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Functional fine‑mapping 
of noncoding risk variants 
in amyotrophic lateral sclerosis 
utilizing convolutional neural 
network
Ali Yousefian‑Jazi1, Min Kyung Sung2, Taeyeop Lee3, Yoon‑Ho Hong4, Jung Kyoon Choi5* & 
Jinwook Choi6*

Recent large-scale genome-wide association studies have identified common genetic variations 
that may contribute to the risk of amyotrophic lateral sclerosis (ALS). However, pinpointing the risk 
variants in noncoding regions and underlying biological mechanisms remains a major challenge. 
Here, we constructed a convolutional neural network model with a large-scale GWAS meta-analysis 
dataset to unravel functional noncoding variants associated with ALS based on their epigenetic 
features. After filtering and prioritizing of candidates, we fine-mapped two new risk variants, 
rs2370964 and rs3093720, on chromosome 3 and 17, respectively. Further analysis revealed that 
these polymorphisms are associated with the expression level of CX3CR1 and TNFAIP1, and affect the 
transcription factor binding sites for CTCF, NFATc1 and NR3C1. Our results may provide new insights 
for ALS pathogenesis, and the proposed research methodology can be applied for other complex 
diseases as well.

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, is a late-onset neurodegenerative 
condition characterized by progressive wasting and weakness of limb, bulbar, and respiratory muscles, leading 
to death within 3–5 years from the onset of symptoms1. Although in most ALS patients the cause of the dis-
ease is unknown, at present a genetic cause is found in about 70% of familial ALS (FALS) patients and 10% of 
sporadic ALS (SALS) patients2. Genetic variants, including single-nucleotide polymorphisms (SNPs) and copy 
number variants, in the noncoding regions of the human genome can play an important role in human traits 
and complex diseases. Recently, genome-wide association studies (GWAS) have identified the common genetic 
variations that may contribute to the risk of ALS. To date, several GWAS have identified several risk loci for 
ALS. The most frequent genetic cause is a noncoding hexanucleotide repeat expansion in the C9orf72 gene. The 
other genes previously reported by GWAS are MOBP, UNC13A, TBK1, SCFD1, SARM1 and C21orf2 loci, all of 
which reached genome-wide significance3.

The efforts to decipher the biological consequences of noncoding variation face two major challenges. First, 
due to haplotype structure, GWAS tend to nominate large clusters of SNPs in linkage disequilibrium (LD), mak-
ing it difficult to distinguish causal SNPs from neutral variants in the linkage. Second, even assuming the risk 
variants can be identified, interpretation is limited by incomplete knowledge of noncoding regulatory elements. 
Therefore, the researcher’s focus now shifts to accurate data interpretation and several approaches were proposed 

OPEN

1Interdisciplinary Program, Bioengineering Major, Graduate School, Seoul National University, Seoul  151‑742, 
Republic of Korea. 2MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge  CB2 0QH, 
UK. 3Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea. 4Department 
of Neurology, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of 
Medicine, Neuroscience Research Institute, Seoul National University Medical Research Council, Seoul, Republic 
of Korea. 5Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea. 6Department of 
Biomedical Engineering, College of Medicine, Seoul National University, Seoul 110‑744, Republic of Korea. *email: 
jungkyoon@kaist.ac.kr; jinchoi@snu.ac.kr

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-69790-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:12872  | https://doi.org/10.1038/s41598-020-69790-6

www.nature.com/scientificreports/

to predict functional noncoding variants. CADD4 and GWAVA5 are two recently published methods integrating 
functional genomic datasets to predict the deleteriousness of noncoding variants. In addition, the gkm-SVM6 
and Trap7 were proposed to identify causative variants from sequence data. Recently, we proposed a scheme to 
combination of high-density genotyping and epigenomic data using a random forest model for discovering the 
autoimmune disease-specific noncoding risk variants8. Moreover, we proposed a post-GWAS analysis method 
using a convolutional neural network (CNN) trained on epigenetic features to find functional rare noncoding risk 
variants9. In this study, the CNN model was constructed with uncertain class labels on the epigenetic feature map 
extracted from the largest available GWAS data3 to predict functional noncoding variants associated with ALS.

Results
Overview of research methodology.  We used the genetic associations from a large-scale GWAS meta-
analysis including 8,697,640 SNPs genotyped in 14,791 ALS patients and 26,898 healthy controls from 41 cohorts 
organized in 27 platform- and country-defined strata3. The research methodology in this study consists of three 
steps (Fig. 1): (1) define association blocks as follows. First, we discarded the SNPs with P > 5 × 10–4, then identi-
fied lead-SNPs which showed the strongest associations (the SNPs with the lowest p value) and 1 Mb apart from 
each other10. After that, we searched upstream and downstream regions flanking each lead SNP for the 30 most 
significant SNPs. Finally, we reached to 274 association blocks carrying the lead SNPs and their nonoverlapped 
neighboring SNPs. (2) Annotate each SNP with functional features from four different categories (“Methods” 
section), DHS mapping data, histone modifications, target gene functions, and transcription factor binding sites 
(TFBS). (3) Train the CNN model with uncertain labels (“Methods” section) on the extracted epigenetic feature 
map using a large number of hyperparameters and an autoencoder for pre-training. We split the input data to 
training, validation, and testing sets by chromosome9,11. Chromosomes 1–10 were used as the training set, and 
chromosomes 11–14 were used as the testing set that was used to report final performance levels. The best hyper-
parameter set was selected using Chromosomes 15–22 as the validation set. In the end, we prioritized the SNPs 
with a prediction score > 0.5 as the risk variant candidates.

Biological characterization of noncoding risk variants.  The performance of our model was evaluated 
in terms of the area under the receiver operator characteristic curve (AUC) and F1 value (Fig. 2). In calculat-
ing the AUC, the true positive and true negative count to the association blocks with prediction_score > 0.5 or 
control blocks (“Methods” section) with prediction_score < 0.5. The validity of our results was tested in different 
ways. First, considering the risk variants are expected to have a certain level of statistical association with ALS, 
our results show 91 variants with the strongest statistical association (i.e., lead SNP) in 240 chromosomal blocks 
with at least one positive call (Fig. 3a). Moreover, a prominent role is expected for brain-related features when 
predicting risk variants associated with ALS. To test this, we employed the random forest classifier to assess the 

Figure 1.   Outline of functional fine-mapping of ALS risk variants.
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contribution of each feature to the prediction processes (“Methods” section). The neural features seemed to be 
more important in our model to characterize the ALS functional SNPs (Fig. 3b). On the other hand, noncoding 
causal variants may act through altering transcription factor (TF) binding. We used TF-contacting sequences 
identified by the nucleotide-resolution analysis of DHSs12. The fraction of sequences that were in physical con-
tact with TFs was considerably higher for positive calls than negative calls (Fig. 3c). TCF3 is reported as one of 
the candidate causal master regulators of neurodegeneration in an in-vitro model of ALS13, and Fig. 3d shows 
TCF3 matching is significantly enriched in the positive SNPs group. In addition, we applied one of the state-
of-the-art computational methods to predict the functional noncoding variants, GWAVA5. The higher GWAVA 
score means query SNP is more likely to be functional. In the same direction, the results showed higher GWAVA 
scores for positive than negative calls (Fig. 3e). Finally, the SNP feature map annotation indicates a significant 
difference in neural-related feature annotation between positive and negative groups (Fig. S.1).

Filtering and prioritizing of risk variants and genes.  In our results, 1,326 SNPs were predicted as 
putatively risk variants for ALS. In the process of interpreting our results in the search for risk SNPs, especially 
within noncoding regions, ruling-out false positives is of utmost priority. For this purpose, we defined a filtering 
pipeline (Fig. 4) to reach a list of the more probable risk SNPs and genes. Since the closest gene is typically not 
the target of transcriptional regulatory elements15, we considered 3 kb upstream of TSS as a promoter site and 
LASSO transcriptional enhancers in brain cell lines16 as an enhancer site for each gene for mapping a target gene 
to both proposed risk SNPs and GWAS associated SNPs. By applying this pipeline, we got to 286 SNPs and their 
related 199 genes as the more probable risk SNPs and genes for ALS (Table S.1). Then, we validate our results by 
performing several functional analysis on the 83 genes and 37 genes which are specifically categorized as poten-
tial risk genes and GWAS associated genes, respectively. For the first biological validation, we demonstrated that 
the proposed potential risk genes set are significantly expressed in the brain tissue (Fig. 5a), while the GWAS 
associated genes set are not enriched in the brain tissue (Fig. S.2). This analysis was performed by FUMA17, and 
identified tissue specificity of prioritized genes based on differentially expressed genes using GTEx v8 RNA-seq 
data for 54 tissue types18. For the second validation, we used the KEGG pathway19 terms belonging to related 
categories such as “nervous system”, and “neurodegenerative disease”. Figure 5b shows the enrichment of brain-
related KEGG pathways for our proposed potential risk genes set.

Functional assessment of noncoding risk variants and genes associated with ALS.  Consider-
ing GWASs can only report large clusters of SNPs, or LD blocks, including not only causal variants but also many 
linked neutral SNPs, we wanted to look for variations more likely to be functional and genes neighboring GWAS 
tag-SNPs. Therefore, we considered SNPs which shared an association block with at least one significant GWAS 
associated SNP (p value < 5e−08). After mapping the target genes using promoter and enhancer sites, we com-
pared the sets of genes associated with both groups of predicted risk SNPs and tag-SNPs (Table 1). As expected, 
some GWAS-associated genes were shared between both sets such as MOBP, C9orf72, SCFD1, SARM1, and 
UNC13A gene.

There is no GWAS tag-SNP associated with the CX3CR1 (chemokine (C-X3-C motif) receptor 1) gene. 
Whereas, recently, it was reported that the V249I and T280M polymorphisms of the CX3CR1 gene are associated 
with the risk of ALS and modify phenotype in a large population-based series of ALS patients20. To explore the 
potential function of CX3CR1 in the brain, we explored CX3CR1 expression in different cell types of the central 
nervous system using the data from21. Figure S.3 also shows the CX3CR1 gene is highly expressed in microglia 
cells of human and mice brain22. Moreover, this gene has been proposed as a key mediator of neuron-microglia 

Figure 2.   Model performance on the test set (Block-wised). ROC curve, AUC and F1 measured on the test set 
for the proposed CNN model using autoencoder pre-training process.
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interactions that is upregulated under inflammatory conditions23,24. In our results, we first focused on the posi-
tively predicted SNP, rs2370964, in the enhancer site of the CX3CR1 gene. The association block close to the 
MOBP and CX3CR1 genes is shown in Fig. 6a, along with the SNPs feature map annotation plot. The variant 
with the strongest statistical association (chr3:39498005) was in the positive group, and the proposed SNP 

Figure 3.   Analyzing prediction outcomes. (a) Comparison of the prediction scores (red triangles on the left 
y-axis) and association statistics (blue circles on the right y-axis) for individual SNPs in one association block. 
(b) Fraction of SNPs with the prediction score > 0.5 (positive) and < 0.5 (negative) located within TF binding 
sequences in > 40 cell types. (c) Overrepresentation of feature categories in the set of the significant Gini features 
as tested using the binomial distribution. (d) TF enrichment analysis for positively predicted SNPs (prediction_
score > 0.5) using SNP2TFBS14. (e) Box-plot for GWAVA scores of three training sets for positive (red) and 
negative (gray) SNP groups.
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(chr3:39490061) annotated more in the neural-related features group as expected. According to the LD blocks 
shown in Fig. 6b for the SNPs in the interest association block, rs2370964 with the allele frequency of 49% is in 
the strong LD (D’ = 1, r2 = 0.98) with GWAS tag-SNP (rs4676496) and is considered as a putative risk SNP for ALS.

The second focus in our results is the intron variant, chr17:26665768, which hits tumor necrosis factor-
induced protein 1 (TNFAIP1) gene close to SARM1 gene. The rs3093720 enriched more in immune and neural 
annotated features. While ALS is not primarily considered an autoimmune or immunodeficiency disease, mount-
ing evidence suggests that immune/inflammatory abnormalities and non-neuronal cells play an important role 
in disease onset and progression25. Morello et al.25 distinguished the two sporadic ALS (SALS) subtypes, SALS1 
and SALS2, each being associated with differentially expressed genes and pathways, and showed that TNFAIP1 
is a neuroinflammatory gene differentially expressed in SALS2. This gene was predominantly up-regulated in 
the transgenic Caenorhabditis elegans Alzheimer’s disease (AD) model and was also shown to have increased 
transcript levels in AD brains26. Furthermore, a strong LD (D’ = 1, r2 = 0.56) among g. 26665768 C > A with an 
allele frequency of 21%, and g. 26719788 G > A was identified in the European population (Fig. 7b).

Considering the two identified SNPs are located in a non-coding region, it is likely that these variants exert 
their effects on ALS through affecting gene expression. In this study, we used expression quantitative trait loci 
(eQTL) which is one of the most prominent methods for discovery of genetic variants that explain variation in 
gene expression levels. eQTL analysis on RNA sequencing data from lymphoblastoid cell lines of 465 individu-
als from the 1,000 Genomes Project27 shows the reference and risk allele, C, is responsible for the reduction of 
CX3CR1 expression levels (Fig. 8a). Deletion of CX3CR1 in a transgenic model of ALS mice was shown to exac-
erbate neuronal cell loss, suggesting that CX3CL1/CX3CR1 signaling limits microglial toxicity in ALS24. On the 
other hand, Fig. 8b shows the TNFAIP1 expression level decrease by alternative allele, A, by the SNP of interest 
in lymphoblastoid cell lines. TNFAIP1 was originally identified as a gene whose expression can be induced by 
tumor necrosis factor alpha (TNFα) in umbilical vein endothelial cells28. Liu et al.29 demonstrated that TNFAIP1 
can be induced by Aβ25–35, and overexpression of TNFAIP1 promotes Aβ25–35-induced neurotoxicity, whereas 
knock-down of TNFAIP1 blocks Aβ25–35-induced neurotoxicity. These changes in gene transcription can result 
from changes in the TFBS motif. The rs2370964 polymorphism disrupts the binding sites for CTCF which is 
a DNA-binding protein that organizes nuclear chromatin topology. Mutations in CTCF cause intellectual dis-
ability and autistic features in humans, and McGill et al.30 found that CTCF depletion leads to overexpression 
of inflammation-related genes and microglial dysfunction. Moreover, Nagamoto-Combs et al. demonstrated 
that NFAT plays a role in regulating proinflammatory responses in cultured murine microglia, the resident 
immune cells of the central nervous system31. According to our results, this SNP also creates a new TFBS for the 
NFATc1 isoform. In the case of rs3093720, this SNP mostly annotated in immune and neural features groups, 
and effects the binding site of NR3C1 (Fig. 7a), a glucocorticoid receptor associated with elevated stress signal-
ing in neurodegeneration32.

Conclusion
Recent large-scale GWAS have identified multiple risk variants that show strong association with ALS. But, some 
of the rare variants might be missed in GWAS, fine- mapping and imputation statistical procedures33. Rare vari-
ants with greater effect sizes might confer highly deleterious effects on development or progression of ALS34,35, 
and thus, it is crucial to include them in the subsequent post-GWAS analysis. A number of methods have been 
developed for inferring noncoding risk variants using different functional data and computational methodologies. 

Figure 4.   Gene set filtering pipeline. Workflow to reach a list of the most probable risk SNPs and genes.
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To our knowledge, the methodology proposed by Lee et al. is the most accurate and recent post-GWAS model 
for finding noncoding rare risk variants9, although we developed the CNN model by considering the concept 
with lack of a gold standard for labeling the association blocks. For the first time, we proposed the CNN model 
with uncertain class labels, and applied them in an attempt to predict noncoding risk variants on the basis of 
their functional features. Of importance, since our functional prediction method, only use the position of the 
associated SNPs and trained on the common patterns between annotated functional features shared by putative 
risk variants scattered among multiple associated loci, it is applicable to rare variants, and is able to single out one 

Figure 5.   Characterization of the proposed potential risk genes and GWAS associated genes from the pipeline. 
(a) Enrichment of differentially expressed gene (DEG) for the proposed potential risk genes set in a certain 
tissue compared to all other tissue types. Red bars shows significant enrichment at Bonferroni corrected p 
value ≤ 0.0517. (b) Enrichment score for two groups of gene sets in the brain-related KEGG Pathway terms 
such as “nervous system” (“glutamatergic synapse”, “GABAergic synapse”, “cholinergic synapse”, “dopaminergic 
synapse”, “serotonergic synapse”, “long-term potentiation”, “long-term depression”, “retrograde endocannabinoid 
signaling”, “synaptic vesicle cycle”, and “neurotrophin signaling pathway”), and “neurodegenerative disease” 
(“Alzheimer’s disease”, “Parkinson’s disease”, “amyotrophic lateral sclerosis”, “Huntington’s disease”, and “prion 
diseases”).

Table 1.   Target genes assigned to proposed risk SNPs and GWAS tag-SNPs. Bolded are the previously known 
genes for ALS and in italics are the proposed risk ALS genes.

Proposed risk SNPs related genes MOBP, CX3CR1, IFNK, C9orf72, MOB3B, SCFD1, TNFAIP1, SARM1, UNC13A

Tag-SNPs related genes MOBP, IFNK, C9orf72, MOB3B, LOC101927815, TBK1, WASHC1, SCFD1, SARM1, SLC46A1, 
UNC13A, C21orf2
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statistically indistinguishable variant from the GWAS variants (Fig. 3a). However, it may be possible that some 
false-positive variants are included, and a filtering pipeline was added to reach candidates functional risk SNPs 

Figure 6.   Functional analysis of the association block sharing MOBP gene. (a) The top shows prediction 
scores for all SNPs in an association block harboring a known ALS gene, MOBP on chromosome 3. Red and 
green circles represent associated SNPs with prediction_score > 0.5, prediction_score < 0.5, respectively; wheel 
cross represents SNP in CX3CR1 gene enhancer site. In the middle is an individual SNP feature map for all 30 
SNPs inside of the block. The Y-axis is the negative logarithm of p value calculated based on a binomial test 
for multiple comparisons. The bottom is the CTCF binding site affinity for reference and alternative alleles. (b) 
Schematic locations of SNPs in the association block sharing MOBP gene along with LD blocks generated by 
Haploview.
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for ALS. Our method led to a discovery of two putative ALS genes, CX3CR1 and TNFAIP1, and corresponding 
noncoding SNPs.

Several criteria need to be met for an SNP to be considered a causal variant in a disease such as ALS. Nota-
bly, the SNP should have an impact, probably small, on molecular or cellular systems of neural and/or related 
cells and/or tissue(s). It can also be the case that an SNP localized in a noncoding region is likely to affect the 
expression of one or several genes through different molecular mechanisms36. The eQTL analysis showed SNPs 

Figure 7.   Functional analysis of the association block sharing SARM1 gene. (a) The top shows prediction 
scores for all SNPs in an association block harboring a known ALS gene, SARM1 on chromosome 17. Red 
and green circles represent associated SNPs with prediction_score > 0.5, prediction_score < 0.5, respectively; 
wheel cross represents SNP hit in the TNFAIP1 gene. In the middle is an individual SNP feature map for all 
29 SNPs inside of the block. The Y-axis is the negative logarithm of p value calculated based on a binomial test 
for multiple comparisons. The bottom is CTCF binding site affinity for reference and alternative alleles. (b) 
Schematic locations of SNPs located close to SARM1 gene along with LD blocks generated by Haploview.
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rs2370964 and rs3093720 may confer the risk of ALS through affecting CX3CR1 and TNFAIP1 expression 
(Fig. 8). These changes in gene transcription can result from changes in the TFBS motifs.

Both rs2370964 and rs3093720 are in the strong LD with GWAS tag-SNPs, and it provided additional evidence 
that supports rs2523593 being an SNP that confers a prominent risk for ALS. Our integrative analysis and gene 
expression results provide convergent lines of evidence that support the potential involvement of CX3CR1 and 
TNFAIP1 in ALS.

In this study, we get closer to clearly defining the risk variants and confidently declaring the genes as those 
implicated as causal variants in ALS; however, more work is needed to investigate the exact role of the proposed 
genes in the pathogenesis of ALS. Finally, further experimental strategies are necessary in order to effectively 
detect the potentially minuscule impact of two functional SNPs on putative risk genes.

Methods
Feature set annotation.  Each SNP was annotated with 2,252 functional features from four different cat-
egories including: (1) DHS mapping data in 349 different samples covering 124 distinct cell types37,38, (2) 606 
histone modification profiles in 127 human tissues or cell lines38, (3) 301 pathways from the KEGG database19 
for function of target genes, and (4) transcription factor binding sites computed using FIMO39 at the p value 
threshold of 10–4 for 996 transcription factors from TRANSFAC40 and JASPAR41 databases.

We constructed a binary input matrix such as assigning 1 for each feature associated with the SNPs of inter-
est and 0 otherwise. Because of dealing with the overfitting problem, the features that were not mapped to any 
SNPs in > 95% of the association blocks were excluded and the resulting number of surviving features was 726. 
Finally, we reached an input matrix of 274 association blocks including at most 30 SNPs in each block with 726 
functional features for each SNP.

CNN model with uncertain labeling.  In real applications of machine learning problems, it is often the 
case that we cannot exactly obtain the true labels. In our problem, since we did not have a gold standard for 
labeling the association blocks, we modified the original CNN model used in9 based on the uncertain labeling 
concept in classification problems42–44. Our CNN model was constructed based on two convolution layers. The 
first layer applied a rectified linear unit (ReLU) and acts as a local feature extractor at the individual SNP level. 
The size of input matrix for this layer is M × N which M is the number of functional features that survived from 
the filtering step and N is the total number of candidate SNPs in each block. We applied 50 one-dimensional 
filters with a length of 726 (survived functional features) with a moving window of step size 1. In this way, 50 
types of pattern detectors were used for each SNP without considering the effect of neighboring SNPs. After con-
volving the input matrix, and adding a bias vector, we applied ReLU to reach an output matrix K × N which K is 
the number of filters used in our model. The consequence matrix corresponds to per-SNP scores measuring how 
well the features of each SNP match the patterns of the shared weights. In the second convolutional layer, only 
one tunable weight vector was used to linearly combine the 50 patterns for high-level feature scoring of each SNP 
and sigmoid function scaled the results to the 0–1 range. The output from this layer can be considered as the pre-
diction score of each SNP and the value close to 1 indicate that certain common regulatory patterns are embed-
ded in the features of the given SNPs. Finally, max-pooling was applied to find the per-block score of the SNP 
whose features best match the common patterns shared by different blocks. More information can be found in9.

Figure 8.   The eQTL analysis on lymphoblastoid cell lines. (a) The eQTL analysis for rs2370964 on CX3CR1 
gene. (b) The eQTL analysis for rs3093720 on TNFAIP1 gene. Red is the risk-allele. RPKM: reads per kilobase 
per million.
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In the original model, all the association blocks (true cases) which are assumed to carry at least one causal 
SNP and control blocks (false cases) which are constructed by shuffling the regulatory features of SNPs in the true 
cases were labeled 1 and 0 respectively. Because of the lack of any gold standard for labeling the causal associa-
tion blocks, it is not fair to simply assign either association or control blocks labels. Therefore, we used an extra 
weight for each block labels which show the certainty about labeling based on meta-analysis p value as follows:

We generated false cases that are ten times the true cases. The loss function was composed of parameters 
(θ) including the weight vectors and biases in the first and second convolutional layers which were updated by 
the standard backpropagation algorithm with momentum. We also trained the model parameters to minimize 
a loss function defined as follows9:

where NLL stands for the mean of negative log likelihood, and �1w1 + �2w2 represents the regularization term 
of the elastic net that is used to control overfitting. The NLL(θ) of the loss function is given as

where Y can be either 1 or 0 for true cases or false cases, respectively, and f(θ)m is an output for the mth GWAS 
block in a mini-batch of size B (B = 100). To allow the model to learn more robust features, we used the denoising 
autoencoder to pre-train the filters. Autoencoder is an unsupervised learning function which can be considered 
for fine-tuning by assigning an optimal starting point. In our model, autoencoder takes vectors of M functional 
features of each SNP as input, then was trained to reconstruct the input from a stochastically corrupted version. 
The stopping criteria and hyperparameters selection in this model can be found in9.

 Feature importance analysis.  One of the major criticisms of CNN models is their being black boxes, 
since no satisfactory explanation of the weights learned by CNN has been used for the assessment of feature 
importance. In this study, this drawback was tackled by employing random forest (RF) as a supervised ensem-
ble learning method that operates by constructing several randomized decision trees. RF was trained on the 
labeled SNPs as positive (prediction_score > 0.5) or negative (prediction_score < 0.5) according to CNN results. 
100 decision trees constituted the RF and 10 features were randomly sampled at each split. The Gini impor-
tance score was calculated to evaluate the relative importance of each feature. First, the response variable was 
randomly permutated 1,000 times, then feature importance from the permutated data was compared with the 
original importance levels. Finally, p values were estimated as the number of cases where permutated feature 
importance exceeded real importance using the hypergeometric distribution.

where N is the total number of features, K is the number of all significant features (p value < 0.05), n and k 
are the number of features and the number of significant features in each category (Neural, Immune, Digestive 
and Circulatory) (Table S.2). We did not consider repressive histone marks, H3K9me3 and H3K27me3, because 
they are not specifically mapped to individual SNPs. We implemented RF by using R packages, randomForest 
and rfPermute45.

Identification of linkage disequilibrium blocks.  The structure of LD in the region was determined 
using Haploview46. We used the pedigree data of the specific chromosome region from the European population 
1,000 Genomes project (phase 3 release) as an input for Haploview to identify SNPs in the same LD. Haplotype 
blocks were defined based on D’ estimates using the Solid Spine of the LD option.
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