
Citation: Hu, C.; Zhang, S.; Gu, T.;

Yan, Z.; Jiang, J. Multi-Task Joint

Learning Model for Chinese Word

Segmentation and Syndrome

Differentiation in Traditional Chinese

Medicine. Int. J. Environ. Res. Public

Health 2022, 19, 5601. https://

doi.org/10.3390/ijerph19095601

Academic Editor: I-Shiang Tzeng

Received: 17 March 2022

Accepted: 2 May 2022

Published: 5 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Multi-Task Joint Learning Model for Chinese Word
Segmentation and Syndrome Differentiation in Traditional
Chinese Medicine
Chenyuan Hu 1,* , Shuoyan Zhang 1, Tianyu Gu 1 , Zhuangzhi Yan 2 and Jiehui Jiang 2

1 School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China;
zhangshuoyan@shu.edu.cn (S.Z.); bme20_gty@shu.edu.cn (T.G.)

2 Institute of Biomedical Engineering, School of Life Science, Shanghai University, Shanghai 200444, China;
zzyan@shu.edu.cn (Z.Y.); jiangjiehui@shu.edu.cn (J.J.)

* Correspondence: huchenyuan@shu.edu.cn

Abstract: AbstractEvidence-based treatment is the basis of traditional Chinese medicine (TCM), and
the accurate differentiation of syndromes is important for treatment in this context. The automatic
differentiation of syndromes of unstructured medical records requires two important steps: Chinese
word segmentation and text classification. Due to the ambiguity of the Chinese language and
the peculiarities of syndrome differentiation, these tasks pose a daunting challenge. We use text
classification to model syndrome differentiation for TCM, and use multi-task learning (MTL) and
deep learning to accomplish the two challenging tasks of Chinese word segmentation and syndrome
differentiation. Two classic deep neural networks—bidirectional long short-term memory (Bi-LSTM)
and text-based convolutional neural networks (TextCNN)—are fused into MTL to simultaneously
carry out these two tasks. We used our proposed method to conduct a large number of comparative
experiments. The experimental comparisons showed that it was superior to other methods on
both tasks. Our model yielded values of accuracy, specificity, and sensitivity of 0.93, 0.94, and 0.90,
and 0.80, 0.82, and 0.78 on the Chinese word segmentation task and the syndrome differentiation
task, respectively. Moreover, statistical analyses showed that the accuracies of the non-joint and
joint models were both within the 95% confidence interval, with pvalue < 0.05. The experimental
comparison showed that our method is superior to prevalent methods on both tasks. The work here
can help modernize TCM through intelligent differentiation.

Keywords: syndrome differentiation; multi-task learning; joint learning; deep learning

1. Introduction

Since traditional Chinese medicine (TCM) was incorporated into the latest global
medical outline issued by the World Health Organization (WHO), a growing number of
scholars have begun engaging in research related to TCM [1,2]. Preventive treatment of
disease is one of the core concepts of TCM health theory. It refers to the use of TCM ideas
and methods to prevent the occurrence and development of diseases, which plays an
important role in the development of public health services [3]. Evidence-based treatment
is the basis of TCM, and accurate syndrome differentiation is important for treatment. The
eight principles of syndrome differentiation provide a method to analyze the commonality
of diseases and form the basis for other methods of syndrome differentiation [4]. In the
eight principle of syndrome differentiation, Yin and Yang can be used to summarize the
location of the disease, its nature, and condition to provide a firm foundation for subsequent
medical judgments (such as methods of treatment) [5].

Syndrome differentiation of Yin and Yang deficiency is based on the physiological
and pathological characteristics of the Yin and the Yang, and involves analyzing and
summarizing a variety of disease-related information that is collected according to four
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diagnostics for identification [6]. A large amount of critical information on healthcare is
buried in unstructured narratives, such as medical records, which makes its computational
analysis difficult [7]. Moreover, mastering syndrome differentiation in TCM is a complicated
and time-consuming process. Owing to the different qualifications of clinicians, it is also
difficult to maintain a stable curative effect in the treatment of specific diseases. This causes
environmental and empirical factors to have a significant impact on the results of syndrome
differentiation, and in turn leads to inaccurate and unstable diagnosis and treatment [8].
Therefore, it is important to establish an objective and quantitative computer-aided method
of syndrome differentiation, and thus to provide pervasive, personalized, and patient-
centralized services in healthcare and medicine, so that the ideas of preventive treatment in
TCM can be applied to all aspects of community public health services [9,10]. Furthermore,
due to the uneven distribution of TCM resources, with the realization of TCM intelligence,
the accuracy of TCM syndrome differentiation and the richness of treatment methods for
grass-roots doctors can be significantly enhanced, and it can drive the improvement of TCM
services at the grass-roots level [11]. The realization of automatic syndrome differentiation
of unstructured text includes two important technologies: Chinese word segmentation and
text classification.

Words in Chinese are the smallest linguistic unit that can be independently used.
Chinese word segmentation aims to segment a complete Chinese sentence into meaningful
words. Unlike in English, words in Chinese do not have clear separators between them.
Word segmentation is thus an important initial step and a basic module of human–computer
natural language-based interaction in Chinese [12,13]. Moreover, the task of TCM text
segmentation is challenging because the medical field has many professional vocabularies
and there are ambiguities with modern Chinese.

Therefore, many researchers have studied the task of word segmentation in medical
texts. Li et al. [14] used dictionary- and statistics-based methods of word segmentation to
segment textual medical records in Chinese, and explored methods of word segmentation
suitable for medical texts. Li et al. [15] applied the capsule network (Capsule) to the task
of word segmentation in classical Chinese medical books for the first time. To adapt the
Capsule structure to the sequence tagging task, they proposed a sliding capsule window
that yielded an accuracy of 95% on a public dataset. Xing et al. [16] proposed a framework
for Chinese word segmentation in the medical field based on Bi-LSTM with conditional
random fields (Bi-LSTM-CRF). They used the multi-task learning framework of transfer
learning and high-resource data to improve performance on word segmentation. Yuan
et al. [17] proposed an unsupervised method of Chinese word segmentation based on a
pre-trained bidirectional encoder representation from transformers (BERT) model, which
achieved good performance.

Text classification refers to the automatic classification of text into several designated
categories. Intelligent syndrome differentiation of yin and yang deficiency in traditional
Chinese medicine can also be abstracted as a problem of classification of the text pertaining
to a given condition [18].

With the rapid development of machine learning and deep learning algorithms, a
growing number of techniques of text classification have been used in modern research
on syndrome differentiation in TCM. Li [19] used the subject-related weighting model to
classify medical records in TCM. The support vector machine (SVM) was used to study
syndrome differentiation in patients of depression, and yielded a high classification accu-
racy [20]. Zhao et al. [21] proposed exploring the relation between syndromes for viral
hepatitis by using manifold ranking (MR). These studies mainly used machine learning
algorithms. In the context of the use of deep learning algorithms for syndrome differentia-
tion in TCM, a deep belief network was used to construct a diagnostic model of chronic
gastritis syndromes in TCM [22]. Zhu et al. [23] proposed a deep learning algorithm for
identifying the damp-heat syndrome in TCM, and Hu et al. [5] used two neural network
models to differentiate the Yin and Yang deficiency in TCM. Liu et al. [24] used the recurrent
convolutional neural network (RCNN) and the text-based hierarchical attention network
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(Text-HAN) to establish end-to-end diagnostic models for TCM to identify syndromes of
lung cancer.

It can be seen from the above introduction, some studies on the word segmentation of
TCM texts require constructing a TCM corpus, which is labor intensive. Additionally, one
of the key steps for text classification in proprietary areas is Chinese word segmentation,
but some studies on syndrome differentiation have ignored the important roles of Chinese
word segmentation.

Therefore, in this study, we use multi-task learning (MTL) and deep learning to solve
the two challenging tasks of Chinese word segmentation and syndrome differentiation.
The goal of MTL in machine learning is to exploit the useful information contained in
multiple learning tasks to learn a more accurate model for each [25]. A model can be
used to share information between tasks and improve the results. From the perspective
of machine learning, multi-task learning can be regarded as a form of inductive transfer,
which improves model performance by introducing inductive bias. Particularly, multi-task
learning includes a variety of internal mechanisms such as implicit data enhancement mech-
anism, attention mechanism, eavesdropping mechanism, and regularization mechanism
to ensure the effectiveness of multi-task learning [26,27]. Meanwhile, many studies have
demonstrated the effectiveness of multi-task learning in multiple domains. In the field of
image processing, one past study [28] used the idea of MTL to integrate two important tasks
of tongue characterization (tongue segmentation task and tongue coating classification task)
into one model and proved the effectiveness of this method through experiments. In the
field of natural language processing, Gamal et al. [29] proposed a neural network multi-task
learning method for biomedical named entity recognition, and conducted comparative
experiments between single-task models and multi-task models on 15 datasets. The results
show that the multi-task model produces better NER results than the single-task model,
and multi-task learning is found to be beneficial for small datasets.

Consequently, we seek to improve performance in terms of Chinese word segmenta-
tion and syndrome differentiation to analyze medical records in an end-to-end manner. For
the two crucial tasks considered here, adequate results of Chinese word segmentation can
help retain correct, complete, and acquire important semantic information to obtain better
results of syndrome differentiation. The results of syndrome differentiation can provide
additional features to help identify specific semantic information to improve word segmen-
tation. These two tasks are related rather than independent, which makes them consistent
with the idea of MTL. MTL has delivered outstanding performance in many areas, and
this motivates us to incorporate it into our research. Our approach fuses bidirectional long
short-term memory (Bi-LSTM) with a text-based convolutional neural network (TextCNN)
into MTL. We make the following three contributions to the area in this study:

(1) Chinese word segmentation and syndrome differentiation are highly correlated, which
makes them suitable for MTL. To the best of our knowledge, this is the first attempt
to combine these tasks using MTL. A large number of comparative experiments are
used to show that our proposed method is superior to prevalent methods.

(2) The proposed model fuses two typical deep neural networks, Bi-LSTM and TextCNN,
into the MTL for Chinese word segmentation and syndrome differentiation in TCM.
This makes the end-to-end analysis of medical records possible.

(3) Each label is annotated and checked by three physicians competent in TCM to ensure
the reliability and accuracy of the data.

2. Materials and Methods

We propose a model that fuses two typical deep neural networks, Bi-LSTM and
TextCNN, into the MTL for Chinese word segmentation and syndrome differentiation in
TCM. For the overall research of this paper, we first conducted comparative experiments
on different loss function optimization strategies, and determined the use of gradient
normalization to optimize the weights of joint loss functions. Then, in order to prove the
superiority of our proposed model, we conducted comparative experiments of various
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baseline models for Chinese word segmentation and syndrome differentiation tasks, and
compares them with state-of-the-art models. Finally, we also performed joint and non-joint
statistical analysis and ablation studies.

In this section, we first describe the proposed model and its three modules, and then
introduce the joint loss function. The baseline model of each task and the evaluation metrics
and training details of the model are also introduced.

2.1. Proposed Method

The overall framework of our proposed model is shown in Figure 1, the segmentation
module is used for Chinese word segmentation and syndrome differentiation is carried out
by the classification module. An embedding module common to them is used to provide
shared information on these tasks. For the input sentences, the vector representation of the
sentence is obtained by the embedding module, and then input to the segmentation module
and the classification module, respectively, to obtain the corresponding Chinese word
segmentation result and the syndrome differentiation results, respectively. The weighted
loss of the two tasks is then defined for multi-tasking loss, and the joint optimization is
completed by reverse propagation to help two tasks obtain better performance.
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2.1.1. Embedding Module

Defined in Python, the embedding module is a simple lookup table for storing fixed
dictionaries and size embeddings. This module relies on indices to retrieve word embed-
dings. The input to the module is an index list and the output is the corresponding word
embedding. Through this module, we can obtain the vector representation of the sentence.

2.1.2. Segmentation Module

To transform the Chinese word segmentation task into a sequence tagging problem,
a label is assigned to each character [16]. There are three types of labels—B, I, and O—
corresponding to the beginning, middle, and end of words, respectively, and single-word
characters. Given a sequence of n characters X = {x1 , . . . , xn}, the purpose of the Chinese
word segmentation is to find the mapping from X to Y∗ =

{
y∗1 , . . . , y∗n}:

Y∗ = argmax
Y∈Ln

p(Y|X) (1)

where L = {B, I , O} .
The long short-term memory (LSTM) unit can learn long-term dependencies without

retaining redundant contextual information, can perform well on sequence tagging tasks,
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and is widely used for natural language processing tasks [30]. The Bi-LSTM is composed
of LSTM units, has two parallel levels, and propagates in two directions such that it can
input features from the past and the future. Therefore, we use Bi-LSTM models to perform
Chinese word segmentation.

The structure of the module is shown in Figure 2. The embedding layer in vector from
is fed into the Bi-LSTM network to obtain the spliced feature vectors of the past and the
future. We then obtain the probability of each tag (B, I, and O) through the fully connected
layer and identify the tag with the maximum probability. In this way, we can obtain the
results of tagging the sequence. Reverse matching according to the corresponding positions
of the three kinds of tags is then performed to obtain the corresponding results of text
segmentation. Chinese word segmentation can then be visualized, which is convenient for
its subsequent application.
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2.1.3. Classification Module

Convolutional neural networks (CNN) have been used to classify tongue colors [31],
identify cracked tongues, and classify pulse signals [32] in TCM. We use the CNN model to
classify texts of medical records in TCM, and thus call it TextCNN. Its structure is shown
in Figure 3. For a given character vector, multiple convolutions with varying kernel sizes
(3 and 5, the green box is 3, and the red box is 5) are used to convolve the embedded vectors
in the convolutional layer. Then, the vectors are passed the max-pooling layer to capture
the most salient features. Finally, the results of classification are obtained through the fully
connected layer to determine whether the given patient has the Yin deficiency syndrome or
the Yang deficiency syndrome.

2.2. Joint Loss Function

In essence, the loss functions of the Chinese word segmentation task and the syndrome
differentiation task are both cross-entropy, although the former differs from the latter as
it uses masked cross-entropy to avoid the influence of padding characters. As reviewed
in Ref. [33], the loss function of the multi-task model is defined as the weighted sum of
the loss functions of different tasks to optimize all the parameters involved in the tasks.
These weights are called hyperparameters. Based on the above, our loss function is defined
as in Equation (2). L0 and r0 are the loss function and the corresponding weight of the
Chinese word segmentation task, respectively, and L1 and r1 are the loss function and the
corresponding weight of the TCM syndrome differentiation task, respectively. Our training
strategy is to minimize Loss:

Loss = r0 × L0 + r1 × L1 (2)
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The weights in multi-task loss are determined by grid search method and dynamic tun-
ing method. Dynamic tuning methods include gradient normalization, dynamic weighted
average, and uncertainty-based weighted. Weights of the loss function were fixed during
training for the grid search method. The choice of fixed weights might have limited the
learning of tasks owing to the varying difficulty of learning and progress of different tasks,
the weight of the loss function should be dynamically adjusted. Therefore, Zhao et al. [34]
proposed an optimization strategy for gradient normalization, where weights are updated
according to the gradient loss. Liu et al. [35] proposed a dynamic weighted average opti-
mization strategy where the weights decrease for tasks in which the loss decreases rapidly.
Kendall et al. [36] proposed an optimization strategy for uncertainty weighting where the
weight of the task with greater uncertainty is smaller, that is, the task with larger noise that
is difficult to learn has a smaller weight.

2.3. Baselines
2.3.1. Chinese Word Segmentation

We compared our method with several LSTM-based models, including LSTM, Bi-
LSTM, and Bi-GRU. LSTM is a variant of the recurrent neural network (RNN) model [37],
which uses three gates, a forget gate, an input gate, and an output gate, for information
transmission [38]. The gated recurrent unit (GRU) replaces the forget gate and the input
gate in an LSTM with an update gate [39]. The bidirectional LSTM/GRU network is similar
in structure to the LSTM/GRU network, with the difference that it has two parallel levels
and propagates in two directions. We also conducted comparative experiments with state-
of-the-art models, including the BERT, RoBERTa, and XLNet. The BERT is a bidirectional
transformer for pre-training models on large amounts of unlabeled textual data to learn a
language representation that can be used to finetune specific machine learning tasks [40].
Both XLNet and RoBERTa are performance-enhancing versions of BERT, which have greatly
improved both the amount of training data and computer resources [41,42].

2.3.2. Syndrome Differentiation

In contrast to our model, prevalent methods can be divided into two types: (1) One-
stage methods. These methods carry out only syndrome differentiation, and ignore the
impact of Chinese word segmentation. (2) Two-stage methods. In these methods, the
first stage consists of Chinese word segmentation and the second stage involves methods
of text classification to classify syndromes. To ensure the comparability and fairness
of the experiments, we used the TextCNN model for syndrome differentiation when
using the prevalent methods. Moreover, we used Bi-LSTM in the first step for Chinese
word segmentation, and applied the result as the input to the second step for syndrome
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classification. SVM was used as the traditional method, and the commonly used TextCNN
and TextRNN were applied as neural network methods.

Furthermore, similarly to Chinese word segmentation, we also conducted comparative
experiments with state-of-the-art models, including the BERT, RoBERTa, and XLNet.

2.3.3. Ablation Studies

We compared a number of representative models with each module of the proposed
model through ablation studies to prove the superiority of Chinese medical text segmenta-
tion and syndrome differentiation based on joint multi-task learning.

Among them, the segmentation module selects Bi-LSTM and Bi-LSTM-CRF, and the
classification module choose TextCNN and FastText. Bi-LSTM and TextCNN have been
introduced in the previous content, so they are not repeated. The Bi-LSTM layer can extract
features in the Bi-LSTM-CRF model while the CRF model can consider the pre- and post-
dependencies of the tags [43], which helps obtain better results of word segmentation. That
is, it indirectly helps obtain better performance on syndrome differentiation. The FastText
model contains three layers: an input layer, a hidden layer, and an output layer [44]. The
input layer contains a word vector, and the hidden layer is the superposition and average of
multiple word vectors, and the result of classification is obtained through the softmax layer.

2.4. Dataset

The data used in this study are 1438 medical records from 146 TCM physicians, and
their content is authentic and reliable [45]. The inclusion criteria of yin deficiency syndrome
and yang deficiency syndrome were based on the theory of traditional Chinese medicine [6].
The records lacking the complete four diagnosis information of patients were excluded,
and 1230 medical records were obtained. To ensure validity and accuracy, we preprocessed
the text of medical records using text extraction, and solicited three TCM physicians to
annotate and inspect the data [6,46]. As shown in Figure 4, it is an example of data
annotation, its mainly includes two steps. The first step is to add syndrome type and word
segmentation to the original text, which is completed by three physicians. The syndrome
type and the sentence are separated by #, and each word segmentation is separated by /.
The second step is to convert the sentence into the corresponding character + sequence
label + syndrome type, which is completed by the computer, where the sequence label is
converted according to the corresponding positions of the three BIO characters. Following
this, a total of 1209 medical records were obtained, including 643 cases of Yang deficiency
syndrome and 566 cases of Yin deficiency syndrome.
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2.5. Evaluation Metrics and Training Details

We compared our model with certain basic models with the same parameter set-
tings. The evaluation metrics consisted of accuracy, specificity, and sensitivity. Owing to
the close relationship between syndrome differentiation and treatment in TCM, we also
used the receiver operating characteristic (ROC) and the area under the curve (AUC) to
assess performance.

We randomly spilt the dataset into those for training (60%), validation (10%), and
testing (30%) using seven-fold cross-validation. The adaptive moment estimation (Adam)
optimizer was used, the number of epochs was 50, and the learning rate was 0.001. During
the training process, the model was saved for testing when the loss in the validation



Int. J. Environ. Res. Public Health 2022, 19, 5601 8 of 13

dataset was minimal. We then calculated the average value of each evaluation metric as the
final result.

3. Results

In order to prove the effectiveness of the proposed model, we conducted a lot of
comparative experiments. For the convenience of expression, we use JCS to represent our
proposed joint model, that is, the first letter of the Joint Chinese word segmentation and
Syndrome differentiation.

3.1. Experiments of Different Loss Optimization Strategies

We used performance on the syndrome differentiation task as an example to assess dif-
ferent strategies of loss optimization. The results of a comparison of different optimization
strategies are shown in Table 1, where the range of parameters of the grid search method
was [0.1, 0.2, 0.3, 0.4, 0.5], and the best experimental results were obtained when the value
of r0 and r1 was set 0.4. Gradient normalization obtained the best performance in terms
of syndrome differentiation. We thus used it as the strategy for loss optimization in the
subsequent comparative and ablation experiments.

Table 1. Comparative experiments on different loss optimization strategies.

Strategies Accuracy Specificity Sensitivity

Grid Search 0.7995 0.7897 0.8133
Dynamic Weight Averaging 0.7692 0.8364 0.6733

Uncertainty Weighting 0.7830 0.8037 0.7533
Gradient Normalization 0.8022 0.8178 0.7800

3.2. Experiments on Chinese Word Segmentation

The results of different models are shown in Table 2. Compared with the best baseline
model of the LSTM series, our model was superior by 2.65%, 3.45%, and 8.11% in terms
of accuracy, specificity, and sensitivity, respectively. The BERT model achieved the best
performance among the state of the art. However, it took nearly 10 h to train and had
101.68 M parameters. By contrast, the runtime of our model is 10 min, had 0.47 M parame-
ters, and was only about 1% inferior to the BERT on each of the three evaluation indicators.
Therefore, it delivered better performance overall on Chinese word segmentation tasks.

Table 2. Comparison between our model and previously proposed models.

Methods Accuracy Specificity Sensitivity

LSTM 0.8752 0.8905 0.7925
Bi-LSTM 0.8536 0.8868 0.7852
Bi-GRU 0.8557 0.8868 0.7778
BERT 0.9464 0.9523 0.9116

RoBERTa 0.7262 0.7066 0.3730
XLNet 0.7080 0.8406 0.2744

JCS 0.9317 0.9436 0.8995

3.3. Syndrome Differentiation Experiments

We also compared our model with prevalent models in terms of syndrome differenti-
ation. The results of the methods on this task are shown in Table 3. The first and fourth
lines of the table show that the two-stage methods outperformed one-stage methods, which
proves the necessity of Chinese word segmentation for this task. Moreover, our model was
superior to the best two-stage methods on most indicators, with improvements of 3.98%
and 8.16% in terms of accuracy and sensitivity, respectively. Furthermore, our method only
needs one feature extraction operation, the runtime of our model is only 10 min, which
is faster than those two-stages methods, since these two-stages methods need to conduct
feature extraction twice.
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Table 3. Comparison between our model and prevalent methods.

First Stages Second Stages Joint/Non-Joint Accuracy Specificity Sensitivity Time (min)

- TextCNN Non-joint 0.7348 0.7073 0.8786 3.5
Bi-LSTM SVM Non-joint 0.7521 0.7099 0.7861 14.9
Bi-LSTM TextRNN Non-joint 0.6906 0.8671 0.5291 17.5
Bi-LSTM TextCNN Non-joint 0.7624 0.8324 0.6984 15.9

JCS Joint 0.8022 0.8178 0.7800 10

We drew the ROC curves of the best baseline model and our model, as shown in
Figure 5. The curve of our model was higher, and had an AUC value more than 5% larger
than that of the baseline model.
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The above comparison shows that our model was superior in terms of performance
and time consumed. The results of comparisons with state-of-the-art models are shown
in Table 4. Although the BERT model obtained the best performance among the three pre-
training models, the accuracy of the proposed joint learning model was higher than that of
the BERT model. Additionally, The BERT model also required a much longer training time
and had 102.27 M parameters. Therefore, our model delivered better performance overall
on syndrome differentiation tasks.

Table 4. Results of comparison with state-of-the-art models.

Methods Accuracy Specificity Sensitivity AUC

BERT 0.7989 0.7409 0.8647 0.8637
RoBERTa 0.7769 0.7353 0.8135 0.8581

XLNet 0.5455 0.5588 0.5338 0.5394
JCS 0.8022 0.8178 0.7800 0.8780

3.4. Statistical Analysis

To eliminate the influence of accidental factors in the sampling of the test set on
the accuracy of the model, we statistically analyzed the accuracy of the non-joint and
joint models based on Bi-LSTM and TextCNN. The specific methods used were bootstrap
analysis and permutation testing [47,48]. We conducted 1000 bootstrap resampling on the
test set to obtain the average accuracy and average difference of each model as well as these
values within a 95% confidence interval. The permutation testing eliminated the influence
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of accidental factors in the sampling of the test set on the accuracy of the two models by
measuring whether there were statistical differences between their results. We proposed
a null hypothesis (the prediction-related performance of the two models was the same),
constructed a test statistic t (the difference in accuracy between the models), and sampled
10,000 times to obtain a histogram of the difference in terms of model accuracy. According
to the histogram to obtain the 95% confidence interval, observe whether the statistics t fall
within the 95% confidence interval, and calculate the pvalue.

The results of statistical analyses of the non-joint model and our joint model are shown
in Table 5. The accuracies of the two models were within the 95% confidence interval,
indicating that they were statistically significant. To exclude the influence of accidental
factors, the accuracy of the two models was subjected to a permutation test. The table
shows pvalue was less than 0.05, that is, the difference between the accuracy of the non-joint
and the joint methods was statistically significant. The joint model, that is, our proposed
model, delivered better performance.

Table 5. Statistical analysis of the two models.

Models Accuracy
(95% Confidence Interval) pvalue

Bi-LSTM + TextCNN
(non-joint)

0.7624
(0.6934, 0.7790)
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3.5. Ablation Experiments

The results of comparative experiments on different modules are shown in Table 6.
The performance of the joint learning model on syndrome differentiation was usually
better than that of the non-joint model. For example, the joint learning model based on
Bi-LSTM-CRF and FastText improved the accuracy, specificity, and sensitivity of the results
by 1.5%, 0.59%, and 3.15%, respectively.

Table 6. Comparative experiments on different modules.

Segmentation
Module

Classification
Module Joint? Accuracy Specificity Sensitivity

Bi-LSTM
TextCNN

N 0.7624 0.8324 0.6984
Y 0.8022 0.8178 0.7800

FastText
N 0.7624 0.7142 0.8150
Y 0.7665 0.7336 0.8133

Bi-LSTM-CRF
TextCNN

N 0.7541 0.8035 0.7090
Y 0.7885 0.7733 0.7991

FastText
N 0.7735 0.8208 0.7302
Y 0.7885 0.8267 0.7617

4. Discussion
4.1. Principal Results

Through the extensive experiments, our proposed joint learning model achieves supe-
rior performance in TCM Chinese word segmentation and syndrome differentiation tasks.

For Chinese word segmentation tasks, many studies have used the Bi-LSTM model for
Chinese word segmentation and demonstrated the superiority of this model [49]. For example,
in the Ref. [50], the optimal F1 value of the word segmentation results reached 95.54%. In
our experiments, our proposed JCS model outperforms the Bi-LSTM model on all evaluation
metrics, yielded values of accuracy, specificity, and sensitivity of 0.93, 0.94, and 0.90.

For the syndrome differentiation task, many studies have used the TextCNN model
for syndrome differentiation and obtained a high classification accuracy. For example, Hu
et al. [5] used TextCNN and FastText model to conduct end-to-end syndrome differentiation
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experiments, and TextCNN model obtained the highest accuracy rate of 92.55%. Apply this
model to our research, the classification accuracy of our proposed JCS model far exceeds
that of the TextCNN model by about 7%.

The above discussions all demonstrate that combining Bi-LSTM and TextCNN mod-
els through multi-task learning can effectively improves the performance of these tasks.
Because the Bi-LSTM model can capture the contextual information of sentences through
propagation in two directions, and the TextCNN model can automatically combine N-gram
features to capture the semantic information of sentences at different levels, the proposed
joint model can capture richer feature representations of sentences.

Then, combined with the internal mechanism of multi-task learning to analyze the
results. The proposed joint model can introduce inductive bias to play the same role as
regularization, reducing the risk of model overfitting. For the eavesdropping mechanism,
the label of the word segmentation of Chinese medicine text is the sentence sequence tag,
which makes it easier for this task to learn the characteristics of words. However, it is
not easy to learn this feature in the syndrome differentiation task, and the word feature
is very important for this task. The joint learning of the two tasks allows the syndrome
differentiation task to eavesdrop on the features of words in the Chinese word segmentation
task for better syndrome differentiation performance. Conversely, the label of the syndrome
differentiation task is the specific syndrome type of the sentence, and the symptoms of red
tongue are more likely to appear in the syndrome of yin deficiency. Therefore, the model
can provide additional evidence that “red tongue” is a group of words for the Chinese word
segmentation task through the attention mechanism. That is to say, multi-task learning can
effectively improve the performance of both tasks.

4.2. Limitations and Future Work

Limitations to the work include that the shared embedding layer compresses the
knowledge of the two tasks to the same parameter space, which will exist some information
loss. Another limitation is that when using gradient normalization strategy to optimize
multi-task loss, each iteration requires additional computation of gradients, which affects
the speed of training.

We intend to consider following aspects in future work to improve the proposed
method. Studies have shown that multi-task learning is more suitable for small datasets [29].
Therefore, we will collect more medical records to conduct comparative experiments with
different data set sizes to verify the above conclusions. Additionally, when there is enough
medical record, we can integrate the BERT model into multi-task learning to improve the
performance of the proposed joint model.

5. Conclusions

Chinese word segmentation and syndrome differentiation are highly correlated, which
makes them suitable for multi-task learning. We proposed a method here to perform word
segmentation on textual medical records and classify them. We merged two classic deep
neural networks (Bi-LSTM and TextCNN) into MTL to simultaneously conduct these two
tasks. To the best of our knowledge, this is the first attempt to combine these tasks using
MTL. We compared the proposed method with prevalent methods in the area through
a number of experiments. The results showed that it is superior to other methods on
both tasks. That is to say, we developed an objective, quantitative, and computer-assisted
method of syndrome differentiation that can help modernize traditional Chinese medicine.
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