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B-cell activating factor (BAFF) is a cytokine and adipokine of the TNF ligand superfamily. The main biological function of BAFF
in maintaining the maturation of B-cells to plasma cells has recently made it a target of the first FDA-approved selective BAFF
antibody, belimumab, for the therapy of systemic lupus erythematosus. Concomitantly, the role of BAFF in cancer has been a
subject of research since its discovery. Here we review BAFF as a biomarker of malignant disease activity and prognostic factor
in B-cell derived malignancies such as multiple myeloma. Moreover, anti-BAFF therapy seems to be a promising approach in
treatment of B-cell derived leukemias/lymphomas. In nonhematologic solid tumors, BAFF may contribute to cancer progression
by mechanisms both dependent on and independent of BAFF’s proinflammatory role. We also describe ongoing research into
the pathophysiological link between BAFF and cancer-related cachexia. BAFF has been shown to contribute to inflammation and
insulin resistance which are known to worsen cancer cachexia syndrome. Taking all the above together, BAFF is emerging as a
biomarker of several malignancies and a possible hallmark of cancer cachexia.

1. The BAFF/BAFF-Receptor System Is
Essential for B-Cell and Plasma Cell
Development and Function

B-cell activating factor (BAFF, BLyS, TNFSF13B, TALL-1, and
CD257) is a 285-amino-acid type II transmembrane protein
that belongs to the superfamily of 19 known TNF ligands
[1, 2]. Since its discovery, BAFF has been confirmed as a
necessary element in B-cell proliferation and as a specific
immunity response enhancer [3]. BAFF deficiency leads to
almost complete loss of follicular and marginal zone B-cell
production in murine secondary lymphoid organs [4]. BAFF
neutralization by soluble receptor decoys blocks the Th1
to Th2 transition, thereby leading to inhibition of antigen-
specific antibody production [4, 5]. BAFF also mediates
immunoglobulin isotype switching in B-cells [6]. BAFF

signaling is potentiated by BCR ligation [7] and enhances
survival in B-cells via activation of NF-𝜅B pathway.

Three receptors from the 29-member TNF receptor
superfamily are now confirmed to interact with BAFF: BAFF-
R, TACI, and BCMA [8] (Table 1). BAFF-R seems to be the
most important receptor for BAFF, with a critical role in
regulating B-cell survival [9]. Mice with a naturally occurring
mutation in the BAFF-R locus (A/WySnJ mice) have a
qualitatively similar phenotype tomicewith BAFF deficiency,
suggesting a unique role of BAFF-R in B-cell development
that cannot be compensated by the two other BAFF receptors,
TACI and BCMA [9, 10].

Unlike BAFF-R, TACI binds two ligands from the TNF
superfamily: BAFF and APRIL [11]. The role of TACI in
BAFF signaling is complex, as it induces both activation and
inhibition of the NF-𝜅B pathway. When ligated by TACI,
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Table 1: Overview of BAFF receptors.

Gene Forms Ligands Affinity to BAFF
(𝐾
𝐷
)

Tissue
expression Function Clinical relevance

BAFF-R
(BAFF-receptor,
TNFRSF13C, BLyS,
BR3, CD268) [13]

22q13.2
3 exons [13]

Membrane
bound,
soluble

(produced by
decidual

cells) [8, 14]

BAFF
[8] 16 nmol⋅l−1 [8]

B-, T-cells
[15, 16]

mature and
immature

adipose tissue
[17]

B-cell
proliferation

[18],
T-cell

proliferation
[16]

BAFF-R is
constitutively
saturated in

autoimmune and
lymphoproliferative
diseases [15, 19, 20]

TACI
(transmembrane
activator and
calcium
signal-modulating
cyclophilin ligand,
TNFRSF13B,
CD267) [21]

17p11.2
5 exons [21]

Membrane
bound [8]

BAFF,
APRIL
[8]

146 nmol⋅l−1 [22]

B-, T-cells
immature

adipose tissue
[17]

T-cell activation
[23] and
humoral
immunity
response

modulation
[24, 25]

Mutations may result
in common variable
immunodeficiency

[26, 27]

BCMA
(B-cell maturation
antigen,
TNFRSF17) [28]

16p13.1
3 exons [28]

Membrane
bound [8]

APRIL
(BAFF)
[8]

1600 nmol⋅l−1 [8]
B-cells

immature
[17]

Long-term
plasma cell

survival, B-cell
antigen

presentation
[29]

Protection of multiple
myeloma cells from
apoptosis [30, 31]

BAFF has been shown to be a negative regulator of B-
cell expansion. TACI−/− mice show B-cell hyperplasia and
elevated levels of circulating antibodies, resulting in fatal
autoimmune glomerulonephritis and splenomegaly [11, 12].

The primary ligand of BCMA is APRIL, although BAFF
also binds to this receptor, albeit with low affinity [8].
A significant role for BCMA was determined in multiple
myeloma. BCMA ligation provides survival signals for abnor-
mal plasma cells to evade apoptosis [30, 32]. Notably, all three
BAFF receptors activate NF-𝜅B pathways via TRAF signaling
molecules [8, 33, 34].

2. Cytokine and Adipokine BAFF Is
Expressed Ubiquitously

BAFF is expressed primarily as a membrane bound protein
but is also extensively cleaved to a soluble form [35, 36].
Soluble BAFF levels in blood are related closely to the number
of circulating B-cells and the amount of BAFF receptors
available for cleavage. The normal levels of soluble BAFF in
healthy adults range from 0.3 to 2.25 ng/mL in peripheral
blood. The cord blood of newborns contains significantly
higher concentrations of BAFF, ranging from0.6 to 4.5 ng/mL
[37].

The homotrimeric soluble form of BAFF activates BAFF-
R. Homotrimeric BAFF can undergo oligomerization that
is required for activation of TACI [11]. The expression of
BAFF is not related to a single tissue or a specific group of
cells. BAFF is expressed on the surface of human myeloid
lineage cells (monocytes), primary and secondary lymphoid
organs (spleen, bone marrow, and lymph nodes), and various
tissues that do not possess primary immune functions (e.g.,
low expression levels in heart and pancreas) [38]. Moreover,
expression of BAFF and its receptors was confirmed in

human adipose tissue cultures [17]. In a mouse model, BAFF
expression was upregulated during adipocyte differentia-
tion and under proinflammatory conditions (treatment with
TNF-𝛼) [39]. BAFF also negatively affects insulin sensitivity
in murine visceral adipose tissue [40]. In light of these find-
ings, BAFF, being a cytokine and member of the adipokine
family, is considered an important player inmany pathophys-
iological conditions, including inflammation, autoimmune
disorders, primary immunodeficiencies [39, 41, 42], obesity,
and diabetes [40, 43, 44]. Along with its connection to the
apoptosis regulating NF-𝜅B signaling pathway, the role of the
BAFF ligand/receptor system inmalignant diseases is steadily
being elucidated [31, 45].

3. Expression of BAFF Is Regulated by
Interferon and Estrogen Levels

Gamma interferon activation site (GAS) element was
described in the promoter region of BAFF gene in human
intestinal epithelial cells leading to IFN-𝛾-induced expression
of BAFF via activation of JAK/STAT signaling [46]. This
molecular mechanism of BAFF regulation was supported by
correlation of IFN-𝛾 and BAFF levels observed in various
human immune system-related cells under physiological and
malignant conditions [47–49]. Moreover, therapeutic IFN-𝛽
administration also increases BAFF levels in vivo [50, 51].
Hence, BAFF can be considered as a molecule that connects
innate and specific immunity through its response to IFN-𝛾
and IFN-𝛽 and its subsequent activation of B-cells.

Interestingly, BAFF expression is enhanced in the pres-
ence of elevated estrogen levels in mice with systemic lupus
erythematosus [52] and estrogen-induced B-cell activation
in lupus mice is blocked by the antiestrogenic activity of
tamoxifen. Thus, estrogen-induced BAFF upregulation may
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contribute to a higher incidence of autoimmune disorders in
females [53].

4. BAFF Antiapoptotic and
Proinflammatory Signaling Is Mediated
by the NF-𝜅B Pathway

NF-𝜅B is an intracellular protein complex and the central
member of a vital and pivotal signaling pathway [54] that
plays a key role in immunity [55] and inflammation [56].
Various studies have presentedNF-𝜅B as an antiapoptotic and
cell cycle control player in malignancies [57–59]. Owing to
these qualities, the presence of inflammation and activated
NF-𝜅B signaling are risk factors in malignant transformation
[60]. The molecular signaling of NF-𝜅B starts with stimu-
lation of receptors for proinflammatory cytokines [56] and
certain members of the TNF receptor superfamily, includ-
ing BAFF-R, TACI, and BCMA [61, 62]. BAFF-R-mediated
activation of NF-𝜅B goes through the noncanonical (alter-
native) signal pathway, whereas TACI and BCMA activate
the canonical (classical) NF-𝜅B pathway [8]. NF-𝜅B has the
ability to enhance recruitment of inflammatory cells [55]
and the expression of proinflammatory cytokines such as
IL-1𝛽 [63, 64], IL-2 [65], IL-6 [66, 67], and TNF-𝛼 [68].
Deficiency or mutations in the BAFF ligand/receptor system
lead to inhibition of NF-𝜅B, thus reducing its antiapoptotic
and proinflammatory role [69–71].

5. BAFF Is a Biomarker of Disease Progression
in Multiple Myeloma

Multiple myeloma (MM) is a malignant disease caused by
aberrant proliferation of bone marrow plasma cells. Since
BAFF is essential for the survival of B-cells and plays an
important role in survival of plasma cells, particularly in early
stages of their development, its role in the pathophysiology
of multiple myeloma continues to be intensively studied [72,
73]. Serum levels of BAFF in MM patients were found to
be significantly higher (6.0 ± 1.88 ng/mL) than in healthy
controls (2.25 ± 0.71 ng/mL) in a study by Wang et al. [72]
and elsewhere [74–76] and correlated with disease progres-
sion and intensity of plasma cell infiltration [76]. Patients
with monoclonal gammopathy of unknown significance
(MGUS) are reported to have significantly lower serum levels
(3.24 ± 0.28 ng/mL) of BAFF and BAFF-R than MM patients
[72].

Pretherapeutic, soluble BAFF levels positively correlate
with TNF-𝛼 [72], IL-6 [75, 76], and other adverse markers
of disease activity such as C-reactive protein and lactate
dehydrogenase in MM patients [75, 76]. Posttreatment levels
of BAFF correlate with IL-10, which alsomodulates apoptosis
in B-cells [77], induces proliferation ofMM cells [78, 79], and
abolishes all-trans-retinoic acid inhibitory activity on MM
cell growth [79]. Moreover, in the study of Lemancewicz et
al., higher serum concentrations of BAFF predicted shorter
progression-free survival [75]. Taken together, these clinical
studies provide evidence of a strong correlation between
BAFF and disease progression in MM.

6. BAFF/BAFF-R Signaling May Prove to
Be a Promising Target of Future Therapy in
B-Cell Derived Malignancies

Simultaneously with MM, the role of BAFF and its receptors
was intensively studied in other B-cell derived malignan-
cies such as certain subtypes of non-Hodgkin’s lymphomas
and precursor B-lineage acute lymphoblastic leukemia (B-
ALL). Novak et al. found that BAFF levels corresponded
with disease severity and clinical outcome and that ele-
vated levels of BAFF correlated with aggressive pheno-
type of NHL in humans [80]. Similarly, increased BAFF
expression profiles may contribute to Helicobacter pylori-
independent tumor growth in MALT lymphoma [81]. Ele-
vated levels of BAFF were also reported in other B-
lineage lymphomas [82, 83], Hodgkin’s lymphoma [84, 85],
and B-ALL [82, 86]. Although there is only one FDA-
approved anti-BAFF antibody, belimumab, which is used
exclusively in rheumatology, new anti-BAFF antibodies are
currently being tested for treatment of B-cell lymphomas
[87].

In another setting, targeting BAFF-R in B-ALL with
a novel humanized anti-BAFF-R antibody selectively kills
chemotherapy-resistant precursor B-ALL cells [88]. The
anti-BAFF-R antibody also significantly stimulates natural
killer cell-mediated killing and macrophage phagocytosis
of human ALL cells in vitro and decreases leukemia bur-
den in murine bone marrow and spleen. Its therapeu-
tic effects were augmented in combination with conven-
tional chemotherapeutics [89]. BAFF-R might represent a
promising therapeutic target because its expression is much
higher in leukemic B-cells compared to healthy B-cells
[90].

7. BAFF Levels Correlate with Disease
Activity and Malignant Potential of Cancer
Cells in Several Types of Nonhematologic
Solid Tumors

Compared to MM and B-derived malignancies, a possible
pathophysiological link between BAFF and solid tumors is
not as obvious; however, BAFF expression has recently been
studied in many types of solid tumors [91–95]. Neuroen-
docrine tumors (NET) usually express numerous biologically
active mediators. Serum levels of BAFF in NET patients
(1.195 ± 0.568 ng/mL) are significantly higher compared
to healthy controls (0.666 ± 0.240 ng/mL) [94]. Patients
in disease progression (1.503 ± 0.637 ng/mL) and patients
with metastases (1.391 ± 0.724 ng/mL) have higher serum
BAFF levels compared to those with stable disease (0.906 ±
0.273 ng/mL) [94].

BAFF plasma levels were further examined in solid
childhood malignancies such as nephroblastoma (Wilms
tumor), Ewing sarcoma, and rhabdomyosarcoma showing
BAFF levels of 2.757 ± 3.332 ng/mL, 4.311 ± 4.750 ng/mL,
and 6.593 ± 4.502 ng/mL, respectively, and these levels were
higher compared to the childhood non-Hodgkin’s lymphoma
subgroup (2.376 ± 1.560 ng/mL) [95].
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Figure 1: BAFF-induced activation of NF-𝜅B signaling and increased expression of proinflammatory cytokines as procachectic mediators.
BAFF interacts with three receptors from the TNF ligand/receptor superfamily, BAFF-R, TACI, and (with lower affinity) BCMA [8]. Upon
activation, BCMA signal transduction goes through TNF receptor associated factors (TRAFs) 5 and 6 [96], whereas TACI signals through
TRAF2, TRAF5, and TRAF6 [97]. TRAF2 and TRAF5 activate I𝜅B kinase (IKK) via TAK-1 kinase (the canonical NF-𝜅B pathway) [98].
Follow-up phosphorylation of NF-𝜅B inhibitor alpha (I𝜅B𝛼) induces ubiquitination of I𝜅B𝛼 and its proteasome degradation [99]. In this
way, I𝜅B𝛼 is released from the phosphorylated heterodimer p50-p65, and p50-p65 then migrates to the nucleus [99]. BAFF-R signaling
starts with TRAF2 and TRAF3 degradation and accumulation of NF-𝜅B inducing kinase (NIK) [100]. In this noncanonical NF-𝜅B pathway,
NIK phosphorylates inhibitor of NF-𝜅B kinase alpha (IKK𝛼) [101]. IKK𝛼 then induces cleavage of p100 protein in the p100-RelB complex
into a p52-RelB complex which acts as a modulator of nuclear gene transcription [102]. Both canonical and noncanonical NF-𝜅B pathways
regulate the expression of genes encoding IL-1𝛽 [63, 64], IL-2 [65], IL-6 [66, 67], and TNF-𝛼 [68]. Proinflammatory cytokines participate in
manifestation of cancer cachexia symptoms such as insulin resistance [103], fever [104], inflammation [105], and muscle [106–108] and fat
tissue wasting [105, 109, 110].

8. BAFF May Contribute to Cancer Cachexia
through Its Proinflammatory Properties
and by Impairment of the Insulin Receptor
Signaling Pathway

Involuntary weight loss is a complication that often fol-
lows many serious symptoms such as inanition (inadequate
food availability or pathophysiologic conditions substantially
decreasing the desire of food), anorexia (reduced food intake
caused primarily by diminished appetite with high influence
of CNS mechanisms), or cachexia (metabolic disorder of
increased energy expenditure leading to a greater weight loss
than that caused by reduced food intake alone) [111]. Cancer
cachexia is a syndrome where tumors in host organisms
play important roles in degrading certain host tissues by
production of catabolic mediators [112]. The exact mech-
anism in which malignant diseases cause cachexia is not

completely understood, but there is probably a role for
inflammatory cytokines, such as TNF-𝛼, various interleukins,
and IFN-𝛾, as well as tumor-secreted proteolysis-inducing
factor (PIF) and lipolysis mobilizing factor (LMF). Based
on these findings, the ghrelin receptor agonist anamorelin
hydrochloride has recently been introduced for therapy of
cancer-induced cachexia (currently in phase III clinical trials
for treatment of cancer cachexia in non-small-cell lung
cancer) [113]. Ghrelin binds GHS receptors on T-cells and
monocytes and inhibits proinflammatory cytokine expres-
sion (IL-1𝛽, IL-6, and TNF-𝛼). The mechanism of action of
anamorelin in cancer cachexia is probably mediated by both
a CNS-mediated increase in appetite and anti-inflammatory
effects [114]. By inhibition of proinflammatory cytokines and
inflammation, anamorelin acts indirectly against BAFF.

Proinflammatory cytokines target corresponding recep-
tors on host inflammatory and tumor cells and activate
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the NF-𝜅B signaling pathway [61, 62]. Activation of NF-
𝜅B leads to production of even higher amount of cytokines
in a positive feedback manner [61, 115]. Binding to its
receptors, BAFF enhances NF-𝜅B signaling that leads to
increased production of proinflammatory cytokines and pro-
motion of overall inflammation duringmalignancy (Figure 1)
[63–68].

Another common complication arising from the altered
metabolism in patients with cancer cachexia is insulin resis-
tance [116]. Hamada et al. found that BAFF-treated mice
exhibited increased blood glucose, insulin blood levels, and
high expression of TNF-𝛼, IL-6, and resistin with decreased
expression of adiponectin in visceral adipose tissue, sug-
gesting an impairment in insulin receptor signaling similar
to that observed in type II diabetes mellitus and metabolic
syndrome. That same study confirmed reduced activation
of insulin receptor substrate (IRS-1) as a response to BAFF
treatment [40]. BAFF-induced insulin resistance was later
confirmed in another mouse model [117]. Insulin resistance
augments cancer cachexia in patients with malignancy [112,
118] providing another link between BAFF and the develop-
ment of cancer cachexia syndrome.

9. BAFF Signaling May Contribute to Cancer
Progression and Cancer Cachexia Not Just
via Its Proinflammatory Role

BAFF may contribute to cancer progression through the
amplification of proinflammatory signaling. A causative role
of BAFF in cancer and cancer cachexia independent of
inflammation has been difficult to substantiate; interestingly
however, Koizumi et al. have shown that in vitro incubation of
tumor cells isolated from pancreatic ductal adenocarcinoma
(PDAC) patients with human recombinant BAFF resulted in
altered phenotype with increased invasiveness and motility.
Downregulation of E-cadherin mRNA and significant upreg-
ulation of vimentin and Snail mRNAs were found in these
cells. BAFF-induced alteration of epithelial-mesenchymal
transition- (EMT-) related genes that support precancerous
formations of pancreatic intraepithelial neoplasias and PDAC
itself was confirmed on BAFF-R overexpressing cell clones
[91]. Thus, BAFF may promote tumorigenesis indirectly by
induction of inflammation in the tumor microenvironment
and directly by induction of EMT.

Similar to BAFF’s involvement in cancer progression,
BAFF’s involvement in cancer cachexia is difficult to distin-
guish from its proinflammatory effects. BAFFmay contribute
to cancer cachexia by affecting changes in NF-𝜅B pathway-
induced inflammation and through impairment of insulin
sensitivity via reduction of adiponectin and possibly other
adipokines maintaining glucose homeostasis.

Taken together, an increase in catabolic demands during
inflammation and malignancy predispose to cancer cachexia
development. BAFF may enhance the inflammatory back-
ground in cancer patients, providing a tantalizing link to
involvement in cancer cachexia (Figure 2); however addi-
tional studies will be required to confirm such a link and
potential avenue for therapeutic intervention.

Cancer Inflammation

BAFF

Cachexia
kg

Figure 2: BAFF in cancer cachexia interplay. Outer arrows indicate
well-described hallmarks of cancer cachexia. Cancer → inflam-
mation: many types of cancer cells express cytokines that induce
inflammation [119]. Inflammation → cancer: tumors oftenmanifest
on inflammatory background that supports transition of cells to
malignant clones (e.g., hepatocellular carcinoma or PDAC as cited
in the text). Cancer → cachexia: tumor tissue directly participates
in the development of cancer cachexia by production of tumor
specific factors like PIF and LMF [120, 121]. Cachexia → cancer:
cachexia in cancer patients remains a significant cause of mor-
bidity and mortality in cancer treatment [122]. Inflammation →
cachexia: proinflammatory cytokines induce cachexia by increased
catabolism with altered insulin sensitivity [119]. Inner arrows
indicate established (solid line) and putative (dashed line) role of
BAFF in pathophysiology of cancer cachexia. Cancer → BAFF:
increased expression and serum levels of BAFF were demonstrated
in many types of hematological and solid tumors making BAFF a
possible new biomarker in malignancies. BAFF → cancer: BAFF
has been found to augment manifestation of lymphoma and the
formation of epithelial-mesenchymal transitions and pancreatic
intraepithelial neoplasias. These events precede PDAC. (1) A TNF-
independent role of BAFF in the pathophysiology of lymphomaswas
demonstrated in BAFF-Tg TNF−/− mice. More than 35% of BAFF-
Tg TNF−/− mice had occurrence of various types of lymphomas
within 1 year [123]. (2) BAFF-induced alteration of the epithelial-
mesenchymal transition- (EMT-) related genes that support pre-
cancerous formation of pancreatic intraepithelial neoplasias and
PDAC was confirmed on BAFF-R overexpressing cell clones [91].
Inflammation → BAFF: BAFF is produced by several proinflam-
matory cells. BAFF → inflammation: BAFF induces expression of
proinflammatory cytokines by activation of NF-𝜅B [124]. BAFF →
cachexia: BAFF induces insulin resistance [40, 117] which has been
associated with cancer cachexia [116, 118].
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