culture-independent microbiological techniques. Hence, broncho-
scopic analysis of human LRT microbial communities has the potential to advance
pulmonary research in multiple ways, not the least by informing strategies to modify
lung bacterial communities therapeutically.

In principle, bronchoscopically acquired lung specimens are vulnerable to contam-
ination from two major sources, the URT (via passage of the bronchoscope through the
pharynx [16]) and the bacterial DNA present in laboratory reagents (32). Our findings
clarify the relative contributions of both sources and demonstrate that the concern for
URT contamination is largely unfounded. In contrast, reagent contamination is a real,

FIG 4 Bacterial community membership along the healthy human LRT. The relative abundances of the
two most abundant bacterial community members in oral rinse specimens, Prevotella sp. (OTU002) (A)
and Veillonella sp. (OTU004) (B), among LRT communities at various locations are graphed. Symbols are
as in Fig. 1. Note that the leftmost sample is oral rinse rather than BCC as in Fig. 1C and 2. The relative
abundances of both OTUs in LRT PSB samples are nonlinear, peaking at the carina and proximal (Prox.)
bronchus intermedius (BI), consistent with the predicted pattern of microaspiration in upright subjects.
Data are mean values � SEM (n � 8).
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underappreciated problem that must be addressed via systematic sequencing of
“negative” procedural control specimens (32). Fortunately, with this precaution, the
source of bacterial DNA becomes clear.

Consistent with numerous previous studies of the healthy human bacterial lung
microbiome (2, 4, 5, 7, 16), we found that airway and lung communities resemble
oropharyngeal communities, with minimal evidence of site-specific enrichment by
reproducing bacteria. We did not identify lung-specific taxa distinct from oropharyn-
geal taxa or the stochastic background taxa detected in procedural and sequencing
control specimens. Our experimental design, with its meticulous collection of control
specimens (including a dedicated postlaryngeal lumenal brush), demonstrated that the
microbial signal detected in airway and alveolar specimens is not an artifact of
pharyngeal contamination. Instead, this similarity of the mouth and lung microbiotas is
far more plausibly explained by the ecological contiguity of these two anatomic
compartments and by the ubiquity of subclinical microaspiration (as has been dem-
onstrated repeatedly by using radiographic techniques [17, 33, 34]). In contrast, all
negative procedural control specimens (including sterile saline, laboratory reagents,
and unused specimen brushes) contained evidence of bacterial DNA when sequenced.
The bacterial signal introduced by these sources—referred to variously as the “kitome”
and “contaminome”—is unavoidable in low-biomass microbiome studies (7, 32).
Though such a spurious signal cannot be excluded from studies such as ours, it can be
managed if prospectively sought and properly analyzed. We have adopted and strongly
support recommendations on minimizing the risk of systematic bias and false grouping
in low-biomass microbiome studies (32), i.e., sequencing of multiple “negative” controls
for all potential sources of contamination, using a single DNA extraction kit for all
specimens, randomizing the order in which specimens are processed, and systemati-
cally comparing the taxa detected in negative controls with those in biological speci-
mens to determine the relative influence of reagent contamination.

Our results provide further support for the “adapted island model” (2, 3, 12), in
which the lung microbiome in health is determined by the balance of microbial
immigration (here identified as chiefly due to microaspiration) and elimination (6, 12,
13), with a minimal detectable influence from selective pressure on reproducing
communities (9). Our findings agree with imaging studies indicating that subclinical
aspiration is common in healthy subjects (17, 33, 34). Further studies are needed to
elucidate how specific pulmonary and extrapulmonary diseases (13) alter this balance
of ecological forces and, conversely, how deviations in the structure of bacterial
respiratory tract communities from the neutral, orally derived microbiome participate in
the pathogenesis of acute and chronic lung diseases. Given the meteoric rise in the
worldwide prevalence of lung diseases, especially asthma and chronic obstructive
pulmonary disease, these are important goals.

MATERIALS AND METHODS
Participants. We conducted all of our investigations according to principles of the Declaration of

Helsinki. The protocol was approved by the Human Subject Subcommittee of the VA Ann Arbor Health
Care System. Participants were a subset of healthy volunteers recruited in the Lung HIV Microbiome
Project (ClinicalTrials.gov registration no. NCT02392182).

For additional details of all aspects of the methods used in this study, see Text S1 in the supplemental
material.

Sample acquisition and processing. Oropharyngeal microbiotas were sampled by using an oral
rinse collected before local anesthesia. We have previously published our bronchoscopic technique (2, 5),
although this study omitted gastric sampling and added PSBs. Before each procedure, a control saline
sample was collected by aspiration through the bronchoscope. After administration of lidocaine to the
URT and sedation, the bronchoscope was inserted through the mouth and advanced quickly and without
suctioning to the vocal cords. The sequence of sampling is detailed in Results and Fig. 1. BAL fluid was
processed as previously described (8, 35).

We collected reagent water controls at the time of DNA isolation and processed them in parallel with
study specimens.

Bacterial DNA isolation. We identified bacteria by sequencing bacterial 16S rRNA genes by using
previously described methods of genomic DNA extraction and amplification (2, 8), V4 region amplifica-
tion with previously published primers (36), a dual-indexing sequencing strategy (37), and sequencing
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with the Illumina MiSeq platform. Quantification of the bacterial 16S rRNA gene was performed by
real-time PCR as previously described (8).

16S DNA sequencing and statistical analysis. We processed sequence data by using mothur
v.1.33.0 (38) at a minimum sequence length of 250 bp (39). We generated a shared community file and
a genus level grouping file by using OTUs binned at 97% identity generated in mothur. OTU classification
was performed by using the mothur implementation of RDP Classifier (40) and its taxonomy training set
9. OTUs were numbered by mothur on the basis of their relative frequencies in the entire analysis.

We performed microbial ecology analysis with the vegan package 2.0-4 and mvabund in R (41–43).
For relative abundance analysis, samples were normalized to the percentage of total reads, and then we
restricted the analysis to OTUs present at �1% of the sample population; for diversity analysis, all OTUs
were included. We determined the significance of differences in community composition by using
PERMANOVA (Adonis) with 1,000 permutations and constructed both linear and quadratic mixed models
by using the lmer function in the R packages lme4 and lmerTest. We compared the relative qualities of
fit of these two models to our data by using the AIC, which defines the trade-off among models between
goodness of fit and complexity as the relative loss of information (44). Heat maps were generated in R
with the ComplexHeatmap package (45), splitting groups by specimen type and with cluster_columns�F
so as to maintain the rank order of the oral cavity-associated taxa. Density plots were generated on the
basis of a Bray-Curtis similarity measurement by using the density function from the R Stats package. All
statistical analyses were performed in R and GraphPad Prism 6. We compared means via paired t test and
paired ANOVA with Tukey’s multiple-comparison post hoc test, as appropriate. Investigators were not
blinded to specimen sources during analysis.

Identification of procedural contaminants. To identify potential sources of contamination in
sequencing, we collected multiple procedural controls, including saline used in bronchoscopy, sterile
water used in library preparation, unused PSBs, and AE buffer used in DNA isolation. These procedural
controls and mock community standards, containing known ratios of preidentified bacterial DNA, were
analyzed in the same sequencing run as the study specimens. To minimize false pattern formation due
to reagent contamination (32), we processed specimens in a randomized order.

Accession number(s). The bacterial sequence data obtained in this study are available via the NCBI
Sequence Read Archive (GenBank accession no. SRP072219).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mBio.02287-16.
TEXT S1, DOC file, 0.3 MB.
FIG S1, PDF file, 0.6 MB.
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